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Abstract

We consider the problem of asymptotic tracking for a system which can be written in a feedforward form. The data of a bounded
reference state trajectory is assumed. Our solution relies on a Lyapunov construction. The time-varying state feedbacks obtained are
bounded and ensure the global uniform asymptotic stability when the signals are periodic and the local exponential stability of the
reference state trajectory of the closed-loop system. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Consider the system

x5 "h(x , y ,u) , y5 "f (y , u). (1)

Suppose that a known function u
r
(t), de"ned and

bounded on [0,#R[, and an initial condition
(x

r
(0), y

r
(0)) such that the corresponding solution

(x
r
(t) , y

r
(t)) of (1) is de"ned and bounded on [0,#R[.

Moreover, suppose that y
r
(t) is a globally asymptotically

stable (GAS) solution of

y5 "f (y , u
r
(t)). (2)

Problem. When is it possible to design a time-varying
feedback law u(x , y , t) such that (x

r
, y

r
) be a GAS solution

of (1)?
In (1), the presence of u in the x5 -equation impedes the

application of the backstepping technique (Krstic, Kanel-
lakopoulos & Kokotovic, 1995) to solve the problem.

qThis paper was not presented at any IFAC meeting. This
paper was recommended for publication in revised form by Associate
Editor I. Petersen under the direction of Editor R. Tempo.
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The solution we propose here is based on a completely
di!erent approach and is appropriate only for the sub-
class of systems (1) characterized by the assumptions in
Section 2.1. This particular class allows us to design
a Lyapunov function. This construction utilizes tools and
properties analogous to those employed to achieve sta-
bilization of an equilibrium in Mazenc and Praly (1996):
Jurdjevic}Quinn approach, higher-order notion, changes
of coordinates. Our result is a result of global uniform
asymptotic stability (GUAS) and local exponential stab-
ility (LES). Moreover, the class of feedback laws obtained
contains bounded feedbacks.

The problem of asymptotic tracking of trajectories of
feedforward systems has been addressed in (Teel, 1992,
Corollary 2.1). There, only the case of a chain of integ-
rators is considered and the solution relies heavily on the
linear structure. In Liu, Chitour and Sontag (1996), the
problem of controlling a linear time-invariant system
subject to input saturation in order to have its output
track (or reject) a family of reference (or disturbance)
signals produced by some external generator is exam-
ined. Other approaches to the tracking problem for non-
linear systems rely on the properties of linearizability or
of partial linearizability (and are not concerned with the
issue of the saturation of the feedback laws) by static or
dynamic feedback (see Martin, Devasia & Paden, 1996
for an illustrative example). The input}output lineari-
zation theory, which leads to the celebrated normal form
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and to the notion of minimum phase system in the
nonlinear context (see Isidori, 1989; Marino & Tomei,
1995), plays a central role in this type of work: for it may
provide an e$cient help for solving the problem of repro-
ducing a reference output trajectory and next for deter-
mining a feedback law which asymptotically stabilizes
the solution of exact tracking.

We will proceed regardless of any kind of linearizabil-
ity property or of minimum phase property. For we
center our e!orts on the problem of stabilizing a given
bounded reference state trajectory. We do not address
the problem of designing such a trajectory. The fact that
we assume its existence may seem to be a weakness of our
work, since, a priori, it does not o!er a response to the
problem of tracking an output trajectory. Nevertheless, as
it is pointed out for instance in Martin et al. (1996) and
Marino, Kanellakopoulos and Kokotovic (1989), the
output tracking problem may be pro"tably split up into
two steps: (1) Determination of a bounded reference
state trajectory and of a bounded input which exactly
yields the reference output trajectory. (2) Stabilization of
the reference state trajectory. Thus, by o!ering a response
to the second step, our technique is complementary to
those which o!er a response to the "rst. Moreover, the
feedforward structure may also be exploited to construct
the reference trajectory.

Organization of the paper. In Section 2 is given a result
about the problem of globally asymptotically stabiliz-
ing a bounded trajectory for particular systems (1). In
Section 3 an improvement of this result is proposed.
It is centered on the uniform aspect of the asymptotic
stability. Section 4 contains concluding remarks.

