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� In this paper, we consider only the case of static feedback.
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Abstract

Our objective in this paper is to extend as much as possible the dissipativity approach for the study of robustness of stability in the
presence of known/unknown but ignored input dynamics. This leads us to:

� give a new characterization of control Lyapunov functions (CLF) where ¸
�
< is upper-bounded by a function of ¸

�
<,

� de"ne the dissipativity approach as
� assuming the ignored dynamics are dissipative with storage function = and (known) supply rate w,
� analyzing closed-loop stability with the sum of a CLF for the nominal part and the storage function =.

Stability margin are given in terms of an inequality the supply should satisfy. Nevertheless, in spite of this extension, we show that
the dissipativity approach cannot cope with ignored dynamics which have nonzero relative degree or are nonminimum
phase. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Problem statement

This last decade has seen some progress made in non-
linear regulation. Lyapunov designs are now available
for systems of special kinds such as those exhibiting
a dissipativity property or having a peculiar structure in
appropriate coordinates. One way to meet such require-
ments is to work with simpli"ed model obtained for
instance by neglecting well or poorly known input dy-
namics. This leads to the problem of (global) asymptotic
stabilization of systems with ignored input dynamics.

The problem is to design a state feedback law� u"k(x)
which globally asymptotically stabilizes the origin for

the system whose dynamics are described by a nominal
part

x� "f (x)#g(x)y (1)

with state x in ��. Its input is y in ��. It may be accessed
only through the system

z� "j(z, x, u),

y"h(z, x, u). (2)

In the control law (but not in its design), this system is
ignored because it is unknown or it is known but its state
z is unavailable or its dynamics are too complicated or
irrelevant to the control objective.

In the nonlinear framework, besides the very recent
approach via disturbance estimation proposed in Praly
and Jiang (1998a,b), two main non overlapping ways of
tackling with this problem have been proposed: the dissi-
pativity approach (see Moylan & Anderson, 1973; Glad,
1984; Tsitsiklis & Athans, 1984; Sepulchre, Jankovic,
& Kokotovic, 1997 for instance) and the nonlinear small
gain approach (see KrsticH & KokotovicH , 1994; Praly
& Wang, 1996; Jiang & Mareels, 1997 for instance). In

0005-1098/01/$ - see front matter � 2001 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 0 5 - 1 0 9 8 ( 0 1 ) 0 0 0 2 6 - 7



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

� We denote ¸
�
<(x)"�</�x(x)g(x).

� The worst case de"nition (7) of � is the best thing we can use in the
design of a robust control law. This follows from the fact that the only
quanti"ed knowledge of the ignored input dynamics is the supply rate
w. If, for instance, h were also known, the best control would be given by
the following min max problem

�(s, x)"!inf
�

sup
�

�sh(z, x, u)#w(u, h(z, x, u))�.

with (8) replaced by ¸
�
�(<(x))(�(¸

�
�(<(x)), x).

this paper we concentrate our attention on the former
trying to extend it as much as possible.

1.2. Motivation

From the dissipativity approach, we retain:

1. the characterization of the ignored systems (2) as those
for which there exists a positive de"nite, proper and
C� function =, the storage function, such that

�=
�z

(z) j(z, x, u))w(u, y)!�(�z�) ∀(z, x, u) (3)

with y"h(z, x, u), � a nonnegative continuous func-
tion and w a continuous function, called the supply
rate. We refer the reader to van der Schaft (1996) for
a survey on dissipativity. The supply rate w is the only
known data on the ignored input dynamics.

2. the idea of studying the stability of the overall system
via a Lyapunov function; which is the sum of= and
of a control Lyapunov function (CLF) < for the nom-
inal part. Namely we assume the data of a positive
de"nite, proper and C� function < such that�

�¸
�
<(x)"0, xO0� N ¸

�
<(x)(0 (4)

and we pick

;(x, z)"�(<(x))#=(z), (5)

where � is to be chosen as a positive de"nite, proper
and C� function.

