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Integrator Backstepping for Bounded
Controls and Control Rates

Randy Freeman and Laurent Praly

Abstract—We present a backstepping procedure for the design of
globally stabilizing state feedback control laws such that the magnitudes
of the control signals and their derivatives are bounded by constants
which do not depend on the initial conditions. We accomplish this
by propagating such boundedness properties through each step of the
recursive design.

I. INTRODUCTION

Recursive Lyapunov design procedures developed in recent years
have expanded the classes of nonlinear systems for which systematic
controller designs are possible. A prime example of such a procedure
is integrator backstepping (see [2] and the references therein). The
flexibilities of this procedure create opportunities for the improvement
of performance and the satisfaction of design constraints.

In this paper we present a new version of the backstepping
procedure in which the boundedness of the control signal and its
derivative are propagated through each step of the recursive design.
We thereby add the powerful backstepping method to the collection of
tools available for the global design of control systems with actuator
constraints (see [4] and [7] for instance). The achieved bound on the
control signal in our design cannot generally be made to satisfy an
arbitrary prescribed constraint, unlike the bounds in the designs of
[4] and [7]. However, our method applies to a much broader class
of nonlinear systems, including those which do not admit controllers
satisfying arbitrary constraints.

The key feature of our method is a new choice for the Lyapunov
function at each step of the recursive design, a choice based on
combining design flexibilities proposed in [1] and [3]. We will give
our main result in Section II, followed by its proof in Section III.

II. BACKSTEPPING WITH ACTUATOR CONSTRAINTS

A. Main Result

Given continuous functionsf; g: IRn ! IR
n andh: IRn � IR!

IR such thatf(0) = 0 andh(0; 0) = 0, we consider the single-input
system

_x

_y
= F (x; y) +G(x; y)u (1)

where(x; y) 2 IR
n

� IR is the state variable,u 2 IR is the control
variable, andF andG are given by

F (x; y) :=
f(x) + g(x)y

h(x; y)
; G(x; y) :=

0

1
: (2)

Our goal in this paper is to present a set of conditions guaranteeing the
existence of a stabilizing control law for (1) such that the magnitudes
of both the control signalu and its derivative _u are bounded by
a constant which does not depend on initial conditions. Roughly
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speaking, we will show that if the result already holds for the
reduced-order system

_x = f(x) + g(x)v (3)

with some control lawv = �(x), then it does so for (1) with a control
law u = �(x; y). To be precise, we will prove the following.

Theorem 1: Suppose there existC1 functions�; r; V; �: IRn
!

IR such that

A1) V , �, andr are positive definite,V is proper,�(0) = 0, and
inf jxj�c r(x) > 0 for somec > 0;

A2) jy � �(x)j � r(x) impliesLfV (x)+LgV (x) y � ��(x);
A3) �, r, Lf�, Lg�, Lfr, Lgr, andLgV are all bounded onIRn;
A4) LgV , Lf�, and(Lg� � �) are allO( �(x)) asx ! 0;
B1) there existsr0 > 0 such thath is bounded on the set

f(x; y) 2 IR
n
� IR: jy � �(x)j � r0g;

B2) there existsh0 � 0 such thatsign[y � �(x)] � h(x; y) � h0

on IR
n
� IR;

B3) h is O( �(x) + [y � �(x)]2) as (x; y) ! (0; 0).

Then there existC1 functions�; �; U; �: IRn
� IR! IR such that

C1) U , �, � are positive definite,U is proper,�(0; 0) = 0, and
inf f�(x; y): jxj + jyj � cg > 0;

C2) ju � �(x; y)j � �(x; y) implies LFU(x; y) +

LGU(x; y)u � ��(x; y);
C3) �, �, LF �, LG�, LF�, LG�, andLGU are all bounded on

IR
n
� IR;

C4) LGU , LF �, and(LG� ��) are allO( �(x; y)) as(x; y)!
(0; 0).

B. Interpreting the Conclusion of Theorem 1: Properties C1)–C4)

If we can satisfy A1)–A4) and B1)–B3), then this theorem gen-
erates a control law� and a Lyapunov functionU whose derivative
along solutions of (1) withu = �(x; y) satisfies, from C2)

_U = LFU(x; y) + LGU(x; y) �(x; y) � ��(x; y): (4)

Thus this control law globally asymptotically stabilizes the origin of
(1), and we see from C3) that the control lawu = �(x; y) and its
derivative

_u(x; y) = LF �(x; y) + LG�(x; y)�(x; y) (5)

are bounded functions of(x; y) as desired. The control law� used
to prove Theorem 1 is simply

�(x; y) = ��(�[y � �(x)]) (6)

where �: IR ! IR is the C
1 saturation function defined in

Section III-A. Following our proof, the constant design parameters
 and � must be chosen sufficiently large. In general, there is no
guarantee that the magnitude limit on the control law (6) can
be chosen small enough to meet a prescribed constraint. A similar
statement holds for the rate limit, which depends on both and �
as well as the functionsf , g, h, �, and�.