1.1. Notations and basic dexnitions

f Throughout the paper, the symbol c denotes generi-
cally a strictly positive real number (i.e. c#c * c"c).

f A continuous function F(x , y) is said to have a zero of
order p50 at y"0 if there exists a nonnegative
continuous function FI such that, for all (x , y),

DF(x , y)D4FI (x , y)DyDp. (3)

f A function p : RPR is said to be a saturation if it is
a continuous, bounded, di!erentiable at 0 and such
that

p(s)s'0 ∀sO0, p@(0)'0, pDR
`
N¸1(R

`
) ,

pDR
~
N¸1(R

~
).

It is said to be a linear saturation if there exists ¸'0
such that

p(s)"s , ∀DsD4¸.

f With Q a positive-de"nite symmetric matrix, we de-

note: DxD"Jx?x, DxD
Q
"Jx?Qx.

f A function a : [0,#R)P[0,#R) is said to be of
class K if it is zero at zero and strictly increasing. If
besides it is unbounded, it is said to be of class K=.

2. Global asymptotic stability

2.1. Assumptions and result

Consider system (1) rewritten here as

XQ "H(X ,> , u), >Q "F(> , u) , (4)

where >3Rn , X3Rm, u3Rq and both H and F are
functions of class C3 which satisfy H(0,0,0)"0 and
F(0, 0)"0.

Assumption A1. The function H can be decomposed as

H(X ,> , u)"MX#H
1
(>)#H

2
(> , u)u. (5)

With this assumption and the fact that F is of class C3,
system (4) can be rewritten as

XQ "MX#H
1
(>)#H

2
(> , u)u ,

>Q "F
0
(>)#F

2
(> , u)u ,

(6)

where all the functions are of class C2.

Assumption A2. There exists a function (X
r
(t) ,>

r
(t) , u

r
(t))

bounded on [0,#R) , of class C2 , and verifying:

XQ
r
(t)"MX

r
(t)#H

1
(>

r
(t))#H

2
(>

r
(t) , u

r
(t))u

r
(t),

>Q
r
(t)"F

0
(>

r
(t))#F

2
(>

r
(t) , u

r
(t))u

r
(t).

(7)

This assumption guarantees that the matrix

A(t)"
L

L>I
[F

0
(>I #>

r
(t))#F

2
(>I #>

r
(t) , u

r
(t))u

r
(t)]D

YI /0

(8)

is well-de"ned and of class C1. Let '
A
(t , t

0
) be the

transition matrix associated to this matrix, i.e. the func-
tion verifying:

L'
A

Lt
(t , t

0
)"'

A
(t , t

0
)A(t) , '

A
(t
0
, t

0
)"I. (9)

Assumption A3.
(A3.1). The point >I "0 is a GUAS equilibrium point of

the system:

>IQ "F
0
(>I #>

r
(t))!F

0
(>

r
(t))

#F
2
(>I #>

r
(t) , u

r
(t))u

r
(t)!F

2
(>

r
(t), u

r
(t))u

r
(t). (10)
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(A3.2). There exist a positive-dexnite symmetric matrix
Q and c'0, a'0 such that for all t'0 and for
all s3[0, t]:

Dexp(M(s!t))DD'
A
(t , s)D4c exp(!a(t!s)), (11)

M?Q#QM"!R40. (12)

As we shall prove later on, this assumption implies that
the equation

PQ (t)"MP(t)!P(t)A(t)!C(t) , (13)

where

C(t)"
L

L>I
[H

1
(>I #>

r
(t))#H

2
(>I #>

r
(t) , u

r
(t))u

r
(t)]D

YI /0
,

(14)

admits on [0,#R) a unique continuous and bounded
solution P(t). This allows us to introduce the notation

D(t)"
LH

2
Lu

(>
r
(t) , u

r
(t))u

r
(t)#H

2
(>

r
(t) , u

r
(t))

#P(t)C
LF

2
Lu

(>
r
(t) , u

r
(t))u

r
(t)#F

2
(>

r
(t), u

r
(t))D ,

(15)
and to state the assumption:

Assumption A4. The pair

AM ,A
D(t)?Q

R1@2 BB
is uniformly detectable , i.e. there exist bounded and con-
tinuous functions K

d
(t) and K

r
(t) such that the solution

s"0 of

s5 "(M#K
d
(t)D(t)?Q#K

r
(t)R1@2)s , (16)

is ES.

