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Abstract

Readily veri"able conditions under which a dynamical system of the form x� "f (x) possesses an unbounded solution are presented.
The results are illustrated by showing they can be used to infer results about lack of global stabilizability for nonlinear control
systems. The key observation in the paper is that behaviour at in"nity can be studied using local methods applied to an auxiliary
system. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Let � denote the real numbers. Given a dynamical
system of the form

x� "f (x) (1)

de"ned on ��, it is often of interest to know if all possible
solutions of the system are bounded or if the system
possesses an unbounded solution. Determining this for
systems without explicit solutions can be a highly non-
trivial task. Presented in this paper are su$cient condi-
tions for a system of the form (1) to possess an
unbounded solution.
When considering whether a system possesses an un-

bounded solution, one is asking how the system behaves
arbitrarily far away from the origin, that is, how it be-
haves near `in"nitya. The key observation in the paper is
that behaviour at in"nity can be studied using local
methods. It will be shown that the existence of appropri-
ate auxiliary functions and variables allows us to con-
struct a new system of dimension one greater than
the original from which the existence of an unbounded

solution of the original system can be inferred using local
methods.
As mentioned above, the result given in the paper relies

on "nding appropriate auxiliary functions and variables.
In this manner it is similar to Lyapunov's stability the-
orem which requires one to "nd an appropriate auxiliary
function, namely a Lyapunov function, in order to give
a positive result about system stability.
The paper is structured as follows. The main ideas of

the paper are further introduced in Section 2. The mater-
ial in Section 2 is quite concrete and is presented to
motivate the slightly more abstract material in the re-
mainder of the paper. The main result of the paper is
presented in Section 3. Section 4 contains some examples.
Included are examples that show how the results of the
paper can be used to infer results about lack of global
stabilizability for nonlinear control systems. A partial
converse theorem to the main result is presented in
Section 5. Section 6 contains some additional comments
and the paper ends with some concluding remarks in
Section 7. (Two technical lemmas have been placed at the
end of the paper in an appendix.)

2. Main ideas

Presented in this section, in a rather nonrigorous man-
ner, are su$cient conditions for a system to possess an
unbounded solution. The material presented here is
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intended only as an introduction to the main ideas of
the paper and rigorous proofs of results based on these
ideas are given in the main body of the paper.
Consider an arbitrary system of the form (1) de"ned on

��. Let �3� be a "xed positive number and let z3� be
a new variable governed by the dynamics

z� "!�z. (2)

Further let �
�
,2, �

�
be certain real numbers and let us

introduce another new variable y3�� and de"ne it via
the identity

(y
�
,2, y

�
)"(x

�
z�� ,2, x

�
z��). (3)

Eq. (3) determines the dynamics of y in terms of the
dynamics of z and x and di!erentiating (3) with respect to
t and substituting (1)}(3) we arrive at a new system of the
form

z� "!�z,

y� "H(z, y).
(4)

The function H may or may not be well de"ned as
a function. Let us suppose that it is and furthermore that
it is continuously di!erentiable. In addition, suppose that
(z, y)"(0, y� ) is an equilibrium point of (4) and that for
some j3�1,2, n�, �

�
'0 and y�

�
O0.

If all the conditions above are met, our original system
(1) has an unbounded solution. Indeed the linearization
of (4) at (0, y� ) has a negative eigenvalue (as �'0) and it
can be shown that this implies that (4) has a solution
(z( ) ), y( ) )), z(0)'0, that converges to (0, y� ). This solution
in turn de"nes a solution x( ) ) of (1) via (3). As
x
�
(t)"y

�
(t)/z(t)�� and as z(t)P0, y

�
(t)Py�

�
O0 and

�
�
'0, it follows that �x

�
(t)�PR and hence that (1) has

an unbounded solution.

