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Adaptive Eccentricity Compensation
Carlos Canudas de Wit and Laurent Praly

Abstract—This paper is devoted to the problem of rejecting
oscillatory position-dependent disturbances with unknown fre-
quency and unknown amplitude. The considered disturbances
are here assumed to be produced by eccentricity in mechanical
systems and drives. Most of the previous works on eccentricity
cancellation assume atime-depending oscillation, we instead
assume that the oscillatory disturbance isposition-dependent.
This leads us to formulate and to globally solve the adaptive
cancellation problem using a velocity-dependent internal model
of the eccentricity. The proposed control design results in an
asymptotically globally stable adaptive eccentricity compensator
(AEC). An apparatus with rolling eccentricity has been build to
test the controller. The paper presents a serial of experimental
results showing the improvements of this controller. Also a com-
parative study with a simple porortional integral (PI) regulator
is presented.

Index Terms—Adaptive compensation, eccentricity sinusoidal
disturbance rejection.

I. INTRODUCTION

WE consider systems of the form

(1)

where is the system angular position, is the inertia, is
the control input and is the position-dependent oscillatory
disturbance defined as

(2)

It is assumed that the amplitude, the dimensionless frequency
, and the phase of the disturbance are unknown. The

problem considered here is thus to cancel the effect of the dis-
turbance in the system (1).

This type of problem arises as a consequence of eccentricity
in many mechanical systems where the center of rotation does
not corresponds with its geometric center. This is typically the
case on drives with magnetic bearings. It also arises in systems
with friction where the contact forces change as a function of
the position .

The dependency on position of can be visualized in
the following scenarios. It is known that the friction forces de-
pends on the normal force acting between two surfaces. In-
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accuracies in the geometric position of the rotating axis of a
rolling mill (eccentricity), will produce position dependent dis-
turbances. In gear boxes, friction will vary as a function of the
effective surface in contact with the gear’s teeth. The two-di-
mensional rolling and spinning friction causes in ball bearings
the frictional torque to be dependent on both position and ve-
locity. Fig. 1 shows some of these examples.

Many of the existing works considernot as a position func-
tion, but as a time-dependent exogenous signal, of the form

(3)

In the previous mentioned system this hypothesis is only valid
if we assume that the system is operating and regulated, at con-
stant velocity so that becomes proportional . Distur-
bances of the form (3) have been considered in problems such
as active noise and vibration control. The noise is thus
assumed to be generated by the rotating machinery and trans-
mitted through the sensor path. Examples rate from engine noise
in turboprop aircraft [5] to ventilation noise in HVAC system
[6], passing through engine noise in automobiles [10].

The proposed solutions resort to “standard” adaptive algo-
rithms if the frequency is assumed to be known [2]. Repetitive
control has also been used to compensate eccentricity in rolling
[7]. For the general case where both amplitude and frequency
are unknown, some approaches based on thephase-lock loop
principle has been proposed [1], but without proof of stability.
When formulating this problem in the time-domain, the main
difficulty to show global stability properties of the adaptive al-
gorithms comes from the fact that the unknown parameters ap-
pear nonlinearly in the (3).

When the system operates under time-varying velocity pro-
files, in (3) becomes time-dependent generating a signal
with a large frequency contain. The position dependent distur-
bance model (2) is thus better adapted for those cases.

In this paper, we present a globally stable adaptive algorithm
that solves the above mentioned problem. For this, we use a ve-
locity-dependent state-space representation for. An adap-
tive observer is thus designed ensuring global asymptotic sta-
bility. The observer is constructed such that can be used in open
loop (for predicting oscillatory disturbances in view of diag-
nostic applications), or in closed loop (to compensate for the
eccentricity effect). The properties of the algorithm are invariant
with respect to the operating velocity.

The second part of the paper describes the experimental eval-
uation of AEC-controller tested on a special purpose apparatus
that exhibits rolling eccentricity. The performance of the pro-
posed controller is evaluated with several velocity signal pro-
files (i.e., constant, time-varying), and finally we present a com-
parison with the standard proportional integral (PI) controller.