Theorem 1. If system (6) satisxes Assumptions A1}A4 then ,
for all u8 '0, there exists a continuous feedback law
u6 (X ,> , t) verifying:

Du6 (X ,> , t)!u
r
(t)D(u8 (17)

and such that the closed-loop system admits (X
r
,>

r
) as

a GAS solution.

Discussion of Assumption A3

f (11) says that M is marginally stable.
f (11) and (12) imply that

P(t)"CP
`=

t

exp(M(t!s))C(s)'
A
(s , t) dsD , (18)

is well-de"ned, bounded, of class C1 on [0,#R) and
solution of (13). Indeed, the functions F

0
, F

2
, u

r
and

>
r
being of class C2, the function A(t) is of class C1.

The functions H
1
, H

2
, u

r
and >

r
being of class C2, the

function C(t) is of class C1. So exp(M(t!s))C(s)'
A
(s , t)

is of class C1. On the other hand, according to As-
sumption A2, >

r
(t) is bounded on [0,#R). It follows

that DC(t)D is bounded by a positive-real number c. With
(12), this implies:

DP(t)D4cP
`=

t

exp(!a (s!t)) ds4
c

a
(#R. (19)

It follows readily that P(t) is well-de"ned and of class
C1. Next, by simply evaluating the derivative of P, one
can check that P satis"es (13), which in turn implies
that P is of class C2.

We will exploit the properties of P mentioned above
in the proof of Theorem 1 for designing coordinates
which facilitates the construction of a Lyapunov
function for (6).

2.2. Proof of Theorem 1

2.2.1. First step: Error equation
We transform the tracking problem into the problem

of GAS the origin of a time-varying system. In the
coordinates

XI "X!X
r
(t) , >I ">!>

r
(t) , v"u!u

r
(t) ,

(20)

system (6) rewrites

XIQ "MXI #[H
1
(>I #>

r
)!H

1
(>

r
)]

# [H
2
(>I #>

r
, u

r
#v)(u

r
#v)!H

2
(>

r
, u

r
)u

r
],

>IQ "[F
0
(>I #>

r
)!F

0
(>

r
)]

# [F
2
(>I #>

r
, u

r
#v)(u

r
#v)!F

2
(>

r
, u

r
)u

r
]. (21)

2.2.2. Second step: Appropriate coordinates
As in Mazenc and Praly (1996), we remark that if we
"nd coordinates (x , y) allowing us to rewrite (21) in the
form

x5 "Mx#h
2
(y , v , t)v ,

y5 "f
0
(y , t)#f

2
(y , v , t)v ,

(22)

then the stabilization problem could possibly be solved
by applying a generalization of the Jurdjevic and Quinn's
approach (see third step). Under our assumptions, such
coordinates exist. More precisely, we have

Lemma 2. Let '
Y
(t , s ,>I ) be the solution of the system:

>IQ "[F
0
(>I #>

r
)!F

0
(>

r
)]

#[F
2
(>I #>

r
, u

r
)!F

2
(>

r
, u

r
)]u

r
(23)
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which satisxes '
Y
(s , s ,>I )">I . The change of coordinates:

x"XI #P(t ,>I ) , y">I , (24)

where P(t ,>I ) is the function of class C1 dexned by

P(t,>I )"P
`=

0

exp(!Ml)H(t#l ,'
Y
(t#l , t ,>I )) dl (25)

with

H(t ,>I )"H
1
(>I #>

r
(t))!H

1
(>

r
(t))

#H
2
(>I #>

r
(t) , u

r
(t))u

r
(t)!H

2
(>

r
(t) , u

r
(t))u

r
(t) ,

(26)

applied to system (21) yields

x5 "Mx#h
2
(y , v , t)v , y5 "f

0
(y , t)#f

2
(y , v , t)v , (27)

where h
2
, f

0
and f

2
are of class C1 and dexned by

h
2
(y , v , t)v"[H

2
(y#>

r
(t) , u

r
(t)#v)