3. Main result

This section contains the main result of the paper
giving su$cient conditions for a system to possess an
unbounded solution. The material in this section is
directly motivated by the ideas in Section 2 and the
results of that section are presented in rigorous form in
Corollary 3.5.
Let � denote the integers, �

��
the set �z3� � z'0�

and C� the class of continuously di!erentiable functions.
If �(z,x) is a map from ���� to �� which is di!erenti-
able at (z, x)"(a, b), letD

�
�(a, b) denote the partial deriv-

ative of the function � with respect to its "rst argument
z evaluated at the point (a, b). Similarly, let D

�
�(a, b)

denote the partial derivative of the function � with respect
to its second argument x evaluated at the point (a, b).
Central to the material in this section and showing that

a system has an unbounded solution is the idea of
a `stability preserving extensiona which we now de"ne.

De5nition 3.1. A stability preserving extension is de"ned
to be a pair (�, y� ) consisting of a C� function
� :�

��
���P�� and a point y� 3�� that together satisfy

the following properties:

(P1) �(z
�
,�(z

�
,x))"�(z

�
z
�
,x) for all z

�
, z

�
3�

��
and

x3��,
(P2) �(1,x)"x for all x3��,
(P3) � :��P��, yCD

�
�(1, y) is C� in a neighbour-

hood of y� ,
(P4) lim

������������ �
��(1/z, y)�"R.

An example of a stability preserving extension (�,y� ) is
any pair consisting of a function of the form
�(z,x)"(z��x

�
,2, z��x

�
) (�

�
3�, i"1,2, n) and any

point y� 3�� such that for at least one j3�1,2, n�, y�
�
O0

and �
�
'0. Indeed this is exactly the type of transforma-

tion that was used in Section 2. It will be considered
further in Corollary 3.5.
Stability preserving extensions are `extensionsa in the

sense that if a system has an unbounded solution and an
appropriate stability preserving extension exists, the ex-
tension can be used to form the basis for transforming the
given system into a certain new system of dimension one
greater than the original. (Local methods applied to this
new system then infer the existence of an unbounded
solution of the original system. The details of this result
are given in Theorem 3.2 below.) We have used the
term `stability preservinga to indicate that stabil-
ity preserving extensions do not introduce any
unbounded behaviour that was not present in the orig-
inal system.
Theorem 3.2 below gives su$cient conditions for

a given system (5) to possess an unbounded solution. Its
proof starts by showing that the requirements of the
theorem guarantee that the new system (6) can be formed.
Furthermore, the theorem conditions also guarantee that
(z, y)"(0, y� ) is an equilibrium point of (6) and that the
linearization of (6) at this point has a negative eigenvalue.
The proof then shows that this implies that there exists
a solution of (6) that converges to (0, y� ) and "nally that
this via property (P4) implies that the original system (5)
has an unbounded solution.

Theorem 3.2. Given a function f :��P�� and an arbitrary
continuous function F :��P�

��
, dexne g"f/F. If there

exists �3�
��

and a stability preserving extension (�,y� )
such that

1. there exists a function h :����P�� which is C� in
a neighbourhood N of (0,y� ) and which equals

�D�
��
1

z
, y��

��
g���

1

z
, y��

for all (z, y)3N	(�
��

���),
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2. h(0, y� )!�D
�
�(1, y� )"0, then the system

x� "f (x) (5)

has an unbounded solution.

Proof. Consider the system

z� "!�z,
(6)

y� "h(z, y)!�D
�
�(1, y).

By assumption, h is C� in a neighbourhood of (0,y� ). In
addition, from property (P3), �(y)"D

�
�(1, y) is C� in

a neighbourhood of y� and it follows that the vector "eld
of (6) is C� in a neighbourhood of (0,y� ).
Condition (2) of the theorem statement indicates that

the point (z, y)"(0,y� ) is an equilibrium point of system
(6). Linearization of (6) at this point gives

�
z
�

y
� �"A�
z


y
 �,
where A has the form

A"�
!� 0

A
��

A
��
�.