1063–6536/00$10.00 © 2000 IEEE



758 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 8, NO. 5, SEPTEMBER 2000

Fig. 1. Examples of systems where disturbancesd(x) are positions-dependent and may produce eccentricity: the upper left figure shows an example of a systems
where the shear force acting on the surface of contact may vary as a function of the joint angle positions, due to eccentricity on the axis of rotation ifr 6= r . In
the system with magnetic bearing (upper right), the geometric axis of the cylinder does not coincide with the axis of rotation due to unbalanced massesdistribution.
The left lower figure shows the spinning and rolling resistances induce a variation on the effective area of contact as a function of the inner race position and in the
right lower figure this variation is due to the relative position of the gears teeth.

II. CONTROL DESIGN

In this section we formulate the internal model for the dis-
turbance , and then we present the control design that includes
the adaptive observer. We also present the stability properties of
such a design.

Internal model for : Let , be defined as

(4)

(5)

this gives the following state-space representation for

(6)

(7)

(8)

The above set of equation describes the velocity-dependent
state-space (internal) model for the eccentricity.

Observer structure: These equations together with system
equation (1) suggest the following observer structure:

(9)

(10)

(11)

where is an estimate for (the adaptation law for will
be designed latter). is an estimated for needed to design our
full-order observer1. , and are positive constants. The vari-

1It is also possible to design a reduced-order observer, but this results in an
observer that is highly noise sensitive. Instead, we have introduced in this paper
the full-order observer that has better noise rejection characteristics.

able is used to select between two possible operation modes:
an eccentricity predictor if , or if the observer is
to be used in closed loop as a eccentricity compensator. is
the velocity time-profile to be followed.

Error equations: We consider the problem of tracking the
desired velocity supposed to be bounded and continuous
as well as its derivative. To this aim we define the adaptive ec-
centricity control (AEC) control as

(12)

with . is given by the observer above, and the adaptive
law to be derived.

Introducing the following error definitions
, we have that

the closed-loop error equations are

(13)

(14)

(15)

(16)

Adaptation law: The adaptation law is derived from the fol-
lowing analysis. Introduce as

and this gives

(17)

(18)
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Fig. 2. Simulation results withv = 20cos(�=2)t. Upper left: desired(v ) and closed-loop system(v) velocity. Upper right: Velocity tracking error time
profile. Lower left: Actual(z ) and predicted(ẑ ) disturbance. Lower right: Time-evolution of̂�(t).

which suggests to defineas

(19)

which cancels the term between the square brackets, resulting
in in a seminegative function , i.e.,

Standard arguments along the Barlabat’s lemma can be here ap-
plied to conclude that , and tend asymptotically to zero,
while all the internal signal of the system remain bounded.

The representation of the adaptation law (19) is appropriate
for analysis. But it cannot be implemented directly in this way
unless the system acceleration, is assumed to be measurable
(note that ). Alternatively, we can introduce a
change of coordinates inand then show that measurement of

is not needed.
To this aim, note that can be rewritten as

(20)

(21)

(22)

(23)

(24)

or equivalent

Defining the new variable as

(25)

we have
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The complete set of equations defining the AEC controller can
thus be rewritten in the new set of coordinates only as
a function of the velocity, i.e.,

(26)

(27)

(28)

(29)

(30)

The following theorem summarizes our main result.
Theorem 1: Consider the system (1)–(2). Consider the dy-

namic feedback defined by the equation set (26)–(30). Let the
control gains . Then all the in-
ternal signal of the system are bounded and the velocity tracking
error and the eccentricity prediction error tend asymptoti-
cally to zero.

III. SIMULATION RESULTS

We present in this section a simulated example, with the
system (1), and the AEC controller. Values used in simulations
were as follows.

• System parameters (Nm),
(Rad/m), (Rad).

• Controller gain .
• Observer .
• Adaptation law .

First simulations where performed with a oscillatory velocity
profile . The first 5 s presented in the simu-
lations do not use the adaptive compensation scheme (although
the adaptation mechanism is active since , i.e., ). Ec-
centricity compensation is activated during .
The upper left Fig. 2, shows the velocity desired profile, and the
closed-loop velocity. Substantial improvements can be observed
with eccentricity compensation (see tracking error in the upper
right of Fig. 2).