From the above, the problem studied in this paper reduc-
es "nding � and u"k(x) so that the right hand side of

;Q )¸
�
�(<)#¸

�
�(<)y#w(u, y) (6)

is nonpositive for all (z, x). From this we see that if � is the
function de"ned as (when it makes sense)�

�(s)"!inf
�

sup
�

�sy#w(u, y)� (7)

which depends only on w, then � should be chosen such
that

¸
�
�(<(x))(�(¸

�
�(<(x))) ∀xO0. (8)

In Section 2, we shall observe that < is a CLF if and only
if for any function � in an appropriate class, there exists

a function � so that (8) holds. So there is no loss of
generality in considering (8). With such a result, the class
of admissible supply rates w is simply the one giving �
in (7) in this appropriate class. This will be stated in
Theorem 3.1 in Section 3. Following our arguments, it is
the broadest class that we can expect by following the
dissipativity approach as de"ned above. But we shall see
in Theorem 3.2 that, at least in the case where u is in �,
we must have

w(u, y))	(u)y (9)

for some function 	. This is reminiscent from the input
feedback passivity assumption invoked in Sepulchre et al.
(1997) where

	(u)"u. (10)

This necessary property implies that ignored dynamics
which are only minimum phase and with zero relative
degree can be allowed when the nominal part is not
already open loop stable. This exhibits an inherent lim-
itation in the dissipativity approach although as ex-
plained above we have tried to extend it as much as
possible. In fact, with the help of an example we shall be
able to show that this limitation is in part an artifact of
this approach and more precisely of the technique of
using a Lyapunov function ; as the sum (5).

Our paper is organized as follows. In Section 2, we
state and prove our necessary and su$cient condition for
a Lyapunov function to be a CLF. The problem of robust
stabilization in the presence of ignored input dynamics is
studied in Section 3.

2. Another characterization of control Lyapunov
functions

2.1. Main result

Since Artstein (1983) (see also Sontag, 1989), it is
known that the existence of a control Lyapunov function
(CLF) for systems of the form

x� "f (x)#g(x)u (11)

with x in �� and u in ��, is equivalent to the existence of
a global asymptotic stabilizer k(x), which is C� on ��
�0�.
Here we propose another way of characterizing such
CLF's.

Theorem 2.1. Let < be a C�, positive dexnite and proper
function. < is a CLF for (11) if and only if and for any �'0
and for any function �3C�(��, �

	
), such that:

(i) �(0)"0,
(ii) for all s3��
�0�, �(�s)/� is an increasing function

of �,
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(iii) for all s3��
�0�, lim�
	�
�(�s)/�"#R,

there exists a positive dexnite and radially unbounded
function ��3C�(�

	
,�

	
) such that:

(a) the derivative ��� is positive dexnite on �
	


�0�,
(b) we have:

¸
�
��(<(x))(�(¸

�
�� (<(x))) ∀�x�*�. (12)

Moreover, we can take �� independent of � if and only if
� is such that

�k'0: lim sup
�
�

��
�����

¸
�
<(x)

�(k ¸
�
<(x))

(

1

k
. (13)

Proof of Theorem 2.1.
(=) We want to show

�¸
�
<(y)"0, yO0� N ¸

�
<(y)(0. (14)

For �"�y�/2 in (12), we know the existence of �� such
that, for all �x�*�, we have

¸
�
��(<(x))(�(¸

�
�� (<(x))) (15)

or, since the function ��� is positive de"nite,

¸
�
<(x)(

�(��� (<(x))¸
�
<(x))

���(<(x))
. (16)

So in particular for x"y, since ¸
�
<(y)"0, this inequal-

ity yields

¸
�
<(y)(0. (17)

(N) When <(x) is a CLF, we want to exhibit a func-
tion �� satisfying (12). For this, let

X
�
"�x : 2�)<(x))2�	��, n"0, $1, $2,2 . (18)

There exists a nonnegative real number �
�

such that, for
all x in X

�
, we have

¸
�
<(x)!

1

�
�

�(�
�
¸

�
<(x))(0. (19)

Indeed, if not, there exists a sequence x
�

such that

¸
�
<(x

�
)*

1

m
�(m¸

�
<(x

�
)). (20)

By compactness of X
�
, x

�
has a cluster point xH. We still

denote by x
�

a converging subsequence. We have
¸
�
<(xH)"0, otherwise, ¸

�
< being continuous, there

would exist 
'0 and M such that, for all m*M, we
would have

�¸
�
<(x

�
)�*
. (21)

Then for such m's we have, from (20),

¸
�
<(x

�
)

m�¸
�
<(x

�
)�

�(m¸
�
<(x

�
))

*�¸
�
<(x

�
)�. (22)

But, since we have

lim
���
	�

�(s)

�s�
"#R (23)

and since ¸
�
<(x

�
) is bounded, we get

lim
�
�

¸
�

(<(x
�

))
m�¸

�
<(x

�
)�

�(m¸
�
<(x

�
))

"0 (24)

which contradicts (21) and establishes ¸
�
<(xH)"0. Now,

since we have �xH�*2� and < is a CLF, we have also
established

¸
�
<(xH)(0. (25)

On the other hand, from (20) and the continuity of
¸
�
<(x), we have

lim
�
�

¸
�
<(x

�
)*0 N ¸

�
<(xH)*0. (26)

This is a contradiction which establishes the existence of
�
�

satisfying (19).
Now, let � be some "xed real number in (0, �]. Since
< is positive de"nite and proper, there exists n

�
such that

<(x))2�� N �x�)�. (27)

With all this at hand, we can pick ��� as any positive
de"nite and continuous function such that

��� (v)*�
�

if v)2�� , (28)

��� (v)*�
�

if 2�)v)2�	�, n*n
�

(29)

with �
�

arbitrary. Since �(� s)/� is an increasing function
of � for all s3��, we have

�x�*� N ¸
�
<(x)!

