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Abstract

It is known that if a system can be (robustly) globally asymptotically stabilized by means of a feedback that is driven
by functions that are uniformly completely observable (UCO), then this system can be practically semiglobally stabilized
by means of (possibly dynamic) output feedback. This papers discusses a signi�cant structural hypothesis under which the
existence of a dynamic feedback driven by UCO functions is guaranteed. The class of systems which satisfy this hypothesis
includes any stabilizable and detectable linear system and any relative degree one nonlinear system which is stabilizable by
dynamic output feedback. In particular, the hypothesis does not require the system to be minimum phase. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

One of the most active research issues in nonlinear
feedback theory is the synthesis of feedback laws
which robustly stabilize an uncertain system with
limited measurement information. In the case of out-
put feedback without uncertainty, one of the major
achievements in this area of research has been the
“nonlinear separation principle” proved in [6], where
it is shown that (semi)global stabilizability via state
feedback and a property of uniform observability
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imply the possibility of semiglobal stabilization via
output feedback. To cope with the restricted informa-
tion structure, the stabilization scheme of [6] includes
an approximate state observer (whose role is actually
that of producing approximate estimates of a number
of “higher-order” derivatives of the output) earlier
developed in [3] to cope with a similar (though more
restricted) stabilization problem. A “robust” version
of this stabilization result was given in [5], where it
was shown that, in the presence of parameter uncer-
tainties, semiglobal stabilization via output feedback
is still possible if a state feedback law is known which
robustly globally stabilizes the system and its value, at
any time, can be expressed as a (�xed) function of the
values, at this time, of a �xed number of derivatives of
input and output (a uniformly completely observable
(UCO) state feedback, in the terminology of [5]).
The design tools introduced and developed in

[3,5] have been recently used in [2], where a new
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(iterative) procedure has been proposed for the robust
stabilization of certain classes of nonlinear systems.
This procedure is not based on the idea of solving sep-
arately a problem of state feedback stabilization and
a problem of asymptotic state reconstruction. Rather,
it is based on the recursive update of a sequence of
“dynamic” output feedback stabilizers: speci�cally,
the basic result of [2] is that if a suitable subsystem of
lower dimension is robustly stabilizable by dynamic
output feedback, so is the entire system.
From the point of view of the approach of [5], the

contribution of [2] can be interpreted as the identi�-
cation of a natural (and, in fact, necessary in the case
of linear systems) assumption that guarantees the ex-
istence of a dynamic feedback that is expressible in
terms of the output and its derivatives, i.e. a dynamic
feedback driven by UCO functions. The purpose of
this note is to highlight this interpretation.

2. Dynamic UCO feedback

2.1. Preliminaries

This subsection summarizes a number of standing
hypotheses and basic properties used throughout the
paper.

• For simplicity all nonlinear functions in this paper
will be assumed to be su�ciently smooth so that
all needed derivatives exist and are continuous, all
di�erential equations have solutions, etc.

• We will use �Bn(r), with r ¿ 0, to denote a closed
ball of radius r in Rn.

• Unless otherwise noted, �(t) is a measurable func-
tion taking values in a compact set P⊂Rp. The
set of such functions is denotedMP.

• The origin of a nonlinear dynamical system
ẋ = f(x; �(t); k) (1)

with x ∈ Rn and k ∈ Rc, is said to be uniformly
semiglobally practically asymptotically stable in
the parameter k if for each pair of strictly positive
real numbers 0¡r¡R¡∞ there exist �k ∈ Rc,
an open set O⊃ �Bn(R), a function V : O → R¿0
that is proper onO and strictly positive real numbers
0¡q¡Q¡∞ such that
(i) �Bn(R)⊂{� ∈ O: V (�)6Q},
(ii) �Bn(r)⊃{� ∈ O: V (�)6q},
(iii) (@V=@x)f(x; �; �k)¡ 0 ∀�∈P; ∀x∈{�∈O:

q6V (�)6Q}.