The real number !� is an eigenvalue of A and
Lemma A.1 implies that associated with this eigenvalue
there exists, a real (generalized) eigenvector v whose
z component is nonzero. The Center Manifold Theorem
(Guckenheimer & Holmes, 1997) now implies that there
exists a stable invariant manifold (of dimension at least 1)
passing through the equilibrium point (0, y� ) and further-
more that this manifold is tangential to the vector v at the
point (0, y� ). (The manifold is stable and invariant in the
sense that all solutions starting on the manifold remain
on the manifold and converge to (0, y� ).) This implies the
existence of a solution of (6) passing through a point
(z�, y�), z�'0, and converging to (0, y� ).
Let (z( ) ), y( ) )) denotes the solution of (6) with initial

point (z�, y�) and let x : [0,R)P�� be the function de-
"ned by

x(t)"��
1

z(t)
, y(t)�. (7)

Note that z(t)'0 for all t3[0,R). Di!erentiating (7)
with respect to t gives

x� "D
�
��
1

z
, y��!

z�
z��#D

�
��
1

z
, y�y� . (8)

Substituting (6) into (8) and then using condition (1) of
the theorem statement and simplifying gives

x� "
�
z
D

�
��
1

z
, y�#g���

1

z
, y��

!�D
�
��
1

z
, y�D�

�(1, y).

It now follows from (A.1) and (7) that x( ) ) is a solution of

x� "g(x). (9)

As (z(t),y(t))P(0�, y� ), property (P4) implies that x( ) ) is
an unbounded solution of (9).
De"ne �(t)"�	

�
F(x(s))��ds. As F(x(s)) depends con-

tinuously on s and is strictly greater than zero for all
s3[0,R), it follows that d�(t)/dt"F(x(t))��. As � is
a strictly monotonically increasing function of t, it
follows that t can be considered as a function of � and
that dt(�)/d�"F(x(t(�))). Now � converges to some value
�� 3(0,R] as tPR. Let  : [0, �� )P�� be the function
de"ned by

(�)"x(t(�)). (10)

Then

d(�)
d�

"

dx

dt

dt

d�

"

f (x(t(�)))
F(x(t(�)))

F(x(t(�)))

"f ((�)).

From the relationship between � and t, t as a function of
� converges to in"nity as �P�� and it follows that (10) is
an unbounded solution of (5). �

Remark 3.3. A priori no continuity/smoothness condi-
tions are imposed on the function f itself. Such condi-
tions only appear indirectly through the auxiliary system
(6) and the requirement that h be continuously di!erenti-
able in an appropriate neighbourhoodN. In this way the
unboundedness established in the theorem is also an
existence result for the solutions in the "rst place. (Note
however that f is required to be continuous if (5) is to
have a classical solution through each point in ��.)

Remark 3.4. Note that the net result of dividing the
vector "eld f by the positive continuous function F is just
a nonlinear scaling of time. The orientation of the vector
"eld and the trajectories of the system remain unchanged.

As to the usefulness of actually having the freedom to
choose such an F, this will become apparent when we
consider some examples. We now give a corollary to
Theorem 3.2 that presents the ideas of Section 2 in
rigorous form. The result presented below in Corollary
3.5 is more general than the result of Section 2 in that,
like Theorem 3.2, it allows normalization of the vector
"eld.

Corollary 3.5. Given a function f :��P�� and an arbit-
rary continuous function F :��P�

��
, dexne g"f/F and

R. Orsi et al. / Automatica 37 (2001) 1609}1617 1611
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let g
�
:��P�, i"1,2, n, denote the components of g. If

there exists �3�
��
, �

�
,2, �

�
3� and (y�

�
,2, y�

�
)3��

such that

1. for each i"1,2, n, there exists a function h
�
(z, y) from

���� into �� which is C� in a neighbourhood N of
(0, y�

�
,2, y�

�
) and which equals

hI
�
:"z��g

��
y
�

z��
,2,

y
�

z��� (11)

for all (z, y
�
,2, y

�
)3N	(�

��
���),

2. h
�
(0, y�

�
,2, y�

�
)!��

�
y�
�
"0, for all i"1,2, n,

3. y�
�
O0, �

�
'0, for some j3�1,2, n�,

then the system x� "f (x) has an unbounded solution.

Proof. The result follows in a straightforward manner
from Theorem 3.2 by choosing the stability preserving
extension consisting of �(z,x)"(z��x

�
,2, z��x

�
) and

y� "(y�
�
,2, y�

�
). �

4. Examples

In this section the results of the previous section are
illustrated with some examples. In particular, some of the
examples in this section show how the results of Section
3 can be used to infer results about lack of global stabiliz-
ability for nonlinear control systems.