!H
2
(y#>

r
(t) , u

r
(t))]u

r
(t)

#CH2
(y#>

r
(t) , u

r
(t)#v)

#

LP

L>I
(t , y) f

2
(y , v , t)Dv , (28)

f
0
(y , t)"[F

0
(y ,>

r
(t))!F

0
(>

r
(t))]

#[F
2
(y#>

r
(t) , u

r
(t))u

r
(t)!F

2
(>

r
(t))u

r
(t)], (29)

f
2
(y , v , t)v"[F

2
(y#>

r
(t) , u

r
(t)#v)

!F
2
(y#>

r
(t) , u

r
(t))]u

r
(t)

#F
2
(y#>

r
(t) , u

r
(t)#v)v. (30)

This lemma is proved in Appendix A.

The di$culty encountered with (25) is the complexity
of its evaluation. Fortunately, it turns out that, as in
Mazenc and Praly (1996), the LES of >I "0 when v"0
allows us to deal with a system (21) when H(t ,>I ), de"ned
in (26), is a second-order term in >I . This implies that
a change of coordinates which just removes the "rst-
order term of H(t ,>I ) is what we only need. By replacing
in (24) the function P(t ,>I ) by its "rst variation in >I , we
get such a change of coordinates. It turns out that the
Frechet derivative of P(t ,>I ) with respect to >I is, when
evaluated at >I "0, the function P(t) given in (18).

Let us summarize what we have:

Fact 3. In the coordinates

x"XI #P(t)>I , y">I , (31)

where P is the function dexned in (18), the dynamics (21)
become

x5 "Mx#h
1
(y , t)#h

2
(y , v , t)v ,

y5 "f
0
(y , t)#f

2
(y , v , t)v ,

(32)

where h
1
, h

2
, f

0
and f

2
are of class C1 , bounded with

respect to t , and dexned by

h
1
(y , t)"H

1
(y#>

r
(t))!H

1
(>

r
(t))

# [H
2
(y#>

r
(t), u

r
(t))!H

2
(>

r
(t) , u

r
(t))]u

r
(t)

#P(t)[ f
0
(y , t)!A(t)y]!C(t)y , (33)

h
2
(y , v , t)v"[H

2
(y#>

r
(t) , u

r
(t)#v)

!H
2
(y#>

r
(t) , u

r
(t))]u

r
(t)

# [H
2
(y#>

r
(t) , u

r
(t)#v)

#P(t) f
2
(y , v , t)]v , (34)

f
0
(y , t)"[F

0
(y ,>

r
(t))!F

0
(>

r
(t))]

# [F
2
(y#>

r
(t), u

r
(t))u

r
(t)!F

2
(>

r
(t))u

r
(t)],

(35)

f
2
(y , v , t)v"[F

2
(y#>

r
(t) , u

r
(t)#v)

!F
2
(y#>

r
(t) , u

r
(t))]u

r
(t)

#F
2
(y#>

r
(t) , u

r
(t)#v)v. (36)

Moreover, about h
1

we prove in Appendix B:

Lemma 4. There exists a continuous positive function
c such that

Dh
1
(y , t)D4c(DyD)DyD2. (37)

2.2.3. Third step: Assignment of a Lyapunov function
At this point of our proof, we need the following

preliminary result:

Lemma 5. If system (6) satisxes Assumptions A1}A3 there
exist a Lyapunov function <(y , t) of class C1 , strictly posit-
ive-real numbers p

i
, a function =(y , t) and functions

a
1
, a

2
, a

3
and a

4
of class K= such that

f for all DyD4p
1
:

p
2
DyD24<(y , t)4p

3
DyD2 , K

L<
Ly

( y , t)K4p
4
DyD , (38)

p
5
DyD24a

3
(DyD)4=(y , t) (39)

f for v"0 and for all y:

a
1
(DyD)4<(y , t)4a

2
(DyD) , (40)
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dgf
<(y ,

5
t)
(32)

"!=(y , t)4!a
3
(DyD)(0 ∀yO0, (41)

K
L<
Ly

(y , t)K4a
4
(DyD). (42)