1

��� (<(x))
�(���(<(x))¸

�
<(x))(0. (30)

Then (12) follows by multiplying by ���(<(x)).
Now let us prove that we can take �� independent of �,

when (13) is satis"ed. To do so it is su$cient to show that
� can be taken independent of �. But, if <(x) satis"es (13)
(which is a strict inequality), there exists �'0 such that,
for all �

�
'0, we have

�x�)�N

¸
�
<(x)

�(k ¸
�
<(x))

)

1

k
, (31)

N�
�
¸
�
<(x)!�(�

�
¸

�
<(x))

)�
��

�(k¸
�
<(x))

k
!

�(�
�
¸

�
<(x))

�
�

�. (32)

Since< is a CLF and �(� s)/� is an increasing function of
� for sO0, it is su$cient to choose �

�
as satisfying

�
�
'k. (33)
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This way, we have obtained, for all xO0,

¸
�
<(x)!

1

���(<(x))
�(��� (<(x))¸

�
<(x))(0. (34)

Let us conclude the proof by showing that (13) is
necessary for having � independent of �. Indeed, accord-
ing to (12), we have for ¸

�
<(x)O0:

��(<(x))¸
�
<(x)

�(��(<(x))¸
�
<(x))

(1. (35)

So, let

k" sup
�������

��(<(x)). (36)

Since �(�s)/� is an increasing function of � for �s�O0, we
have

0(

k

�(ks)
)

��(<(x))

�(��(<(x))s)
. (37)

Then, for all x such that �x�)�,

� if ¸
�
<(x)O0 and ¸

�
<(x)'0, we have

k¸
�
<(x)

�(k¸
�
<(x))

)

��(<(x))¸
�
<(x)

�(��(<(x))¸
�
<(x))

(1. (38)

� if ¸
�
<(x))0 then we have trivially

k¸
�
<(x)

�(k¸
�
<(x))

(1. (39)

We have proved

�¸
�
<(x)O0, �x�)�� N

¸
�
<(x)

�(k¸
�
<(x))

)

1

k
. � (40)

Remark. When �(s)"�s���	��, (i)}(iii) are satis"ed and, in
this case, �

�
can be obtained by the following maximiza-

tion problem:

�
�
" sup

� 	 ��
�

¸
�
<(x)

�¸
�
<(x)���	���

�
�
. (41)

2.2. Related results

2.2.1. Case �(s)"r�s��
The case �(s)"r�s�� was already known. It was estab-

lished indirectly invoking the relation between CLF and
optimal value functions. Indeed in Sepulchre et al. (1997)
and KrsticH and Li (1997), the authors prove that if < is
a CLF and satis"es a local condition, discussed below, at
the origin then there exists a C� function � such that

�(<(x)) is the optimal value function associated to the
cost functional

J(x)"�
�

�
�l(X(x, t))#

1

4r
�u(t)���dt (42)

with l being positive de"nite. More precisely, �(<(x)) is
a solution of the following Hamilton}Jacobi}Bellman
(HJB) equation

l(x)#¸
�
�(<(x))!r�¸

�
�(<(x))��"0. (43)

Our result with �(s)"r�s�� follows since l being positive
de"nite, we get readily

¸
�
�(<(x))(r�¸

�
�(<(x))�� ∀xO0. (44)

The local condition, mentioned above, has been stated
in KrsticH & Li (1997) (see also Praly (1997)) as

lim sup
�
�

¸
�
<(x)

�¸
�
<(x)��

(#R. (45)

This is nothing but (13) for the case �(s)"r�s��.