Example 4.1. For arbitrary (but "xed) real numbers
a, b, c and d, with c and d nonzero, the system

x�
�
"ax

�
#x

�
x
�
#bx�

�
,

x�
�
"cx

�
, (12)

x�
�
"dx

�
x
�

has an unbounded solution. This can be veri"ed by
checking that

F(x)"�1#x�
�
, �"0.5, �

�
"2, �

�
"1, �

�
"1,

y� "(c/d, �c�/d, 2�c�)

and

�
h
�

h
�

h
�
�" 1

�z�#y�
� �

ay
�
z�#y

�
y
�
#by�

�
z

cy
�

dy
�
y
�

� (13)

satisfy the requirements of Corollary 3.5. We will now
attempt to give some insight into how these functions
and variables were found.

Let us "rst attempt to prove the result using F"1.
With F"1, the hI

�
equations from (11) are

hI
�
"z���a

y
�

z��
#

y
�

z��
y
�

z��
#b

y�
�

z����,

hI
�
"z��c

y
�

z��
,

hI
�
"z��d

y
�

z��
y
�

z��

and simplifying gives

hI
�
"ay

�
z�����#y

�
y
�
z���#by�

�
z������ ,

hI
�
"cy

�
z������ , (14)

hI
�
"dy

�
y
�
z��� .

Each hI
�
is only de"ned for z'0 and in order to satisfy

condition (1) of Corollary 3.5 we would like to "nd
a choice of �

�
's that enables us to extend each hI

�
to

a function h
�
which is C� in a neighbourhood of

(0, y�
�
,2, y�

�
) (a point which we are free to choose). Hence,

we would like to "nd �
�
's such that for each term in (14) of

the form z�, �*0. This imposes the requirement that
�
�
!�

�
*0, !�

�
*0, �

�
!2�

�
*0, !�

�
#�

�
*0

and !�
�
*0. These inequalities imply �

�
"�

�
)0 and

�
�
)0 and as none of the �

�
's can be positive, condition

(3) of Corollary 3.5 cannot be satis"ed. This implies that
using our initial choice for F no appropriate h

�
's can be

found. In order to try to demonstrate the existence of an
unbounded solution of (12) there is no choice but to try
a di!erent F.
Let � be a "xed but as yet unspeci"ed real number.

Multiplying each of the hI
�
's in (14) by z� gives

z�hI
�
"ay

�
z�������#y

�
y
�
z�����#by�

�
z��������,

z�hI
�
"cy

�
z��������, (15)

z�hI
�
"dy

�
y
�
z�����.

The z exponents on the right hand sides of (15) are all
nonnegative if for example �

�
"2, �

�
"1, �

�
"1 and

�"1. Hence in order to satisfy condition (1) of Corollary
3.5, it is su$cient to "nd a F that introduces a factor
z� (�"1). Leaving �

�
"2, �

�
"1 and �

�
"1, a suitable

choice is F"�1#x�
�
which upon substitution of

x
�
"y

�
/z�� becomes F"�z�#y�

�
/z. With this new F,

the hI
�
's in (14) become

�
hI
�

hI
�

hI
�
�" 1

�z�#y�
� �

ay
�
z�#y

�
y
�
#by�

�
z

cy
�

dy
�
y
�

�. (16)

Note that the right hand side of (16) is the same as that
of (13). With this choice of h

�
's and �

�
's, condition (1) of

1612 R. Orsi et al. / Automatica 37 (2001) 1609}1617
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Corollary 3.5 is satis"ed if y�
�
is nonzero. If this is the case,

condition (3) of Corollary 3.5 will also be satis"ed as �
�
'0.