Proof. This result is obtained by a convex combination
of the Lyapunov functions given by the converse
Lyapunov theorems for equilibrium points which are
LES or GUAS. Details can be found in (Mazenc, 1996,
Annexe G). h

We focus our attention on the family of candidate
Lyapunov functions:1

;(x , y , t)"i(<(y , t))#P
@x@Q

0

p(s) ds , (43)

where i is a smooth function of class K= with a deriva-
tive strictly larger than 1, where p is a smooth saturation
and where Q is the matrix given by Assumption A3.2.
Any function ; thus de"ned is smooth, proper, positive
de"nite and lower bounded by a positive-de"nite quad-
ratic form in a neighborhood of the origin. Its derivative
along (32) is

dggf
;(x ,0 y , t)(32)

"!i@(<(y , t))=(y , t)

#i@(<(y , t))
L<
Ly

(y , t) f
2
(y , v , t)v

#p (DxD
Q
)
x?Q

DxD
Q

[Mx#h
1
(y , t)#h

2
(y , v , t)v].

(44)

According to Mazenc and Praly (1996, Lemma B.2), we
deduce from (38) and (39) that there exists a smooth
function i such that

1

2
i@(a

1
(DyD))5A sup

s|R
Dp(s)DB

DyD2
a
3
(DyD )

c(DyD) , (45)

i@(s)51, ∀s50. (46)

Such a choice for i yields, with (37) and (11),

dggf
;(xQ , y , t)(32)

4!

1

2
i@(<(y , t))=(y , t)!

1

2
p(DxD

Q
)
x?Rx

DxD
Q

# a(x , y , v , t)v (47)

1The motivation for choosing :@x@Q
0

p(s) ds is that the partial deriva-
tives with respect to x are bounded. Other choices are possible.

with

a(x , y , v , t)"i@(<(y , t))
L<
Ly

(y , t) f
2
(y , v , t)

#p(DxD
Q
)
x?Q

DxD
Q

h
2
(y , v , t). (48)

Since f
2

and h
2

are of class C1 and Dp(DxD
Q
)x?Q/DxD

Q
D is

a bounded function, this function a satis"es the condition
(C.1) of Appendix C. It follows from Lemma 7 that there
exists a C1 function j satisfying:

∀c
1
50, &c

2
'0: MDyD4c

1
Nj(y)5c

2
N , (49)

and such that the time-varying feedback law:

v(y ,x , t)"!j(y)Ci@(<(y , t))
L<
Ly

(y , t) f
2
(y , 0, t)

#p(DxD
Q
)
x?Q

DxD
Q

h
2
(y , 0, t)D

?

, (50)

is bounded by u8 and veri"es

Ci@(<(y , t))
L<
Ly

(y , t) f
2
(y , v , t)

#p(DxD
Q
)
x?Q

DxD
Q

h
2
(y , v , t)Dv(y ,x , t)

4!

1

2
j(y)Ki@(<(y , t))

L<
Ly

(y , t) f
2
(y , 0, t)

#p(DxD
Q
)
x?Q

DxD
Q

h
2
(y , 0, t)K

2
. (51)

Such a feedback law yields:

dggf
;(x ,Q y , t)(32)

4!

1

2
i@(<(y , t))=(y , t)!

1

2
p(DxD

Q
)
x?Rx

DxD
Q

!

1

2
j(y)Ki@(<(y , t))

L<
Ly

(y , t) f
2
(y , 0, t)

#p(DxD
Q
)
x?Q

DxD
Q

h
2
(y , 0, t)K

2
. (52)

This inequality implies the GUS of the trajectory
(X

r
(t) ,>

r
(t)). Unfortunately, the right-hand side of (52) is

a priori not smaller than a negative-de"nite function
independent of time. So the GAS does not follow from
a standard Lyapunov theorem. Nevertheless, this result
may be inferred by a study of the consequences of (52).
This is established in the next paragraph.
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2.2.4. Fourth step: GAS analysis
By integrating (52) between 0 and #R, we deduce

that

P
`=

0

i@(<(y(s) , s))=(y(s) , s) ds

#P
`=

0

p(Dx(s)D
Q
)
x(s)?Rx(s)