2.2.2. A link with **¸
�
< controllers++

Another related result is given in Teel and Praly (1998).
There, it is proved that if a given function �: ��P��, is
continuous on ��
�¸

�
<(x)"0�, locally bounded on ��,

and such that ¸
�
<(x)�(x) is nonpositive and

�¸
�
<(x)�(x)"0, xO0� N ¸

�
<(x)(0, (46)

then with

�(x)"
max�0, ¸

�
<(x)#�¸

�
<(x)���

!¸
�
<(x)�(x)

, (47)

the control law

u(x)"�(x)�(x), (48)

called ¸
�
<-controller, is continuous on ��
�0� and gives

¸
�
<(x)#¸

�
<(x)u(x)(0 ∀xO0. (49)

To meet (12), we choose the function � as

�(x)"!

�(¸
�
<(x))¸

�
<�(x)

�¸
�
<(x)��

. (50)

It satis"es the required properties and the function �
given by (47) is such that

¸
�
<(x)(�(x)�(¸

�
<(x)). (51)

And, from the properties of <, we can "nd a C� function
� on ��
�0� such that

��(<(x))*�(x). (52)
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� The procedure for getting u in (61) is:

� to "nd � and � satisfying (60). They depend only on w.
� to "nd � satisfying (12) with the above �. It depends only on f, g,
< and �.

This yields

¸
�
<(x)(��(<(x))�(¸

�
<(x)). (53)

But (53) is not (12) yet. However (12) can be recovered for
instance with ��"��
� if

�(s)"�s���	��. (54)

The connection with Teel and Praly (1998) is also
interesting since, by mimicking what is done there, we
can relate the condition (13) in Theorem 2.1 to the small
control property of Sontag (1989).

3. Robustness to input dynamics

In this section we use the CLF characterization given
in Section 2 to solve the stabilization design problem
stated in Introduction. More speci"cally, we consider the
class of systems of the following form:

x� "f (x)#g(x)y,

z� "j(z, x, u),

y"h(z, x, u), (55)

where x3�� represents the state of the system to be
controlled, z3�� represents the state of the ignored part
and is not available for feedback design, u3�� is the
control input, y3�� is the output of the uncertain z-
subsystem and the input of the x-subsystem.

For nonlinear systems and within the dissipativity
approach, the study of the margin of stability of systems
in the presence of input uncertainties began by exploiting
the properties of optimal controllers. Precisely, it has
been established that if u"k(x) is a minimizer of the cost
functional:

J(x)"�
�

�

[l(X(x, t))#r(u(t))] dt (56)

with r and l being positive de"nite functions, then this
control law guarantees global asymptotic stability in
presence of ignored input dynamics for which the supply
rate w in (3) satis"es

w(u, y))(y!u)r�(u)#(1!c)r(u), (57)

where c is a strictly positive real number. This is estab-
lished, for instance, in Moylan and Anderson (1973)
where r is quadratic and in Glad (1984) and Tsitsiklis and
Athans (1984) for general r. Since it is su$cient to have an
optimal control to get such a property, this leads to the
question of when a control law is optimal. Such a ques-
tion is addressed and solved in the nonlinear context in
Moylan and Anderson (1973) and Sepulchre et al. (1997)

under the constraint of a quadratic r, i.e. (57) takes the
form

w(u, y))uy!ru� (58)

and the corresponding ignored dynamics are said input
feedforward passive (IFP). In particular in Sepulchre et
al. (1997), it is established that the knowledge of a CLF
satisfying (45) is su$cient to derive an optimal control
law (see Section 2.2.1). This proves that optimal synthesis
is not necessary to design a robust control law.

In this section we consider the case of a general supply
rate and propose a controller design adapted to it and
providing global asymptotic stability for system (55).

3.1. Main results

To design a control law for the system (55), we assume:
1. We know a CLF < for (11).
2. The z-subsystem satis"es the following dissipativity

inequality:

�=
�z

(z) j(z, x, u))w(u, y)!�(�z�) ∀(z, x, u) (59)

with y"h(z, x, u), = a positive de"nite, proper and
C� function, � a nonnegative continuous function and
w a continuous function which is known for the design.

Theorem 3.1. Assume the supply rate w is such that
there exists a continuous function � such that a function �
satisfying

�(s))!sup
�

�w(�(s), y)#sy� (60)

meets the properties (i)}(iii) in Theorem 2.1. Under these
conditions, if condition (13) in Theorem 2.1 holds, there
exists� a function � and a controller:

u"�(¸
�
�(<(x))) (61)

which guarantees global stability of the origin for (55) and

lim
�
	�

x(t)"0. (62)

Moreover this controller is globally asymptotically stabiliz-
ing if � is positive dexnite.