It remains to show that condition (2) of Corollary 3.5
can be satis"ed. That is, it remains to show that there
exists y�

�
, y�

�
, y�

�
and �, with y�

�
O0 and �'0, such that

y�
�
y�
�

�y�
�
�

!2�y�
�
"0, (17)

cy�
�

�y�
�
�
!�y�

�
"0, (18)

dy�
�
y�
�

�y�
�
�

!�y�
�
"0. (19)

We leave it to the reader to check that the values for y�
�
,

y�
�
, y�

�
and � given at the start of this example satisfy the

above requirements. (Note that other choices for the y�
�
's

also satisfy the requirements.) �

Remark 4.2. While each function hI
�
may not technically

be de"ned for z)0, requirement (1) of Corollary 3.5
ensures that each of these functions can be extended to
a function h

�
which is well de"ned in a neighbourhood of

(0,y� ). The particular values taken by the extension for
z)0 are not used in the proof of Theorem 3.2 and hence
while it is required that a (continuously di!erentiable)
extension exists, the speci"cs of the extension are unim-
portant. In the rest of this paper when using Corollary
3.5, no further distinction will be made between the
functions hI

�
and h

�
. For convenience we will simply refer

to the function h
�
.

The following result in Example 4.3 was originally
proved in Sepulchre, JankovicH , and KokotovicH (1997)
using quite di!erent methods.

Example 4.3. Consider the control system

x�
�
"!x

�
#x

�
x
�
,x�

�
"!x

�
#x�

�
x
�
,x�

�
"u, (20)

where (x
�
,x

�
, x

�
)3�� denotes the state and u the input.

It is now shown that there exists no C� partial-state
feedback u"k(x

�
) that globally stabilizes (20).

Let u"k(x
�
) be an arbitrary C� function. As in

Example 4.1, the proof of this result is "rst attempted
using F"1. Using this choice for F, condition (1) of
Corollary 3.5 requires that the functions

h
�
"!y

�
#z��������y

�
y
�
,

h
�
"!y

�
#z����y�

�
y
�
, (21)

h
�
"z��k�

y
�

z�� �
be C� in a neighbourhood of some point (0, y�

�
, y�

�
, y�

�
)

(which is still to be determined). A su$cient condition
that this be true for h

�
is that �

�
"0. The equations for

h
�
and h

�
then imply that �

�
!�

�
*0 and !2�

�
*0,

that is, �
�
)�

�
)0. This however violates condition (3)

of Corollary 3.5 that requires at least one of the expo-
nents �

�
, �

�
or �

�
to be positive.

To try to overcome this problem we will try a di!erent
function F. Leaving �

�
"0, let �

�
be positive. F is now

chosen so that h
�
is locally C�. A suitable choice is

F"1#x�
�
, which upon substitution of x

�
"y

�
/z�� gives

F"(z���#y�
�
)/z��� . With this new F,

h
�
"

!z���y
�
#z������y

�
y
�

z���#y�
�

,

h
�
"

!z���y
�
#y�

�
y
�

z���#y�
�

,

h
�
"

z���k(y
�
)

z���#y�
�

.

Conditions (1) and (3) of Corollary 3.5 are now satis"ed if
�
�
'03�, 3�

�
!�

�
*03� and y�

�
O0.

It must now only be ensured that �'0 and that
condition (2) of Corollary 3.5 is satis"ed. Noting that
h
�
"0 when z"0 and that �

�
"0, the only additional

requirements needed to satisfy condition (2) of Corollary
3.5 are that

z������y�
�
y�
�

y� �
�

!��
�
y�
�
"0

and

y�
�
!��

�
y�
�
"0

when z"0. In order that y�
�
O0 it is required

that 3�
�
"�

�
, y�

�
O0, y�

�
O0 and �"1/�

�
. Hence all

conditions of Corollary 3.5 are satis"ed if for
example �

�
"1, �

�
"3, �

�
"0, �"1/3 and

(y�
�
, y�

�
, y�

�
)"(3, 3, 3). �

Example 4.4. It is now shown that system (20) cannot be
globally stabilized via linear full state feedback. That is, it
will be shown that there does not exist a feedback of the
form

u"b
�
x
�
#b

�
x
�
#b

�
x
�
,

(b
�
, b

�
, b

�
)3��, which globally stabilizes (20).

Let F"1#x�
�
. Then it is straightforward to verify

that

h
�
"

!z���y
�
#z���������y

�
y
�

z���#y�
�

,

h
�
"

!z���y
�
#y�

�
y
�

z���#y�
�

,

h
�
"

z�����b
�
y
�
#z���������b

�
y
�
#z���b

�
y
�

z���#y�
�

.