Dx(s)D
Q

ds

#P
`=

0

Dv(y(s),x(s) , s)D2
j(y(s))

ds(#R. (53)

Let us analyze the consequences of this inequality:

(1) Using (46) and (39), the fact that = is positive de"-
nite and the boundedness of y(t) and of the control,
we have, for some c'0:

cDy(s)D24i@(<(y(s), s))=(y(s), s) ∀s3[0,#R). (54)

With (54), inequality (53) implies that y(t)3
¸2([0,#R)). On the other hand (32), and the boun-
dedness of y(t) implies that

dgf

y25 (t) is bounded as well.
Then, by applying (Khalil, 1992, Lemma 4.4), we get

lim
t?`=

y(t)"0. (55)

(2) Since p is a linear saturation and x(t) is bounded,
there exists cp'0 such that

0(cp4
p(Dx(t)D

Q
)

Dx(t)D
Q

∀t50, (56)

which, according to (53), implies that
x(t)?Rx(t)3¸1([0,#R)).

(3) Since y(t) is bounded, j(y(t)) is bounded as well. So
with this property and (53), we have that v(y(t) , x(t), t)
is in ¸2([0,#R)). It follows readily from (37) and the
fact that y(t)3¸2([0,#R)) that the function:

u
1
(t)"h

1
(y(t) , t)#h

2
(y(t) , v(x(t) , y(t) , t) , t)

v(x(t) , y(t), t) (57)

belongs to ¸2([0,#R)).
On the other hand, thanks to (49) and (53), we

deduce that [v(y(t),x(t) , t)j(y(t))]3¸2([0,#R)).
Moreover, by taking advantage of (38), (40),(55), (50)
and the boundedness of y(t), there exist c'0 and
t
c
'0 such that for all t3[t

c
,#R), we have

cpDx(t)?Qh
2
(y(t) , 0 , t)D

4Kp(Dx(t)D
Q
)
x(t)?Q

Dx(t)D
Q

h
2
(y(t) , 0, t)K ,

4K
v(y(t),x(t) , t)

j(y(t)) K# Ki@(<(y , t))
L<
Ly

(y , t) f
2
(y , 0, t)K ,

4K
v(y(t),x(t) , t)

j(y(t)) K#cDy(t)D. (58)

Since h
2

is of class C1, this inequality implies that
x(t)?Qh

2
(0, 0, t) belongs to ¸2([0,#R)).

Let us sum up our previous results:

f The function y(t) belongs to ¸2([0,#R)) and

lim
t?`=

y(t)"0. (59)

f The function x(t) satis"es

x5 (t)"Mx(t)#u
1
(t) (60)

with the functions u
1

and x(t)?Qh
2
(0,0, t) in

¸2([0,#R)) and x(t)?Rx(t) in ¸1([0,#R)).

Since our notation is D(t)"h
2
(0,0, t), this last equation

can be rewritten as follows with K
d

and K
r

given by
Assumption A4:

x5 (t)"(M#K
d
(t)D(t)?Q#K

r
(t)R1@2)x(t)

#[u
1
(t)!K

d
(t)D(t)?Qx(t)!K

r
(t)R1@2x(t)]. (61)

But with Assumption A4, this can be seen as an ES
linear system driven by inputs in ¸p spaces. This
implies

lim
t?`=

x(t)"0. (62)

Finally, noticing that P(t) is bounded, and returning to
the initial coordinates, we get

lim
t?`=

(X(t)!X
r
(t))"0, lim

t?`=

(>(t)!>
r
(t))"0. (63)

3. Global uniform asymptotic stability

Theorem 1 is not entirely satisfactory: while it requires
that >

r
be a GUAS solution of the >-subsystem

with u"u
r
, it only ensures the existence of a feedback

law which GAS the solution (X
r
,>

r
) of (6). Since the

property of uniformity is missing in this stabilizability
result, there is a priori no way to apply repeatedly The-
orem 1. Fortunately, we show in this section that GUAS
may be achieved when the reference signal is a periodic
function.