Proof of Theorem 3.1. By assumption, the functions
< and � satisfy the conditions of Theorem 2.1. So we
know the existence of a function � so that, for all xO0,
we have

¸
�
�(<(x))(�(¸

�
�(<(x))). (63)
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Then, from (59), we get
.�������

�(<(x))#=(z))¸
�
�(<(x))

# ¸
�
�(<(x))y#w(u, y)!�(�z�). (64)

So when the control u is given by (61), (60) gives, for all
xO0,

.�������
�(<(x))#=(z))¸

�
�(<(x))! �(¸

�
�(<(x)))!�(�z�), (65)

(!�(�z�). (66)

This implies global stability of the origin. And, with
LaSalle's invariance Theorem, we are guaranteed of the
convergence of x(t) to 0 and of global asymptotic stability
when � is positive de"nite. �

Example. Consider the following system, which is not
input feedforward passive in the sense of Sepulchre et al.
(1997):

x� "x#y,

z� "!z�#u�,

y"u#�
�

(u�#z�)�
�, (67)

<(x)"�
�
x� is a CLF for the nominal system x� "x#y

and the z-subsystem is dissipative with
.

���

�
�
z�"!z�#u�(8[y!u]�!u�)�
�. (68)

So, the appropriate supply rate

w(u, y)"u�(8[y!u]�!u�)�
� (69)

is not in the form (y!u)r�(u)#r(u) as in (57). Neverthe-
less, for such a function w, we have

sup
�

(sy#w(u(s), y))"�
!2�
�s�
� if s#2u(s)�"0,

#R if s#2u(s)�O0.

(70)

So according to the statement of Theorem 3.1, we let

�(s)"!�
s

2�
�
�

, (71)

�(s)"2�
� �s��
�. (72)

Then, since we have

¸
�
<(x)"x�"2<, (73)

¸
�
<(x)"x"sign(x)�2<, (74)

we look for a function � so that, for <O0,

¸
�
�(<)"2<��(<)(�(¸

�
�(<))

"2�
���(<)�
�(2<)�
� (75)

This yields, for <O0,

��(<)'<. (76)

So for instance, we choose

�(<)"<�. (77)

Then, according to (61), a control law is

u(x)"![�
�

]�
�x. (78)

It provides global asymptotic stability for the system (67)
but not for the nominal system

x� "x#u. (79)

Note that the small gain design of Praly and Wang
(1996) applies also for system (67).

Example. As in Sepulchre et al. (1997), consider the
system

x� "x�#u. (80)

Following the design suggested in Tsitsiklis and Athans
(1984), we introduce the cost functional:

J(x)"�
�

�

(X(t, x)�#u(t)�) dt. (81)

To "nd a minimizer, it is su$cient to "nd a positive
solution < for the following HJB equation:

x�#
�<(x)

�x
x�!

1

2�
�<(x)

�x �
�
"0, <(0)"0. (82)

Solving this equation in �<(x)/�x and integrating with
respect to x, we get (see Sepulchre et al., 1997):

<(x)"�
�
(x�#(x�#1)�
�!1). (83)

The minimizer is then given by

u"!�
�
¸

�
<(x)"!x�!x�x�#1. (84)

From Tsitsiklis and Athans (1984), we know it provides
robust stability for dissipative systems with supply rate

w(u, y)"2uy!(1#c)u� (85)

with c a strictly positive real number.
Following our design, let us show that the same con-

troller provides actually a broader stability margin. Since
< given in (83) is a CLF for (80) and according to (61), we
look for � and � such that

!x�!x�x�#1"�(¸
�
�(<(x))). (86)

Restricting ourselves with �"identity, we get, with (83),

�(s)"!�
�
s. (87)
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 By letting z"2x�#2x�x�#1, we get x�"f (z)"z�/4(1#z). So

(88) can be written as zf (z)!�(z)(0.

Then the allowed supply rate is related to � via (60) with
� satisfying (from (12)):

¸
�
<(x)!�(¸

�
(<(x))"(2x�#2x�x�#1)x�

! �(2x�#2x�x�#1)(0. (88)

A function � satisfying this constraint is


�(s)"(1#c)
�s��

4(1#�s�)
. (89)

It follows that allowed supply rates w are such that

(1#c)
�s��

4(1#�s�)
)!sup

�

�w(!s/2, y)#sy� (90)

or

w(u, y))2uy!2(1#c)
�u��

(1#�2u�)
. (91)

Compared to (85), this gives a larger class of supply rates
w. For instance, consider the ignored dynamics

z� "2u,

y"z#(1#c)
u�u�

(1#2�u�)
. (92)

This system is dissipative with supply rate satisfying (91).
It is therefore allowed as a disturbing system of (80) when
the control is given by (84). Remark that the relative
degree of the linearization of this system at the origin is 1.