Three sub-cases are considered.
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Case 1: b
�
O0. Let �

�
"2, �

�
"5, �

�
"1, �"1/5

and (y�
�
, y�

�
, y�

�
)"((25b

�
/2)�	, 1, 2y� ��/5). It is left to the

reader to verify that all the conditions of Corollary 3.5
are satis"ed. Note that b

�
O0 ensures y�

�
O0 which is

required in order to satisfy condition (1) of Corollary 3.5.
Case 2: b

�
O0, b

�
"0. Let �

�
"1, �

�
"4, �

�
"!1,

�"1/4 and (y�
�
, y�

�
, y�

�
)"(2�b

�
��
�,!b

�
/�b

�
�,!4b

�
/y�

�
).

Again it is left to the reader to verify that all the condi-
tions of Corollary 3.5 are satis"ed.

Case 3: b
�
"0, b

�
"0. In this case u"b

�
x
�
and the

result follows from Example 4.3.
This proves the desired result. �

5. A partial converse theorem

In this section a partial converse theorem to Theorem
3.2 is presented.

Theorem 5.1. Suppose f :��P�� is C� and that the system

x� "f (x) (22)

has an unbounded solution. Then there exists a C� function
� :�

��
���P�� and a point y� 3�� that together satisfy

properties (P1)}(P3), and

(P4�) lim sup
���� ��(1/z, y� )�"R.

Furthermore, there exists a continuous function
F :��P�

��
and a scalar �3�

��
that together with � and

y� satisfy conditions (1) and (2) of Theorem 3.2.

Proof. De"ne F"1#� f �� and g"f/F. For each x3��,
let ( ) , x) denote the solution of

w� "g(w), w(0)"x. (23)

As g is C� and �g(w)�(1 for all w3��, it follows that
(t,x) is uniquely de"ned for all (t,x)3���� and further-
more that (t,x) is C� in (t,x) (Hale, 1980). De"ne

�(z,x)"(log(z),x). (24)

Note that� is aC� function on�
��

���. That � satis"es
properties (P1) and (P2) follows from the fact that, for
each x, ( ) , x) is the solution of (23).
Di!erentiating (24) with respect to z gives

D
�
�(z,x)"

1

z
D

�
(log(z),x). (25)

Substituting z"1 into (25) gives

D
�
�(1,x)"D

�
(0, x)

"g((0,x))

"g(x), (26)

where the last two equalities follow from the fact that
( ) ,x) satis"es (23). Property (P3) now follows as g is
a C� function.
As (22) has an unbounded solution, it follows from

Remark 3.4 that the system w� "g(w) has an unbounded
solution and hence that there exists x� 3�� such that
lim sup

	��
�(t,x� )�"R. This implies

lim sup
���� ���

1

z
, y� ��"R,

where y� "x� and hence property (P4�) is satis"ed.
Substituting x"�(1/z, y) into (26) gives

g���
1

z
,y��"D

�
��1,��

1

z
, y��. (27)

Combining (27) and (A.1) now gives

g���
1

z
,y��"D

�
��
1

z
, y�D�

�(1, y). (28)

De"ne the C� function h :���� P��,
(z, y)CD

�
�(1, y). Lemma A.2 shows that (D

�
�(1/z, y))��

exists and hence (28) implies

h(z, y)"�D�
��
1

z
, y��

��
g���

1

z
, y�� (29)

for all (z, y)3�
��

���. Hence condition (1) of
Theorem 3.2 is satis"ed and so is condition (2) by letting
�"1. �

If property (P4) rather than (P4�) was satis"ed in The-
orem 5.1, Theorem 5.1 would be a complete converse for
Theorem 3.2. So does there exist a system with an un-
bounded solution for which no �, y� , F and � exists that
simultaneously satis"es properties (P1)}(P4), and condi-
tions (1) and (2) of Theorem 3.2? The answer to this
question is not known to us. There does however exist
examples for which using the �, y� , F and � combination
in the proof of Theorem 5.1 leads to an inability to satisfy
property (P4). Indeed, one such example is the following
system:

x�
�
"!x�

�
x
�
,

x�
�
"!1#x�

�
.