3.1. Periodic case

First, consider the case where (X
r
(t) ,>

r
(t)) and u

r
(t) are

periodic functions.
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Corollary 6. Assume that Assumptions A1}A4 are satisxed
and that X

r
(t) , >

r
(t) , u

r
(t) are periodic functions of period

T. Then (X
r
,>

r
) is a GUAS and a LES solution of system (6).

Proof. Step 1: GAS follows from Theorem 1.
Step 2: Periodic closed-loop system. The closed-

loop system can be described by (32) with the functions
de"ned in (33)}(36) and the feedback v given in (50). From
these various de"nitions, this closed-loop system is
periodic if P(t) and <(y , t) are periodic in t.

About P(t) , we have (18) with C(t) and '
A

de"ned in
(14), (9), (8). So if ¹ is the period for the reference traject-
ory, we have: C(t#¹)"C(t) , A(t#¹)"A(t),'

A
(s#¹ ,

t#¹)"'
A
(s , t) which implies that P is of period ¹.

About <(y , t), we remark that a converse Lyapunov
Theorem which can be used in the proof of Lemma 5 is
Hahn (1967, Theorem 49.4, p. 237). It guarantees that
<(y , t) is periodic whenever f

0
(y , t) is periodic.

Step 3: GUAS. For periodic systems GAS implies
GUAS (see Yoshizawa, 1966, Theorem 11.3 for instance).
So from Steps 1 and 2, it follows that we can design
a feedback which GUAS the system (6).

Step 4: LES. By applying to the linear approximation of
(32) the strategy of design of the proof of Theorem 1, we
obtain a family of asymptotically stabilizing feedbacks
which contains the linear approximation of (50). On the
other hand, the linear approximations of (32) and (50) are
periodic. It follows that the corresponding closed-loop
system is uniformly asymptotically stable. Since we know
that if a time-varying linear system is UAS, then it is ES
(Khalil, 1992, Chapter 3, Section 3.5), this last property is
proved for the linear system we are interested in. Next, we
conclude by mentioning that the conditions of Khalil
(1992, Theorem 3.11) which guarantee that if the linear
approximation at the origin of a time-varying system is
ES, then this system admits the origin as a LES point are
met by (32) with (50) as control. h

4. Concluding remarks

In this paper, we have constructed a family of feedback
laws (which contains arbitrarily small bounded func-
tions) which GUAS periodic reference state trajectories
of nonlinear systems obtained after adding one inte-
gration. Such systems are in general not feedback
linearizable which makes the tracking problem even
more di$cult. A recursive application of the design we
have proposed is possible and provides us with a new
technique for dealing with tracking problems for nonlin-
ear systems, in feedforward form. In future works, we will
prove, under slightly more restrictive assumption, the
GUAS of signals which are not periodic functions of
the time and illustrate our design of control law on the
cart}pendulum system.

Appendix A

A.1. Proof of Lemma 2

First, let us notice that by using the same arguments as
those employed in Mazenc and Praly (1996, Appendix C),
we can prove that the function P(t ,>I ) de"ned in (25) is
well-de"ned and of class C1.

Next, let us show that this function satis"es, for all
>I , t50,:

LP
Lt

(t ,>I )#
LP
L>I

(t ,>I )[F
0
(>I #>

r
(t))!F

0
(>

r
(t))]

"MP(t ,>I )!H(t ,>I ). (A.1)

For all >I
0

and t50, we have, using (23):

P(t, '
Y
(t , 0,>I

0
))

"P
`=

0

exp(!Ml)H(t#l , '
Y
(t#l , t ,'

Y
(t , 0,>I

0
))) dl ,

"P
`=

0

exp(!Ml)H(t#l , '
Y
(t#l , 0,>I

0
)) dl ,

"exp(Mt)P
`=

t

exp(!Mr)H(r , '
Y
(r , 0 ,>I

0
)) dr. (A.2)

It follows

dgggggf
P(t, '

Y
0(t , 0,>I

0
)) (23)

"MP(t , '
Y
(t , 0 ,>I

0
))

!H(t ,'
Y
(t , 0,>I

0
)). (A.3)

On the other hand, a direct computation gives

dgggggf
P(t, '

Y
(0 t , 0,>I

0
))(23)

"

LP
Lt

(t ,'
Y
(t , 0,>I

0
))