Theorem 1 can be applied recursively because properties C1)–C4)
are to the complete system (1) as properties A1)–A4) are to the
reduced-order system (3). After the first step in a recursive design, one
needs only verify properties B1)–B3) at each new step. For example,
by applying Theorem 1 twice, one can find constant parameters�1,
1, �2, and 2 so that

�(x; y1; y2) = �2 � �2 y2 + 1� �1 y1 +
2x

2

1 + x2
(7)

is a magnitude- and rate-limited control law which globally asymp-
totically stabilizes the system

_x =
x
3

1 + x2
+ xy1

_y1 = y2 � x
2
maxf0; y1g

_y2 =u+ sin (x
2
):

(8)

Furthermore, we immediately have the following corollary to The-
orem 1.

Corollary 2: Let f; g: IRn
! IR

n beC0, and suppose there exist
C
1 functions�; r; V; �: IR

n
! IR satisfying A1)–A4). Then for

any m � 1 there is aC1 function �: IR
n
� IR

m
! IR such that

the system

_x = f(x) + g(x) y1

...

_yi = yi+1 1 � i � m� 1

...

_ym = �(x; y)

(9)

with y := [y1 � � � ym]
T is globally asymptotically stable, and

furthermore the control lawu = �(x; y) and its derivative_u(x; y)
are bounded functions of(x; y).

The control law� in this corollary is given by

�(x; y) =�m�(�m[ym + � � �

+ 2�(�2[y2 + 1�(�1[y1 � �(x)])]) � � �])

(10)

where the constantsi and �i are positive design parameters. It is
reminiscent of the nested saturation control laws proposed in [5] and
[6].

C. Interpreting the Assumptions of Theorem 1:
Properties A1)–A4) and B1)–B3)

Assumptions A1)–A4) concern only the reduced-order system
(3). Essentially, we require knowledge of a bounded function�(x)

such that withv = �(x), this reduced-order system is globally
asymptotically stable with Lyapunov functionV (x). We require
further that the functionsLf� and Lg� be bounded, which is
tantamount to requiring that the control law�, and its rate _� be
bounded along solutions to (3). The functionr is a measure of
the stability robustness to errors in the implementation of� for the
reduced-order system (3). Because some amount of robustness will
always exist, the only assumption concerningr is that it not vanish
outside a neighborhood ofx = 0; the requirements thatr, Lfr, and
Lgr be bounded can be satisfied by takingr to be constant outside
a compact set.

In Condition A3), we require that the functionLgV be bounded.
This requirement is an important part of Theorem 1. Indeed, let us
consider then = 1 system

_x = �x
3
+ x

3
y; _y = u: (11)

The feedbackv = �(x) � 0 is bounded with bounded rate and
globally asymptotically stabilizes

_x = �x
3
+ x

3
v: (12)

For r(x) � 1

2
, we see that conditions A1)–A4) hold, except that there

is no properC1 function V (x) such thatLgV (x) = V
0
(x) � x

3 is
bounded. Therefore Theorem 1 does not apply, which is consistent
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with the observation that no bounded control lawu = �(x; y) for
(11) can prevent finite escape times from all initial conditions.

The final requirement A4) on (3) is a mild condition on the local
behavior of the functionsV and� in a neighborhood ofx = 0. This
condition allows us to conclude the existence of aC1 control law�

for (1) given aC1 control law� for (3). This is in contrast to standard
backstepping results in which one degree of differentiability is lost,
namely in which aC1 control law � yields a merely continuous
(C0) control law �.

Assumptions B1)–B3) concern only the functionh in the y-
subsystem of (1). Conditions B1) and B2) will always be satisfied
whenh is bounded, but they also allowh to be unbounded in certain
directions. Condition B3) is a mild condition on the local behavior
of the functionh in a neighborhood of the point(x; y) = (0; 0).