The disturbance and the estimated disturbance
are shown in the lower left of Fig. 2. A fast convergence of
the eccentricity estimated to its true value is obtained. Finally
the lower rigtht Fig. 2 gives the time-evolution of the estimated
parameter . It can be observed thatconverge to its true value,
i.e., .

IV. EXPERIMENTAL RESULTS

This section describes the experimental evaluation of AEC-
controller. We first provide a description of the apparatus used
for the experiments, then we evaluate the AEC performance
with several velocity signal (constant, time-varying), and finally
we present a statistic comparison between the AEC and the stan-
dard PI controller. More detailed description of the real-time
system used for these experiments, as well as additional exper-
iments, can be found in [8].

A. Description of the Experimental Setup

The schematic view of the aparatus build to study eccentricity
is shown in Fig. 3. The lateral view in Fig. 3 shows, from right
to left, the motor drive [0.5 KW], the gear box (with a reduc-
tion ratio of ), the load, and the wheel used to pro-
duce the eccentricity effects. The front view shows the details
of this mechanism. The load cylinder of inertiais driven by
the motor of inertia . On the top of it, we have placed a ro-
tating wheel (with neglected inertia), constrained by the force

. The rotation wheel’s center is set to be different from its
geometric center. The contact pressure at the point where the
wheel radius is equal to , is larger than the contact pleasure at
the point of radius , since . This produces an eccentricity
effect changing the normal force acting on the wheel-to-cylinder
contact surface. This variation is then transmitted to the motor
shaft via the gear box. The additional normal force, at the load
side, induced by this mechanism can thus be modeled as

(31)

where is the load angle (Rad), which is related to the motor
angle position as ( is the reduction ratio).

(1/m) is a constant capturing the linear part of the rubber
o-ring deformation. , is the phase shift, and describes the
dimensionless eccentricity frequency. This frequency is defined
as the ratio between the the cylinder’s radius, and the wheel’s
average radius, i.e.,

This value, although computable here in our set up, will be as-
sumed to be unknown as may be the case in many applications
with complicated mechanisms. Since the inertia of the wheel of
negligible when compared to the load cylinder, other dynamic
effects of the wheel will not be considered.

The model for the motor drive under this setup is given as

(32)

where (Rad) is the motor angular position,
(Nm/s ) is the total system inertia (motor plus load),(Nm)
is the control torque input, and (Nm) is the motor friction
torque at the ball bearings. depends, among other factors,
on the normal force variations induced by the eccentric wheel,
and it is modeled as

(33)

(34)

with

where is the average normal force on the ball bearings,
, is as defined in (31), the parametersare the friction

parameters associated to the LuGre friction model (see [3]).
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Fig. 3. Schematic (top) lateral view of the experimental setup to study
eccentricity (bottom) front view.

Fig. 4. Control block scheme of the adaptive eccentricity compensator (AEC)
with feedforward friction compensation.

TABLE I
MOTOR, FRICTION, AND LOAD

PARAMETERS

They capture the distributed friction characteristics on the
motor. is the friction coefficient of this integrated
model2 .

2In the LuGre model� is replaced with the functiong(v) = F + (F �

F )e (whereF is the Coulomb friction,F is the Sticktion friction
level, andv is the Stribeck velocity) in order to include the Stribeck effect. For
simplicity reazons, we just use� which is the Coulomb friction normalized
by the Normal force. Since our main objective here is to study the eccentricity
effects, we have explicitly introduced the normal force dependency in the LuGre
model, and simplified the expression ofg(v).

Model (32) can be rewritten as

(35)

with

(36)

(37)

(38)

(39)

(40)

(41)

is the dimensionless frequency at the motor side (note that
the eccentricity frequency effect at the motor shaft is demulti-
plied by the gear ratio). Note also that model (35) differs from
model (1) by the presence of friction, and by the dependence of

on . Hence to apply to our previous adaptive eccentricity
compensator, we need to cancel the friction, and to assume that

, can be approximate by its steady-state value
, as shown in (41).