Uniform semiglobal practical asymptotic stability
implies:

for each pair of strictly positive real numbers
0¡r¡R¡∞, there exist �k ∈ Rc and T ¿ 0
such that, for all initial conditions in �Bn(R), all
resulting trajectories x(t) of (1) with k= �k are such
that x(t) ∈ �Bn(r) for all t¿T .

It also can be shown to imply:

for each pair of strictly positive real numbers
0¡r¡R¡∞, there exist �k ∈ Rc, a compact set
A⊆ �Bn(r) and an open set G⊃ �Bn(R) such that,
for system (1) with k = �k, the set A is uniformly
asymptotically stable with basin of attraction 3 G.

In fact, due to recent converse Lyapunov function
results (see [4,1,7]), these latter properties are equiv-
alent characterizations of uniform semiglobal practi-
cal asymptotic stability. However, we are using the
Lyapunov formulation here so that we can more di-
rectly appeal to the results on semiglobal practical
asymptotic stabilization like [5, Proposition 3:1] where
a Lyapunov formulation was used.

2.2. Stabilization via UCO feedback

Consider multi-input–multi-output nonlinear con-
trol systems

ẋ=f(x; u; �(t));

y= h(x; u; �(t)) (2)

with �(·) ∈ MP. The de�nition of uniformly com-
pletely observable (UCO) dynamic feedback, given
next, at times implicitly constrains �(t) to be su�-
ciently smooth, where su�ciently smooth has to do
with the number of times the output needs to be dif-
ferentiated to reconstruct the UCO function.

De�nition. A function ’(x; u; �) is said to be uni-
formly completely observable (UCO) with respect to
system (1) if it can be expressed as a function of a

3 By this we mean:

• for each �¿ 0 there exists �¿ 0 such that all trajectories start-
ing in a �-neighborhood of A remain in an �-neighborhood
of A for all time, and

• for each �¿ 0 and each compact subset of G there ex-
ists T ¿ 0 such that all trajectories starting in the compact
subset enter within T seconds and remain thereafter in an
�-neighborhood of A.
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�nite number of derivatives of the output y and the
input u, i.e., if there exist two integers ny and nu and
a function

	(y; : : : ; y(ny); u; : : : ; u(nu))

such that, for each solution of

ẋ = f(x; u; �(t));

u(nu+1) = v;

y = h(x; u; �(t)); (3)

we have, for all t where the solution makes sense,

’(x(t); u(t); �(t))

=	(y(t); : : : ; y(ny)(t); u(t); : : : ; u(nu)(t))); (4)

where y(i) denotes the ith time derivative of y at time
t (and similarly for u(i)).

Remark. As in [5, Footnote 6], note the strong re-
quirement that 	 is independent of �(t).

Our next de�nitions, on uniform semiglobal prac-
tical asymptotic stabilizability by dynamic UCO or
output feedback, are closely related to our de�nition
of uniform semiglobal practical asymptotic stability.
However, as was the case in [5], we do not insist that
the states of the dynamic compensator eventually be-
come small in the closed loop. We formulate the de�-
nition in Lyapunov function terms but, again, the def-
inition could be formulated in terms of trajectories.

De�nition. The origin of (2) is said to be uniformly
semiglobally practically asymptotically stabilizable
by dynamic UCO feedback if for each pair of strictly
positive real numbers 0¡r¡R¡∞ there exist:

• a UCO function �(x; u; �),
• functions � and �,
• compact sets C�s and C�l, with C�s a subset of the
interior of C�l,

• an open set O⊃ �Bn(R)× C�l,
• a function V :O → R¿0 that is proper on O, and
• strictly positive real numbers 0¡q¡Q¡∞
such that
(i) ( �Bn(R)× C�l)⊂{� ∈ O: V (�)6Q},
(ii) ( �Bn(r)× C�s)⊃{� ∈ O: V (�)6q},
(iii)

@V
@X
F(X; �)¡ 0 ∀� ∈ P;

∀X ∈ {� ∈ O: q6V (�)6Q}; (5)

where X and F(X; �) are de�ned by

Ẋ =
d
dt

(
x
�

)
=

(
f(x; u; �(t))

�(�; �(x; u; �(t)))

)

=: F(X; �(t)) (6)

with

u= �(�; �(x; u; �(t))) (7)

(and where, for simplicity, we assume the
right-hand side of (7) is independent of u).