(30)

(We do not prove this fact here due to space limitations.)
It is interesting to note that Corollary 3.5 does

detect the existence of an unbounded solution of (30)
(using y� "(0,!1), �"0.5, �

�
"!2, �

�
"2 and

F"1/�1#x�
�
). Hence for this example there does exist

a �, y� , F and � combination that also satis"es (P4).
Note that the construction of � in the proof of The-

orem 5.1 presumes knowledge of the solutions of (23). Let
A be a real n�nmatrix with eigenvalue �I , Re(�I )'0, and
consider the linear system

x� "Ax. (31)
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Presuming knowledge of the solutions of (31), one
can easily "nd appropriate (�, y� ), F and � to satisfy
Theorem 3.2. What can be said in this case without using
knowledge of the solutions? Taking �

�
"1, i"1,2, n,

and F"1,the conditions of Corollary 3.5 are satis"ed if
and only if there exists y� O03�� and �3�

��
such that

Ay� "�y� . Hence, if �I is real and positive, Corollary 3.5
implies (31) has an unbounded solution. If �I is complex,
the choice of �

�
's and F used above fails to conclude that

the system has an unbounded solution.
This and the gap that exists between properties (P4)

and (P4�) suggests that there may be value in extending
the results of this paper to the complex domain and/or
using auxiliary systems similar to (6) but with z3�


rather than z3�. Such extensions would in all likelihood
enable one to capture a wider range of unbounded
behaviour.

6. Additional comments

Given a system x� "f (x) and a continuous function
F :��P�

��
, let g"f/F and consider the normalized

system x� "g(x). If the requirements of Theorem 3.2 are
met, it follows from the proof of Theorem 3.2 that there
exists a solution to (6) passing through a point
(z�, y�), z�'0, and converging to (0,y� ). If (z( ) ), y( ) )) de-
notes such a solution then it was shown that
x(t)"�(1/z(t),y(t)) is a solution of x� "g(x). Suppose
now that �(z,x)"(z��x

�
,2, z��x

�
) and that for some

j3�1,2, n�, y�
�
O0 and �

�
'0 as in Corollary 3.5. As

z(t)P0 exponentially (see (6)) and y
�
(t)Py�

�
O0, it fol-

lows that x( ) ) is an exponentially unbounded solution of
the system x� "g(x). Indeed this fact shows that the only
unbounded solutions that can be detected using Corol-
lary 3.5 are solutions of the normalized systems x� "g(x)
that become unbounded exponentially. Hence being able
to normalize by F, and furthermore choosing an appro-
priate F, is quite important.
Lastly, consider the system

x�
�
"!1#x

�
x
�
,

x�
�
"!x�

�
. (32)

While it is clear that x
�
(t)"x

�
(0)!t, x

�
(t)"0 is an

unbounded solution of (32), what is perhaps not quite as
easy to see is that (32) also has unbounded solutions for
which x

�
(t)P#R. Indeed, consider the closed region

in the positive x
�
half-plane bounded below by the curve

x
�
x
�
"2 and bounded above by the line x

�
"0.5. Let

R denote this region and let w"x
�
x
�
!2. Di!erenti-

ating w with respect to t and substituting (32) gives
w� "(!1#x

�
x
�
)x

�
!x

�
x�
�
. If w"0 (i.e., if x

�
x
�
"2)

then w� "x
�
(1!2x

�
) and w� '0 if 0(x

�
(0.5. Hence,

except at the point (4,0.5), the vector "eld along the lower
boundary of R points into the interior of R. It is also

easily veri"ed that the vector "eld along the upper
boundary of R also points into the interior of R and
hence it follows that R is an invariant set. As system (32)
does not possess any "xed points nor any periodic
orbits (x

�
(0)O0 implies x

�
(t)P0) it follows from the

PoincareH }Bendixson Theorem (Hale, 1980) that all solu-
tions of (32) are unbounded and hence that the x

�
com-

ponent of any solution starting in R converges to #R.
Unfortunately, using the methods of this paper, we

have had no success showing that system (32) has an
unbounded solution for which x

�
(t)P#R. On the

other hand, Theorem 5.1 indicates that there may well be
an appropriate stability preserving extension that can be
used to demonstrate this fact. In some cases, as in the
example above, "nding an appropriate stability preserv-
ing extension can be di$cult.We would suggest that such
systems are inherently di$cult to analyse and the reader
should keep in mind that arguments similar to the ones
used for (32) can rarely be found, especially for higher
dimensional systems.