III. PROOF OF THEOREM 1

A. Definitions and Technical Preliminaries

� We will use the functionK defined in [3, eq. (11)] as

K(p; q) =
p

q

[a(s� q) + b(sjsj � qjqj)] ds (13)

= 1

2
a(p� q)

2
+ b(1

3
jpj

3
� pqjqj+ 2

3
jqj

3
) (14)

wherea > 0 and b > 0 are design parameters. One can verify that
K(p; q) � 0 for all p; q 2 IR, and furthermoreK(p; q) = 0 if and
only if p = q. Partial derivatives of the functionK are

K1(p; q) :=
@K

@p
(p; q) = (p� q)M(p; q) (15)

K2(p; q) :=
@K

@q
(p; q) = �(p� q)(a+ 2bjqj) (16)

whereM is the continuous function given by

M(p; q) := a+ b �

jpj + jqj; whenpq � 0

p2 + q2

jpj+ jqj
; whenpq < 0:

(17)

This functionM satisfies the inequalities

a+ 1

2
b[jpj+ jqj] �M(p; q) � a+ b[jpj+ jqj] (18)

for all p; q 2 IR. Also, given any compact setQ � IR, there exists
! � 0 such that

lim
jpj!1

K(p; q)

jpj3
=
b

3

lim
jpj!1

jK1(p; q)j

p2
= b;

K1(p; q)

1 +K(p; q)
� ! (19)

for all p 2 IR and all q 2 Q.
� We define a saturation function� as follows. Given�0 > 1, let

�: IR ! [�1; 1] beC1, odd, nondecreasing, and such that with�0

denoting the derivative of�

�(s) = sign(s);

s
2
� s�(s) � �0s

2
;

0 ��
0
(s) � �0;

when jsj � 1

when jsj � 1

8 s 2 IR:

(20)

(21)

(22)

� We defineC1 functions�+; ��: IRn ! IR by

�
+
(x) := �(x) + r(x); �

�
(x) := �(x) � r(x): (23)

We use these functions to define the following sets inIRn � IR:

A
+
:= f(x; y) 2 IR

n
� IR: y > �

+
(x)g (24)

A
0
:= f(x; y) 2 IR

n
� IR: �

�
(x) � y � �

+
(x)g (25)

A
�
:= f(x; y) 2 IR

n
� IR: y < �

�
(x)g (26)

A
�
:=A

+
[A

�
: (27)

Note thatIRn � IR = A+ [A0 [A� and thatA+, A0, andA� are
disjoint. In the following we shall typically write:

0 � I(x; y; �
�
); 8 (x; y) 2 A

� (28)

whereI is some function. This must be understood as

0 � I(x; y; �
+
(x)); 8 (x; y) 2 A

+

and

0 � I(x; y; �
�
(x)); 8 (x; y) 2 A

�
: (29)

Using this notation and lettingR := supx r(x), we have, for all
(x; y) 2 A�

0 < (y � �
�
(x))(y� �(x)) � jy � �(x)j

2 (30)

r(x) � minfR; jy � �(x)jg: (31)

� We note that the function

(x; y) 7!
j�(�[y � �(x)])j; when(x; y) 2 A�

�(�r(x)); when(x; y) 2 A0 (32)

is continuous, positive definite, and bounded away from zero outside
a compact neighborhood of(x; y) = (0; 0).
� We assume, without loss of generality, that

r; Lfr; and(Lgr � �) are allo( �(x)) asx! 0: (33)

Indeed, if the given functionr violates this condition, we can always
flatten it nearx = 0 while preserving A1)–A4) and B1)–B3) so that
this condition is satisfied.
� With A1), we see that outside a compact neighborhood ofx = 0,

r(x) can be used to bound any bounded function. From (31) the same
holds onA� with jy � �(x)j. Consequently, from A3), A4), (31),
and (33) there exist nonnegative constantsc0 and c1 such that for
all (x; y) 2 A�

jLgV (x)� (a+ 2bj�
�
(x)j)(Lf�

�
(x) + Lg�

�
(x)�

�
(x))j

� c1(c0 + a+ b)[ 2

3
�(x) + jy � �(x)j]: (34)

Similarly, it follows from (18), (31), B2), and B3) that there exists
c2 � 0 such that for all(x; y) 2 A�:

M(y; �
�
(x)) sign(y � �

�
(x))h(x; y)

� c2(a+ b) [ 2

3
�(x) + jy � �(x)j]

+ c2M(y; �
�
(x)) minfR; jy � �(x)jg: (35)
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� By using (21) of�, (18) onM , and by imposing

1

supxfr(x)g
=

1

R
� � (36)

we get the following inequalities:

�jy � �(x)j � 1)

jy � �(x)j �
1

a�
aj�(�[y � �(x)])j (37)

1 � �jy � �(x)j )

jy � �(x)j � (jyj+ j�
�
(x)j+ r(x))

�
1


j�(�[y � �(x)])j (38)

�

max
R

a
;
2

b


a+

b(jyj+ j��(x)j)

2

� j�(�[y � �(x)])j: (39)

This yields, for all (x; y)

jy � �(x)j �
1


max

R

a
;
2

b
M(y; �

�
(x))

� j�(�[y � �(x)])j: (40)

Also, we have

minfR; jy � �(x)jg �R minf1; �jy � �(x)jg

�
R


j�(�[y � �(x)])j: (41)

B. Proof of Theorem 1

1) Proof of Global Stability: We propose a Lyapunov function
W (x; y) which belongs to the family of Lyapunov functions de-
scribed in [3] and is “flattened” inside the setA0, as proposed in
[1]

W (x; y) := V (x) +
K(y; ��(x)); when(x; y) 2 A�

0; when(x; y) 2 A0

(42)

whereK is given by (14). One can verify thatW is C1, positive
definite, and proper. We next compute_W in each of the two sets
A� and A0.
� In the setA0 we obtain, using A2)

_W (x; y) = LfV (x) + LgV (x) y � ��(x): (43)

Therefore, _W (x; y) is negative definite onA0, regardless of the
value of the control variableu.
� In the setA� we obtain, withu = �(x; y) given by (6)

_W (x; y) � � �(x) + T (x; y)� [y � �
�
(x)]

�M(y; �
�
(x))�(�[y � �(x)]) (44)

whereM is from (17) and

T (x; y) = [y � �
�
(x)][LgV (x) +M(y; �

�
(x))h(x; y)

� (a+ 2bj�
�
(x)j)(Lf�

�
(x) + Lg�

�
(x)y)]:

It remains to determine the negativeness of_W (x; y) on the setA�.
For this we observe that by completing the squares and using (30),
(34), and (35), we get, for all(x; y) 2 A�

T (x; y) � 1

3
�(x) + jy � �

�
(x)j

� [(c
2

1(c0 + a+ b)
2
+ c0c1 + c

2

2(a+ b)
2

+ (c1 + c2 + c3)(a+ b))jy � �(x)j

+ c2M(y; �
�
(x)) minfR; jy � �(x)jg] (45)

wherec3 is given by the boundedness ofLg�� and��. Then, with
(40) and (41), we get more simply

T (x; y) � 1

3
�(x) + jy � �

�
(x)jM(y; �

�
(x)) � j�(�[y � �(x)])j

�
1


[c
2

1(c0 + a+ b)
2
+ c0c1

+ c
2

2(a+ b)
2
+ (c1 + c2 + c3)(a+ b)]

� max
R

a
;
2

b
+ c2R : (46)

So by imposing that be large enough, we finally arrive at

_W (x; y) �� 2

3
�(x)� 1

2
jy � �

�
(x)j

�M(y; �
�
(x))j�(�[y � �(x)])j (47)

for all (x; y) 2 A�. This proves the negative definiteness of_W (x; y)

on A�.
2) Construction of the Function�: With the properties of the

function defined in (32), we can construct aC1 positive definite
function �(x; y) such that

�(x; y) �
1

4
j�(�[y � �(x)])j; when (x; y) 2 A�

1

4
�(�r(x)); when (x; y) 2 A0 (48)

and furthermore� is constant outside some compact set. With this
choice for � we obtain

ju� �(x; y)j � �(x; y) =) _W � �S(x; y) (49)

where

S(x; y) =

2

3
�(x) +

a

4
jy � ��(x)j

�j�(�[y � �(x)])j; when(x; y) 2 A�

�(x); when(x; y) 2 A0.

(50)

3) Construction of the FunctionsU and�: We defineU as

U(x; y) := ln[1 +W (x; y)] (51)

whereW is given by (42). We now show that there exists a function
�(x; y) such that

• � is C1 and positive definite;
• for all (x; y) 2 IRn � IR

�(x; y) �
S(x; y)

1 +W (x; y)
; (52)

• there existC � IRn� IR, a compact neighborhood of the origin,
and a constant� > 0 such that for all(x; y) 2 C

�(x; y) � �[�(x) + (y � �(x))
2
]: (53)

First, becauses2 � s�(s) whenjsj � 1, and (33) holds, there is some
compact neighborhoodC of the origin such that for all(x; y) 2 C

j�(�[y � �(x)])j � �jy � �(x)j;
1

8
a�r(x)