3.2. Discussion

3.2.1. Known results with specixc w(u, y) in (59)
As already mentioned the result of Theorem 3.1 is not

new at least for the following two speci"c expressions of
the supply rate w.

� w(u, y)"uy!ru�, r'0: This is the case of an (IFP(r))
uncertainty (see Sepulchre et al., 1997). For such a sup-
ply rate, sup

�
�w(�(s), y)#sy� is "nite if and only if

�(s)"!s, and � can be chosen as �(s)"rs�.
� w(u, y)"(y!u)r�(u)#r(u): with r de"ning the cost

functional (56) (see Tsitsiklis & Athans, 1984). For such
a supply rate, we get �(s) as the solution of

r�(�(s))#s"0. (93)

Then (60) de"nes � as

�(s)"!r(�(s))#�(s)r�(�(s)). (94)

We observe that if r(u)!ur�(u) is not positive, such
a function � is not appropriate for Theorem 3.1. This
restriction on r is not present in Tsitsiklis and Athans
(1984). It follows in our case from the fact that we
adopt a worst case approach and we do not consider
the case where the CLF for the nominal system may be
such that ¸

�
<(x) is negative for some x.

3.2.2. Stabilization of the nominal system (11)
In general, control (61) does not stabilize the nominal

system. This is de"nitely not a drawback in particular for
the case where the ignored dynamics are well known but
we do not want to take them into account in the control
law.

If we insist on having (61) to stabilize the nominal
system it is su$cient to have, for xO0,

(<Q ")¸
�
<(x)#¸

�
<(x)�(¸

�
�(<(x)))(0. (95)

Since, according to Theorem 2.1, we have

¸
�
<(x)#¸

�
<(x)�(¸

�
�(<(x)))

(

�(��¸
�
<(x))

��(<(x))
#¸

�
<(x)�(¸

�
�(<(x))), (96)

a su$cient condition for the stability of the nominal
system is that � and � satisfy

�(s))!s�(s). (97)

3.2.3. Zero relative degree and minimum phase
Following our approach, (60) characterizes the class of

allowed supply rates for the ignored dynamics. A supply
rate satisfying (60) has the property:

Property P. A continuous supply rate w is said to have
property P if there exists a continuous function � such that

sup
�

(w(�(s), y)#sy)(0, ∀s3��
�O�. (98)

Let us show that, at least in the single input case,
a system admitting w as a supply rate satisfying property
P, is contained in the class of systems with a zero relative
degree (in a sense to be made precise) and minimum
phase.

Theorem 3.2. Given w satisfying property P, then:

� the systems which admits w as supply rate are such that,
for all nonzero (s, x), there exist u such that sh(0, x, u)(0
(a zero relative degree property),

� when m"1, there exists a function 	 such that, for all
(u, y)3��, we have

w(u, y))	(u)y. (99)
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Jean}Michel Coron.

Corollary 3.3. For m"1, the systems which admits w,
satisfying property P, as supply rate, have globally stable
zero dynamics (when they exist).

Proof of Theorem 3.2. Zero relative degree: We "rst re-
mark that (59) implies

�=
�z

(z) j(z, x, u))w(u, h(z, x, u)). (100)

Then, since = is positive de"nite, we have

�=
�z

(0)"0. (101)

This yields, for all (s, x)3�����,

w(u, h(0, x, u))*0. (102)

But, on the other hand, the fact that w satis"es property
P gives, for all (s, x)3(��
�0�)���,

w(�(s), h(0, x, �(s)))#sh(0, x, �(s))

)sup
�

�sy#w(�(s), y)�(0. (103)

We conclude that for any sO0, we have

sh(0, x, �(s))(0. (104)

This implies that, for all x and for all directions s, we can
"nd u such that the vector h(0, x, u) is in an half space
de"ned by this direction. So h(0, x, u) must de"nitely
depend on u. This is a weak notion of zero relative degree.

Existence of 	: We need the following Lemma:

Lemma 3.4. Assume m"1. Then any continuous function
� satisfying (98), is neither lower nor upper bounded on �.