7. Concluding remarks

In this paper a start was made at exploring the use of
local methods to analyse behaviour at in"nity. Presented
were su$cient conditions for a dynamical system to
possess an unbounded solution and it was shown that
these results can be used to infer results about lack of
global stabilizability for nonlinear control systems.

Appendix

The following lemma is used in the proof of
Theorem 3.2.
Let � denote the complex numbers. If A is a real (or

complex) square matrix, let �(A)L� denote the set of
eigenvalues of A.

LemmaA.1. Suppose �3� and that A is a real n�nmatrix
of the form

A"�
� 0

B C�.
Then associated with the eigenvalue �, A has a real (gener-
alized) eigenvector whose xrst component is nonzero.

Proof. We will consider three separate cases.
Case 1: � ��(C). Then if I denotes the identity matrix,

the matrixC!�I is invertible and it is easily veri"ed that

v"�
1

!(C!�I)��B�
satis"es Av"�v.
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Case 2: �(C)"���. The result is clear in this case
as the only eigenvalue of the real matrix A is the real
eigenvalue �.

Case 3: �3�(C) but �(C)O���. Then there exist real
matrices ¹, C

�
and C

�
such that ¹ is invertible,

�(C
�
)"���, � ��(C

�
), and

C"¹���
C

�
0

0 C
�
�¹.

This implies

A"�
1 0

0 ¹����
� 0

¹B �
C

�
0

0

C
�
�� �

1 0

0 ¹�.

If C
�
is m�m, let (¹B)

�
denote the vector consisting of

the "rst m entries in ¹B and let (¹B)
�
denote the vector

consisting of the remaining entries of ¹B. Let

S"�
1 0 0

0 I 0

(C
�
!�I)��(¹B)

�
0 I�,

;"S�
1 0

0 ¹� and D"�
� 0

(¹B)
�

C
�
�.

Then it can be veri"ed that

A";���
D 0

0 C
�
�;.

As D is a real matrix whose only eigenvalue is the real
eigenvalue �, it follow that D has a real generalized
eigenvector u whose "rst entry is nonzero.
This now implies that associated with the eigenvalue �,

v";���
u

0�
is a generalized eigenvector of A. Noting that ; applied
to a vector leaves the "rst entry of the vector unchanged
(and hence that the same is true for ;��), it follows that
v satis"es the requirements of the lemma. �

The next lemma contains results used in the proofs of
Theorems 3.2 and 5.1.

Lemma A.2. If � :�
��

���P�� is a C� function that
satisxes properties (P1) and (P2) then

D
�
��
1

z
, y�D�

�(1, y)"
1

z
D

�
��
1

z
, y�

"D
�
��1,��

1

z
, y�� (A.1)

and

�D�
��
1

z
, y��

��
"D

�
��z,��

1

z
, y�� (A.2)

for all z3�
��

and y3��.

Proof. Di!erentiating the identity given in (P1) with
respect to z

�
gives D

�
�(z

�
,�(z

�
, x))D

�
�(z

�
, x)"

z
�
D

�
�(z

�
z
�
,x). The "rst equality of (A.1) now follows by

choosing z
�
"1/z, z

�
"1, x"y and applying (P2).

Di!erentiating the identity given in (P1) with respect
to z

�
gives D

�
�(z

�
,�(z

�
,x))"z

�
D

�
�(z

�
z
�
,x). Setting

z
�
"1, z

�
"1/z and x"y gives the second equality of

(A.1).
From properties (P1) and (P2), �(z,�(1/z,y))"y

and di!erentiating with respect to y gives
D

�
�(z,�(1/z, y))D

�
�(1/z, y)"I. This proves (A.2). �
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