De�nition. The origin of (2) is said to be uniformly
semiglobally practically asymptotically stabilizable
by dynamic output feedback if, in the previous de�-
nition, we can always take �(x; u; �) = h(x; u; �) = y.

Remark. In these de�nitions, we could allow the
right-hand side of (7) to depend on u if we impose
an extra condition that guarantees a solution to (7).

It will follow from the proof of [5, Proposition
3:1] (much like what is suggested by Teel and Praly
[5, Footnote 5]) that we have:

Theorem 1. Let �(·) ∈ MP be su�ciently smooth
with a uniform bound on an appropriate number of
derivatives. If the origin of system (2) is uniformly
semiglobally practically asymptotically stabilizable
by dynamic UCO feedback then it is uniformly
semiglobally practically asymptotically stabilizable
by dynamic output feedback.

Sketch of proof. Fix 0¡r¡R¡∞. From the as-
sumption of uniform semiglobal practical asymptotic
stabilizability by dynamic UCO feedback, this �xes
a UCO function �(x; u; �), a corresponding function
	 that is used to reconstruct � from derivatives of y
and u, functions � and �, compact sets Cns and Cnl,
an open set O, a function V and strictly positive real
numbers 0¡q¡Q¡∞. Now we apply the proof of
[5, Proposition 3:1] to the control system

(
ẋ
�̇

)
=
(
f(x; u1; �(t))
�(�; u2)

)
;

(
y1
y2

)
=
(
h(x; u1; �(t))

�

)
;
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where the UCO feedback(
u1
u2

)
=
(
�(�; �(x; u1; �(t)))
�(x; u1; �(t))

)

induces the properties for the function V that are as-
sumed in the proof of [5, Proposition 3:1] if we de�ne
the objects Kzs, Kzl, �l, cs and cl used in the proof
of [5, Proposition 3:1] as

Kzs := �Bn(r)× Cns; Kzl := �Bn(R)× Cnl

and

�l := q; cs :=Q; cl :=Q + 1:

From here we follow the proof of [5, Proposition 3:1],
but noting that dynamic extension is only needed on
the input u1 and no estimates of the derivatives of
y2 = � are needed.

3. A class of nonlinear systems that are uniformly
semiglobally practically stabilizable by dynamic
UCO feedback

3.1. Some motivations

It is well known that a nonlinear system having rela-
tive degree one can be robustly semiglobally stabilized
via output feedback if its zero dynamics are globally
asymptotically stable. The reason why this hypothe-
sis is invoked is that, in order to o�set the e�ect of
matched uncertainties, “high-gain” output feedback is
often recommended, and this – in turn – enforces a
closed-loop behavior whose asymptotic properties are
essentially determined by the asymptotic properties of
the zero dynamics of the system. In particular, asymp-
totic stabilization occurs only if the latter is asymp-
totically stable, i.e., if the system is minimum phase.
Consider robust (with respect to disturbances �(t))
stabilization of the origin for the system

ż = f0(z; y; �(t));

ẏ = q(z; y; �(t)) + b(y)u;
(8)

where z ∈ Rn−1, y ∈ R, u ∈ R, �(·) ∈ MP and
b(y) 6= 0 for all y. In the case of uniformly glob-
ally asymptotically stable zero dynamics, i.e. (see
[4]) when there exists a smooth, positive de�nite and
proper function V (z) such that

@V
@z
f0(z; 0; �)¡ 0 ∀z 6= 0; ∀� ∈ P;

the control law

u=− 1
b(y)

ky;

where k is a su�ciently large number, solves the
problem of semiglobal practical asymptotic stabi-
lization of the origin. This follows from the fact
that, given a compact set in (z; y) not containing
the origin, for large enough k the negative-de�nite
term (@V=@z)f0(z; 0; �)− ky2 in the derivative of the
composite Lyapunov function