Proof.� We prove this result by contradiction. Assume
the existence of a continuous function � and a real
number � so that, for all s3�, we have

�(s)'� (�(s)(� resp.). (105)

We have from (98)

sy#w(�(s), y)(0 ∀(s, y)3(�
�0�)��. (106)

In particular for y"1, we get, for all sO0:

w(�(s), 1)(!s. (107)

Since w is continuous, this yields

lim
�
	�

��(s)�"#R (108)

and, with (105)

lim
�
	�

�(s)"#R. (109)

Similarly, by taking y"!1, we get

lim
�
��

�(s)"#R. (110)

But (109), (110) and the continuity of � imply the exist-
ence of non zero real numbers s

�
, s

�
and �

�
such that

s
�
s
�
(0, �(s

�
)"�(s

�
)"�

�
. (111)

So, with (104), we get

s
�
h(0, x, �(s

�
))"s

�
h(0, x, �

�
)(0,

s
�
h(0, x, �(s

�
))"s

�
h(0, x, �

�
)(0 (112)

or

s
�
s
�
h(0, x, �

�
)�'0. (113)

This contradicts (111). �

With Lemma 3.4, we know that, when m"1, any
continuous function � satisfying (98) is neither upper-
bounded nor lower-bounded. Since, � being continuous,
�(�) is a connected set, we have

�(�)"�. (114)

This means that � is surjective. It follows that we can "nd
a function 	 such that, for all v3�, we have

�(!	(v))"v. (115)

Then, since from (98) and the continuity of w and �, we
have, for all (s, y)3��,

sy#w(�(s), y))0, (116)

we have also, for all (v, y)3��,

w(v, y))	(v)y. � (117)

Proof of Corollary 3.3. From (59), (117) implies that the
zero dynamics of the ignored input dynamics satisfy:

�=
�z

(z) j(z, x, u))!�(�z�)

∀(z, x, u) : y"h(z, x, u)"0. � (118)

We know now that, even by extending as much as
possible the dissipativity approach (see the Introduction),
we cannot relax the zero relative degree and minimum
phase property requirement. This leads us to the
question:
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Is this requirement intrinsic to the problem of global
asymptotic stability in spite of ignored input dynamics or
is it coming (at least in part) from the proof technique?

We show below that the fact of using the sum of
Lyapunov functions for each subsystem involved in the
dissipativity approach is an obstruction to relax this
requirement.

Consider the linear system

x� "Ax#By,

z� "!cz#u, c'0,

y"dz#eu

(119)

with x3�� is the state of the nominal part, z3� is the
state of the ignored dynamics. Let x�Px be a CLF for the
nominal system, i.e.

�x�PB"0, xO0� N x�PAx(0. (120)

May be after rescaling P, let us try the following function
to design a globally asymptotically stabilizing control
law

<(x, z)"�
�

(x�Px#z�). (121)

It is the sum of Lyapunov functions for each component
of the system. Its time derivative is

.
���
<(x, z)"x�PAx#x�PB(dz#eu)!cz�#uz. (122)

Since we look for a control law not depending on z, the
best static control that we can choose to make this
derivative negative is given by the following min max
problem:

.���
min
�

max
�

<(x, z).

It is solved by taking

u"!x�PB(2ec#d) (123)

which yields

.���
min
�

max
�

<(x, z)"x�(PA!e(ec#d)PBB�P)x. (124)

A su$cient condition to get global stability is that the
right hand side of this expression is a negative de"nite
matrix. But when e(ec#d) is nonpositive, this is possible
only if PA#A�P is negative de"nite, i.e. the nominal
system is open loop asymptotically stable. Without such
a restriction on the nominal system, we must have:

e(ec#d)'0. (125)

Now we observe that the ignored dynamics are

z� "!cz#u,

y"dz#eu.
(126)

Their relative degree is zero if eO0 and its zero is

zer"!�c#

d

e�. (127)

It follows that (125) implies that the ignored dynamics
have zero relative degree and are minimum phase.

Let us now try another Lyapunov function for (119)
which is no more only a sum of Lyapunov functions. For
ease of computation, we restrict our attention to the case
n"1. Let

<(x, z)"�
�
� x�#�xz#�

�
z� (128)

with

�'��. (129)

We get
.���

<(x, z)"�Ax�#(�Bd#�(A!c))xz#(�Be#�)xu

#(1#�Be)uz#(�Bd!c)z�. (130)

For this expression to be upper-bounded in z, we have to
choose � satisfying

�Bd(c. (131)
.

���
Then max

�
<(x, z) is given by

z"

(�Bd#�(A!c))x#(1#�Be)u

2(c!�Bd)
(132)

.���
and min

�
max

�
<(x, z) is given by

u"!

2(c!�Bd)(�Be#�)#(�Bd#�(A!c))(1#�Be)

(1#�Be)�
x.