#

LP
L>I

(t ,'
Y
(t , 0,>I

0
))[F

0
('

Y
(t , 0,>I

0
)#>

r
)!F

0
(>

r
)

#(F
2
('

Y
(t , 0,>I

0
)#>

r
, u

r
)!F

2
(>

r
, u

r
))u

r
]. (A.4)

Combining (A.4) and (A.3) and choosing>I
0
"'

Y
(0, t ,>I ),

we obtain:

LP

Lt
(t ,>I )#

LP

L>I
(t ,>I )

][F
0
(>I #>

r
)!F

0
(>

r
)#(F

2
(>I #>

r
, u

r
)

!F
2
(>

r
, u

r
))u

r
]

"MP(t ,>I )!H(t ,>I ). (A.5)

To conclude, we notice that equality (A.5) implies that
the change of coordinates (24) transforms system (21) into
system (27). h

F. Mazenc, L. Praly / Automatica 36 (2000) 179}187 185



Appendix B

B.1. Proof of Lemma 4

First, observe that

h
1
(0, t) "0 ∀t50. (B.1)

Next, let us take the di!erential of h
1

with respect to y at
y"0:

Lh
1

Ly
(0, t)"

LH
1

Ly
(>

r
(t))#

LH
2

Ly
(>

r
(t), u

r
(t))u

r
(t)

#P(t)C
Lf

0
Ly

(0, t)!A(t)D!C(t). (B.2)

Using the de"nitions of A(t) in (8) and of C(t) in (14),
we get:

Lh
1

Ly
(0, t)"P(t)C

Lf
0

Ly
(0, t)!

LF
0

L>
(>

r
(t))

!

LF
2

L>
(>

r
(t), u

r
(t))u

r
(t)D. (B.3)

From the de"nition of f
0
, it follows readily that

Lh
1

Ly
(0, t)"0 ∀t50. (B.4)

With (B.1) and (B.4) and the fact that H
1
, H

2
, F

0
and

F
2

are of class C2, we deduce that

Dh
1
(y , t)D4CP

1

0
K
Lh

1
Ly

(sy , t)!
Lh

1
Ly

(0, t)KdsDDyD ,

4CP
1

0
AP

1

0
K
L2h

1
L2y

(usy , t)KduBsdsDDyD2. (B.5)

Since >
r
(t) and u

r
(t) are bounded functions and

L2h
1
/L2y(y , t) is continuous, there exists a continuous

positive function c(DyD) such that

P
1

0
AP

1

0
K
L2h

1
L2y

(usy , t)KduBsds4c(DyD). (B.6)

This concludes the proof. h

Appendix C

C.1. Lemma 7

Lemma 7. Let u8 be any strictly positive-real number. Let
a(x , y , v , t) be a function which satisxes:

Da(x , y , 0, t)D#
Da(x , y , v , t)!a(x , y , 0 , t)D

DvD
4)(DyD) ,

∀v: DvD4u8 (C.1)

for some continuous and positive function ). Let u be
a positive and decreasing function of class C1 such that

u(0)"1, u(s)'0, ∀s3[0,1[,

u(0)"0, ∀s'1. (C.2)

Then , there exists d'0 such that

a(x , y , v
s
, t)v

s
4!

d
2
u(DyD)Da(x , y , 0, t)D2 (C.3)

with

v
s
"!du(DyD)a(x, y , 0, t)? (C.4)

such that Dv
s
D4u8 .

Proof. Simple calculations yield:

a(x , y , v
s
, t)v

s

4a(x , y , 0, t)v
s
#

Da(x , y , v
s
, t)!a(x , y , 0, t)D

Dv
s
D

Dv
s
D2 ,

4a(x , y , 0, t)v
s
#)(DyD)Dv

s
D2 ,

4!du(DyD)Da(x , y , 0, t)D2

#)(DyD)Ddu(DyD)a(x, y , 0, t)D2 ,

4!du(DyD)Da(x , y , 0, t)D2

#d2u(DyD)Da(x , y , 0 , t)D2 sup
0ysy1

M)(s)N. (C.5)

The result follows with 0(d4minM1,u8 N/
2sup

0ysy1
M)(s)N. h
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