U (z; y) = V (z) + y2;

i.e., in

@V
@z
f0(z; y; �) + 2y[q(z; y; �)− ky];

is able to dominate all nonnegative terms on the given
compact set.
Note, however, that dominating all such terms im-

plies dominating in particular q(z; y; �), which is the
only term through which the information about the z
subsystem is made available to the measurement y.
This is why a control law of the form indicated above
requires the upper subsystem of (8) to be already
asymptotically stable.
In case the original output does not yield an asymp-

totically stable zero dynamics, an (output feedback)
stabilizing law should not o�set the term q(z; y; �), but
rather should – if possible – take explicit advantage
of it. As a simple explanation of why this is the case,
suppose the system in question – which is a system
having relative degree one – has been (for instance,
uniformly globally asymptotically) stabilized by some
dynamic output feedback law

�̇= �(�; y);
u= �(�; y):

(9)

Then, looking at the interconnection of (8) and(9), we
see that the “subsystem”

ż = f0(z; v; �(t));
w = q(z; v; �(t))

(10)

viewed as a system with input v and output w, has
been necessarily (uniformly globally asymptotically)
stabilized by a dynamic output feedback, with input
w and output v, which has the form

ẏ = w + b(y)�(�; y);
�̇= �(�; y);
v= y:

(11)
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In other words, we see that if system (8) is sta-
bilizable at all, via dynamic output feedback, then
subsystem (10) must necessarily be stabilizable by dy-
namic output feedback. This obviously implies that, if
the dynamics of (10) with v=0, which coincide with
the zero dynamics of (8), are unstable, the latter are
necessarily “observable” through the map q(z; v; �(t))
and any successful stabilization scheme should aim at
taking explicit advantage of this property.

3.2. A su�cient condition for semiglobal practical
stabilizability via dynamic UCO feedback

Consider a nonlinear system modeled by equations
of the form

ż = f(z; �1; : : : ; �r ; �(t));

�̇1 = �2;

�̇2 = �3;

...

�̇r = q(z; �1; : : : ; �r ; �(t)) + b(�)u;

y = �1 (12)

in which � = (�1; : : : ; �r), z ∈ Rn−r , �(·) ∈ MP and
b(�) 6= 0 for all �. This normal form may result from
applying a globally de�ned, perhaps � dependent, co-
ordinate transformation to a nonlinear system given in
some other form.
With system (12), we associate an auxiliary system

ẋa = fa(xa ; ua ; �(t));
ya = ha(xa ; ua ; �(t));

(13)

in which

xa =
(
xa;1
xa;2

)
:=




z
�1
...

�r−2
�r−1




and

fa(xa ; ua ; �(t)) =
(
fa;1(xa ; ua)
fa;2(xa;2; ua)

)

:=




f(z; �1; : : : ; �r−1; ua ; �(t))
�2
...

�r−1
ua


 ;

and

ha(xa ; ua ; �) := q(z; �1; : : : ; �r−1; ua ; �(t)):

About this system, we assume the following:

Assumption 1. The controller

’̇= L(’; xa;2) +Mya ;
ua = N (’; xa;2);

(14)

in which L(0; 0) and N (0; 0)=0, is such that the origin
of system (13),(14) is uniformly globally asymptoti-
cally stable.

Then, we have:

Theorem 2. If Assumption 1 holds; system (12) is
uniformly semiglobally practically stabilizable via
dynamic UCO feedback. More precisely; the origin
of the state space of system (12) with control

’̇= L(’; xa;2) +Mk[�r − N (’; xa;2)];

u=
1
b(�)

[
@N
@’
(L(’; xa;2) +Mk[�r − N (’; xa;2)])

+
@N
@xa;2

fa;2(xa;2; �r)− k[�r − N (’; xa;2)]
]
(15)

is uniformly semiglobally practically asymptotically
stable in the control parameter k.