Friction can be canceled via feedforward or feedback. The ap-
proximation on may hold for most operation condi-
tions (except for the time periods when the velocity crosses zero)
since the friction dynamics of (34), is much faster than the motor
velocity dynamic (of the order of magnitude of . The
only conceptual problem lies thus on the velocity zero crossings
that occurs at isolated time periods. Its effects on the closed-loop
performance will be evaluated through experiments.

Resuming, we have the following.

• To apply our AEC strategy, we must first compensate for
the position-independent friction.

• The dependency ofand on is not a problem since the
dynamic of is faster than the one of , and .

• The effects of sign-velocity dependency of on the
closed-loop system will not be explicitly considered, but
they will be evaluated through experiments.

We are thus in position to apply our control algorithm, and
for that we will use our AEC controller, with feedforward com-
pensation

(42)

where being a linear operator (when referring to the AEC
controller we will simply refer to a proportional velocity gain,
i.e., ), is given by the set of (27)–(30), andis a
feedforward friction prediction obtained from

(43)

(44)
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Fig. 5. Experiments under constant velocitiesv = 30 Rad/s. Upper left: Velocity tracking error(v � v). Upper right: control input time profile. Lower left:
predicted disturbance,̂z . Lower right: time-evolution of̂�(t).

Fig. 4 show the block diagram of the EAC control scheme with
feedforward friction compensation. Locally, , thus the
closed-loop equation with this additional friction compensation
term is similar to the frictionless system studied in the previous
section.

System parameters including friction coefficients have been
estimated using a similar procedure as described in [4]. They
are reported in Table I.

The experiments were conducted on a dSPACE real-time
computer system based on a digital signal processor, with a
sampling time of 1 ms. The positionis measured by means of
a high-precision optical encoder of 120 000 divisions, yielding
a resolution of 0.52 rad. The velocity is is computed by
position differentiation over a sampling period. The major
source of noise is thus caused by the numerical errors due to
this approximation.

B. Performance Evaluation under Different Tracking Signals

In this section, we presents several experiments aiming at
evaluating the AEC control behavior under different operating

conditions: constant velocities, time-varying velocities, and ve-
locity reversals. The control parameters used for these experi-
ments were

• Controller gains: (the
and , gains are the PI-control gains used later for

comparisons.
• Observer gains: .
• Adaptation gains: .

1) Experiments Under Constant Velocities:The experi-
ments in Fig. 5, show the tracking error, the prediction ,
the estimate , and the control signal. The experiments are
realized at rad/s. The eccentricity compensation is
applied at s. It can be observed that the oscillatory
disturbance affecting the tracking error is canceled when
applying the term , in . The remaining error, which is
about 12% of before compensation, is reduced to 1.5% with
the compensation. The time-profiles shown in all the presented
figures have been low-pass filtered to extract noise.

The time evolution of , has a shape similar to a sinu-
soidal wave (as it has been predicted). The imperfections may
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Fig. 6. Experiments under time-varying velocitiesv = 30+10sin(�=2t). Upper left: Velocity tracking error(v �v). Upper right: control input time profile.
Lower left: predicted disturbance,̂z . Lower right: Time-evolution of̂�(t).

be attributed to the nonuniform deformation of the wheel con-
tact surface (the wheel in contact is composed of a inner unde-
formable steel wheel, covered by a rubber 5 mm o-ring). The es-
timated parameter is observed to converge (in average sense)
to a value close to 0.055, which according to two implies that

. The theoretical value of is given by the
expression (39) as , which
seems to correspond to the experimental found value (note also
that the period of gives for a velocity of 30 rad/s, an ex-
perimental value of , for a ).

2) Experiments Under Time-Varying Velocities.:The ex-
periments in Fig. 6, show the tracking error, the prediction ,
the estimated value of, and the control signal. The experiments
are realized under a positive time-varying desired velocity pro-
file , under the same AEC controller.
Note that the predicted does not necessarily resembles to
a pure sinusoidal wave. Conceptually, the magnitudeof the
disturbance , may change (not much) as a function of the
velocity (see discussion at the end of Section IV-A) due to the
viscous friction term , in , but this seems to have a neg-

ligible effect on the closed-loop performance. The main (small)
difference with respect to the previous experiment, is a slightly
large level of noise. Nevertheless, the global system behavior is
preserved. Finally, note that the value oftends to a value sim-
ilar to the one obtained for constant velocity.