(133)

This yields
.���

min
�

max
�

<(x, z)

"

[�!��][A!�B(d#e(c!A))!�B�e(d#ec)]

(1#�Be)�
x�

(134)

and shows that � and � should be chosen such that the
right hand side of this expression is negative de"nite and
(129) and (131) hold. So, in particular, we observe that

� If the relative degree of the ignored dynamics is 1, i.e.
e"0, stability is achievable when

A(c. (135)
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� To `meeta (129), we choose �"��sign(B)sign(d#e(c!A))"

!��sign(B)sign(e). Then (134) is negative if �B��� is between 1/�e� and
A/�d#ec�. (136) is a necessary and su$cient condition for at least one
value on this interval to meet (131).

� When A'0, c'0 and zer'0, (137) is also a necessary and
su$cient condition for the asymptotic stabilizability of (119) by a par-
tial static state feedback of the form u"kx.

� If the ignored dynamics are non minimum phase, i.e.
e(ec#d)(0, and the open loop nominal system is
unstable, i.e. A'0, stability is achievable when�

c�e�#de(c!A)(0 (136)

or�

1

zer
#

1

c
(

1

A
. (137)

This shows that indeed nonzero relative degree and non
minimum phase are possible.

3.2.4. About the condition (13)
In the statement of Theorem 3.1, we impose that � also

satis"es condition (13) concerning its behavior around 0.
Let us illustrate why we need this restriction by consider-
ing the following nominal system studied in Jankovic,
Sepulchre, and KokotovicH (1998)

x� "x�#x�u. (138)

It admits a CLF but if we pick �(s)"s�, there is no
C� function < such that

¸
�
<(x)

�(¸
�
<(x))

"

¸
�
<(x)

(¸
�
<(x))�

"

1

<�(x)x
(139)

is bounded on a neighborhood of zero, i.e. (13) cannot
hold. However when we take

<(x)"2ln(��#x�), (140)

(12) is satis"ed. This shows that indeed, the only problem
for having (12) to hold globally is only when x is small. In
fact this opens the possibility of getting unbounded solu-
tions with ignored dynamics satisfying (59). Indeed, let

z� "!zf (z)#u,

y"z#u
(141)

with the function f (z) positive de"nite. This system satis-
"es (59) with the supply rate

w(u, y)"uy!u�. (142)

Speci"cally, we have
.

���

�
�
z�"!z�f (z)#uy!u�. (143)

Also, we have

inf
�

sup
�

�w(u, y)#sy�"!s�"!�(s), (144)

where inf
�

is given by:

u"�(s)"!s. (145)

This establishes that condition (60) of Theorem 3.1 holds.
So all the assumptions of Theorem 3.1 and (97) are

satis"ed, except (13). But, we can show (see Hamzi and
Praly, 1999) that for instance when

f (z)"exp(z�), (146)

there is no static feedback depending only on x which
guarantees both global asymptotic stability for the nom-
inal system and boundedness of the z-components of the
solution of the overall system

x� "x�#x�y,

z� "!zf (z)#u,

y"z#u.

(147)

It is interesting to observe however that when

�(s)"�s���	�� (148)

with c'0, then for a C� function < we have

¸
�
<(x)

�(¸
�
<(x))

"

¸
�
<(x)

�¸
�
<(x)���	��

"�<�(x)����x�����. (149)

There exists a C� function < making this ratio bounded
on a neighborhood of 0 i! c3(0, �

�
). For such c's, i.e. such

�'s, Theorem 3.1 applies and gives a stability margin but
which is not for supply rates in the form (142).

We end this section by noting that, when condition (13)
is not satis"ed, boundedness of all the solutions is achiev-
able when the ignored dynamics have a stronger stability
property, i.e. � is a class K� function.

Theorem 3.5. Under the conditions of Theorem 3.1, if � is
a class K� function, then there exists a controller which
guarantees boundedness of all the solutions.

Proof of Theorem 3.5. By assumption, the functions
< and � satisfy the conditions of Theorem 2.1. This
allows us to conclude the existence, for any �'0, of
a function �� so that, for all �x�*�, we have

¸
�
��(<(x))(�(¸

�
�� (<(x))). (150)

We take

u"�(¸
�
�� (<(x))) (151)
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with � given by the conditions of the Theorem. Then,
from (59) and (60), we get

.
�������
�� (<(x))#=(z))¸

�
�� (<(x))!�(¸

�
��(<(x)))!�(�z�).

(152)

So, for �x�*�, we have
.

�������
�� (<(x))#=(z)(!�(�z�). (153)

and for �x�(�, we let

A" sup
�����

¸
�
��(<(x))(#R. (154)

Since � is a class K� function and = is proper there
exists B such that

=(z)*B N �(�z�)*A#1. (155)

It follows that, for �x�(� and =(z)*B, we have
.�������

�� (<(x))#=(z))!1. (156)

(153) and (156) allow us to conclude that all the solutions
are bounded. �
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