Proof. Consider the closed-loop system (12),(15)

ẋa =fa(xa ; �r ; �(t));

’̇= L(’; xa;2) +Mk[�r − N (’; xa;2)];

�̇r = ha(xa ; �r ; �(t)) +
[
@N
@’
(L(’; xa;2)

+Mk[�r − N (’; xa;2)]) + @N
@xa;2

fa;2(xa;2; �r)

− k[�r − N (’; xa;2)]
]
: (16)

De�ne a new state variable � = �r − N (’; xa;2), and
note that the resulting system can be interpreted as a
system with input v and output �

ẋa = fa(xa ; �+ N (’; xa;2); �(t));

’̇= L(’; xa;2)−Mv;
�̇= ha(xa ; �+ N (’; xa;2); �(t)) + v (17)

controlled by v=−k�.
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System (17) has relative degree one with high-
frequency gain identically equal to one. Hence, this
system has a globally de�ned zero dynamics manifold,
the set

Z∗ = {(xa ; ’; �): �= 0};
which is rendered invariant by

v= v∗(xa ; ’; �(t)) =−ha(xa ; N (’; xa;2); �(t)):
Its zero dynamics, those of

ẋa = fa(xa ; N (’; xa;2); �(t));

’̇= L(’; xa;2) +Mha(xa ; N (’; xa;2); �(t)) (18)

are uniformly globally asymptotically stable by as-
sumption.
The global di�eomorphism

�= ’+M�

changes system (17) into

ẋa =fa(xa ; �+ N (’−M�; xa;2); �(t));
�̇= L(�−M�; xa;2)

+Mha(xa ; �+ N (�−M�; xa;2); �(t));
�̇= ha(xa ; �+ N (�−M�; xa;2); �(t)) + v
which is a system having the form considered in
[5, Lemma 2:2 (semiglobal backstepping I)] and
the hypotheses of this Lemma hold. Thus, the result
follows.

Remark. Indeed, the functions �1; : : : ; �r are trivially
UCO functions and, hence, system (15) is an UCO
dynamic feedback.

Remark. Controller (14) is a�ne in the input ya.
However, this hypothesis is not restrictive. In fact, ob-
serve, using again [5, Lemma 2:2 (semiglobal back-
stepping I)], that if a system

ẋ = f(x; u);

y1 = h1(x; u);

y2 = h2(x); (19)

in which f(0; 0) = 0, h1(0; 0) = 0 and h2(0) = 0, is
globally asymptotically stabilized by a controller

’̇= �(’; y1; y2);
u= �(’; y2);

in which ’(0; 0; 0) = 0 and �(0; 0) = 0, the origin of
the state space of the system

ẋ=f(x; �(’; h2(x)));

�̇=−k�+ kh1(x; �(’; h2(x)));
’̇= �(’; �; h2(x)) (20)

is semiglobally practically asymptotically stable in the
parameter k. This system can be viewed as system
(19) with control

�̇=−k�+ ky1;
’̇= �(’; �; y2);
u= �(’; y2);

which is a�ne in the input y1.
On the basis of this observation it is not di�cult

to see that the result of Theorem 2 holds under the
assumption that the auxiliary system (13) is uniformly
globally asymptotically stabilized by a controller of
the form

’̇= L(’; xa;2; ya);
ua = N (’; xa;2):

Remark. We have shown above that any nonlinear
relative degree one system which is stabilizable by
dynamic output feedback necessarily satis�es
Assumption 1. It can also be shown, by means of
simple calculations, that the hypothesis in question is
always ful�lled by any stabilizable and detectable lin-
ear system.4 In the light of these properties, Assump-
tion 1 can be regarded as a very natural hypothesis for
the existence of dynamic output feedback stabilizers.

4. Conclusions

An important contribution of the recent paper [5]
to the problem of robust stabilization via output
feedback is the proof that the existence of a (possibly
dynamic) stabilizing a feedback driven by UCO func-
tions guarantees practical semiglobal stabilizability
by means of output feedback. This paper discusses
a signi�cant structural hypothesis, introduced in [2],
under which the existence of a dynamic feedback
driven by UCO functions is guaranteed. The class
of systems which satisfy this hypothesis includes
any stabilizable and detectable linear system and any

4 For further details, see [2].
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relative degree one nonlinear system which is stabi-
lizable by dynamic output feedback. In particular, the
hypothesis does not require the system to be mini-
mum phase. In the light of this fact, the hypothesis in
question can be regarded as a very natural point of
departure for the design of dynamic output feedback
stabilizers.
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