2
�

1

3
�(x):

(54)

Let us now boundS(x; y) from below. We begin by observing from
(54) that onA� \ C

a

4
jy � �

�
(x)j j�(�[y � �(x)])j

� 1

4
a�[(y � �(x))

2
� r(x)jy � �(x)j] (55)

� 1

4
a�[ 1

2
(y � �(x))

2
� 1

2
r(x)

2
] (56)

� 1

8
a�(y � �(x))

2
� 1

3
�(x): (57)

Furthermore, becausejy � �(x)j � r(x) on A0, we have from (54)
that

1

3
�(x) � 1

8
a�(y � �(x))

2 (58)
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on A0
\ C. We conclude from (57) and (58) that for all(x; y) 2 C

S(x; y) � 1

3
�(x) + 1

8
a�(y � �(x))2: (59)

Therefore, the function� having the properties listed above must
indeed exist.

4) Properties C1)–C4) are Satisfied:

• Property C1) follows from the construction of�, �, U , and�.
• Property C2) follows from (49), (51), and (52).
• The functions�, LF �, and LG� are bounded because� is

constant outside a bounded set. By definition,� is bounded on
IRn

� IR. We calculateLG� andLF � as follows:

LG�(x; y) =���
0(�[y � �(x)]) (60)

LF �(x; y) = ��
0(�[y � �(x)])

� [Lf�(x) + Lg�(x)y � h(x; y)]: (61)

Recall thatj�0(s)j � �0 for all s 2 IR; from this we conclude that
LG� is bounded onIRn

� IR. On the other hand, if we require� to
be large enough to satisfy both (36) and

1

r0
� � (62)

then, with B1), A3), and the fact that�0(s) = 0 for jsj � 1, we
see that the function

�
0(�[y � �(x)])[Lg�(x) y � h(x; y)]

is bounded. We conclude from this and A3) thatLF � is bounded.
We next verify thatLGU is bounded onIRn

� IR. It follows from
(42) and (51) that

LGU(x; y) =
1

1 + V (x) +K(y; ��(x))

�
K1(y; �

�(x)); when(x; y) 2 A�

0; when(x; y) 2 A0.
(63)

Since�� is bounded, we conclude from (19) thatLGU is bounded;
thus C3) holds.

• We have left to verify C4).

1) From (6), (15), (30), and (63) we see that both�
and LGU are O([y � �(x)]) as (x; y) ! (0; 0),
and it follows from (53) thatLGU and (LG� � �) are
O( �(x; y)) as (x; y) ! (0; 0).

2) From (61) we have

jLF �(x; y)j � ��0[jLf�(x)j+ j(Lg� � �)(x)j

+ jLg�(x)j jy � �(x)j+ jh(x; y)j]

and it follows from A4), B3), and (53) thatLF � is
O( �(x; y)) as (x; y) ! (0; 0).

IV. CONCLUDING REMARKS

We have presented a new backstepping procedure for the design of
state feedback control laws which are bounded both in magnitude and
rate. Although the proposed Lyapunov function is necessarily more
complicated than the standard Lyapunov function for backstepping,
the resulting control law has a simple form.

ACKNOWLEDGMENT

The authors would like to thank P. Kokotović for his helpful
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On the Computation of the Induced Norm of
Single-Input Linear Systems with Saturation

B. G. Romanchuk

Abstract—In this paper, a means of determining an upper bound of the
inducedL2 norm for a class of single-input linear systems with saturation
is given in terms of the existence of a candidate function which satisfies
three differential inequalities. A technique to calculate such a function
for systems with linear controllers is also developed.

Index Terms—Finite gain stability, nonlinear H1 control, saturating
systems.

I. INTRODUCTION

The extension ofH1 control methodologies to the robust control
problem for nonlinear systems is a research topic which has recently
attracted attention. One of the core analysis problems which needs to
be addressed is the induced-norm computation problem, which must
be solved before the synthesis problem can be seriously examined.

Using the concept of dissipativity introduced by Willems in [12],
there has been some effort on this topic for affine nonlinear systems,
some recent papers on which are [6] and [11]. The class of systems
examined in this paper are those with input constraints; recent related
work includes [7] and [8].

The development undertaken in this paper does not use any norm-
bound assumptions to estimate away the effect of the memoryless
nonlinearity, hence it is possible to undertake nonconservative anal-
ysis. This is also done in the paper [4], although for another problem
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