C. Comparison Between the AEC and the PI Controllers

The effect of the disturbance on the output , in system
(1), under a linear controller , can be quanti-
fied by looking at the spectral distribution of sensitivity function

, where

(45)

In this section we compare the AEC-controller ,
with a simpler PI-controller , usually used to
regulate velocity. For this comparison to be fair, we set the gains

, and , such that the PI controller have a better rejection
characteristics than the P controller (linear part of the AEC), in
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Fig. 7. Bode plots of the sensibility functions:T (s)-AEC controller andT (s)-PI controller.

Fig. 8. Comparisons between the AEC and the PI controller. Upper left: velocity tracking error(v � v) for the AEC-controller. Upper right: velocity tracking
error(v � v) for the PI-controller. Lower left: AEC-control input time profile. Lower right: PI-control input time profile.
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TABLE II
PERFORMANCEQUANTIFIERS OF THECOMPARISONBETWEEN THEAEC AND THE PI CONTROLLERS UNDERDIFFERENTVELOCITY PROFILES: v = 10 [rad/s],

v = 40 [rad/s],v = 20 + 10sin(0:78t) [rad/s],AND v = 40 + 10 sin(0:78t) [rad/s]

the frequency domain where the spectral support of theis ex-
pected to lie, i.e., ,
and elsewhere. Fig. 7 shown the mag-
nitudes of , and , with the given choice of
parameters.

Fig. 8 shown the tracking error and the control signal for both
controllers with rad/s. At this velocity,

has its spectrum concentrated at 4.8 rad/s. From
Fig. 7, we see that is about 8 dB smaller than the one of
the AEC. Although, the performance of the AEC-controller im-
proves over the PI, it may be expected that this improvement will
diminish when operating at lower frequencies where is
small.

Table II shows several quantifiers (maximum value, mean
values, variance, etc.) of the tracking error and the control
signal under several different operation velocity profiles;

(see table description).
The first two set of trials correspond to constant velocities:

one with low velocity and the other with higher velocity. For
the low velocity case , the PI sensibility function
has a substantial low magnitude. This is the less favorable case
for the AEC-controller. Nevertheless, both controllers perfor-
mance are comparable. The explicit prediction and compensa-
tion of the disturbance replace the need for a low magnitude of
the sensitivity function at low frequencies. For larger velocities
(i.e., ), the AEC-controller overperform the PI controller.

The second set of trials corresponds to time-varying velocity
profiles. In some applications it is required to operate under
velocity changes. Thus linear controllers tuned for a particular
operational velocity, may degrade its performance while con-
fronted to changes in . The experiment concerning the profile

produce a change of velocity between ten and 30 rad/s, while
the profile produce a change of velocity between 30 and 50
rad/s. From Table II, it can be observed that in all these trials,
the AEC controller improves over the PI with equivalent control
authority.

V. CONCLUSION

We have presented a method for compensating eccentricity in
mechanical systems. As a main difference with previous works,

we have formulated the disturbance as a position-dependent pe-
riodic function, leading to a velocity-dependent state space rep-
resentation. This formulation seems to be justified in most of
the mechanical applications where eccentricity occurs.

From this formulation, we have designed an adaptive pre-
dictor which allows to reject the eccentricity effects studied
in this paper. The adaptive eccentricity compensator has been
shown to be asymptotically stable while ensuring internal signal
boundedness.

We have also presented several experiments of the AEC that
demonstrated the improvements over simpler linear controllers
(PD and PID). The experiments were conducted under different
velocity profiles with different amplitudes. The obtained results
have demonstrated that the AEC mechanism improves over the
linear controllers. Besides that, and in opposition to some of the
existing mechanisms, our AEC do not require any gain retuning
when operating at different velocities.

We have also observed that to the internal observer signal
to behave well, it was important to compensate for the motor
friction. When this was not the case, the additional bias is in
the system due to inexact friction cancellation provokes a high-
oscillatory behavior on the estimate(which can be due to one
of the well-known phenomena of drift, bursting, and parameter
recovery, see for example [9]). Although, this does not change
much the time-profile of , this particular phenomena deserves
more attention.
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