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Abstract. We consider nonlinear systems with input-to-output stable (IOS) un- 
modeled dynamics which are in the "range" of the input. Assuming the nominal 
system is globally asymptotically stabilizable and a nonlinear small-gain condi- 
tion is satisfied, we propose a first control law such that all solutions of the 
perturbed system are bounded and the state of the nominal system is captured by 
an arbitrarily small neighborhood of the origin. The design of this controller is 
based on a gain assignment result which allows us to prove our statement via a 
Small-Gain Theorem [JTP, Theorem 2.1]. However, this control law exhibits a 
high-gain feature for all values. Since this may be undesirable, in a second stage we 
propose another controller with different characteristics in this respect. This con- 
troller requires more a priori knowledge on the unmodeled dynamics, as it is 
dynamic and incorporates a signal bounding the unmodeled effects. However, this 
is only possible by restraining the IOS property into the exp-IOS property. Never- 
theless, we show that, in the case of input-to-state stability (ISS)--the output is the 
state itself--ISS and exp-ISS are in fact equivalent properties. 

Key words. Nonlinear systems, Robust control, Uncertain systems, Gain assign- 
ment, Input-to-state stability. 

I. Introduction 

Consider  the system {i P 

= f(x)  + ~, g~(x) [u~ + ci(x, z, u)], 
i=1 (1) 

= a(x,  z ,  u), 

where a and f are cont inuous vector fields, G = (g~) is a cont inuous "matrix field," 
and cl . . . .  , cp are cont inuous functions. The x-subsystem represents, when c = 0, 
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the nominal system. Its state x, taking values in R", is measured and the vector 
u = (ui), taking values in R p, is its input. The z-subsystem represents the unmodeled 
dynamics, its state z, taking values in R ~, is unmeasured and the functions a and c 
are unknown. 

The problem is to design a feedback law, with x as the only input, guaranteeing 
boundedness of the solutions of the closed-loop system and regulating x around 0. 
To solve this problem we assume (see Assumption A1) that the nominal system is 
globally asymptotically stabilizable and that the z-subsystem has an appropriately 
"stable" input-output behavior (see Assumptions A2 or A2'). 

In the terminology of linear systems, the perturbation introduced via c would be 
called a stable and proper multiplicative perturbation. Its main characteristics are: 

- -The relative degree between u and any "generic" output function of x cannot 
be decreased by the presence of c. 

- -The so-called matching assumption is met. Namely, if e were measured, we 
could completely annihilate its effects on the x-subsystem (see Remark 4.6.2 of 
[I]). Here e is not assumed to be measured. Instead, we impose an amplitude 
limitation (see Assumption A2 or A2'). 

- -The state x can be measured, and, consequently, there is no inverse dynamics. 
This makes it theoretically possible to use "high-gain" controllers. However, 
we know that if other classes of "real life" unmodeled effects--input satura- 
tions, unmeasured noise, unmatched unmodeled dynamics . . . .  - -are  present, 
then "high-gain" controllers may be unsuitable. For this reason, we pro- 
pose two solutions to the problem stated above with a different high-gain 
requirement. 

The topic of stabilizing (nonlinear) systems with uncertainties has been attract- 
ing the attention of many authors for a long time, see, for instance, [BCL], [C], 
[CL], [G], and [K]. While most of the work in this area focused on unmodeled 
static (time-varying) uncertainties, less work has been done for systems with dy- 
namic uncertainties. The recent work [KSK] has formulated very properly the 
problem of stabilizability for nonlinear systems with unmodeled dynamics. There 
also the authors have proposed a solution for a specific class of systems with linear 
unmodeled dynamics at the input. Some related work in this area can also be found 
in [Q1] and [Q2], where the author has investigated the tracking problem for 
linear systems with unmodeled dynamic uncertainties. 

Our problem generalizes the one stated and solved by Krsti6 et al. [KSK, 
Lemma 3.1] for x in R and functions r and a linear and not depending on x. The 
solution proposed by these authors incorporates, in the controller, a signal, called 
a normalizing signal, which captures the effect of the unmodeled dynamics. This 
concept of normalizing signal is nowadays widely used in linear adaptive control, 
and its extension to the nonlinear case has been suggested in [JP1], [JP2], and [J]. 
Jiang et al. have shown in [JMP] that the result of Lemma 3.1 of [KSK] holds also 
with a static feedback law, without using the normalizing signal. For this, an 
appropriate change of coordinates of the unmodeled dynamics is made and the 
technique of propagating the input-to-state stability (ISS) property through inte- 
grators proposed in [JTP] is applied. Based on the technique of gain assignment 
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and the Small-Gain Theorem of [JTP], Krsti6 and Kokotovi6 have obtained 
another solution in [KK],  without a normalizing signal for the system (1), allowing 
the functions c and a to be nonlinear and to depend on x but still imposing that x 
be in R. 

Here, we extend the work in [KK] to the general case when x is in R". Our major 
assumptions are: (1) the nominal system is stabilizable, and (2) the unmodeled 
dynamics is input-to-output stable (IOS) with a small enough gain function. In the 
special case when there is no dynamic uncertainty present in the system, that is, 
when the functions ci's do not depend on z, the IOS condition reduces to the usual 
boundedness condition on the static uncertainties considered, for instance, in [C], 
[K], and [Q2]. After stating our assumptions in Section 2, we propose, in Section 
3, a first control law which solves the problem. It is a static feedback but, as already 
mentioned, it exhibits a high-gain feature. This feature has been found useful in 
solving some problems in robust control (see, for instance, [BCL] and [SKI) but it 
may also be undesirable in other situations. This motivates our propositon of a 
second controller in Section 4. Our two controllers are compared for a simplistic 
example in Section 5. In Section 6 we propose a framework allowing us to relax 
somehow the assumptions made in Section 2. In fact, to prove that our second 
controller provides the closed-loop system with properties similar to the ones given 
by the first one, we need to restrain the class of unmodeled dynamics. Nevertheless, 
in the case c~(x, z, u ) =  z, i.e., the disturbance is the state of the unmodeled 
dynamics itself, we prove in Section 7 that there is in fact no restriction. 

2. Assumptions 

We assume the nominal system is globally asymptotically stabilizable and, more 
precisely: 

A1. We know a C 1 positive definite function V satisfying, for all x, 

V(x) >_ ~l(IxF), (2) 

for some function a~ of class ~ 3r174 and a C O feedback law u,,(x) with u.(O) = O, z such 
that the function 3 

W ( x )  = - L t :  +o,, l V(x)  (3) 

is also positive definite. 

According to [S 1], if there exists u, satisfying Assumption A1, then the following 

1 For the definitions of class ~g, o~r and ~g.So functions see [H]. 
2 Assuming u(0) = 0 can be done without loss of generality as far as the nominal  system is concerned. 

Indeed, if u(0) = u o # 0, it is sufficient to replace f b y f  = f + Gu o and u by ~ = u - u o. 
3 L :  V is the Lie derivative of V along f and Lo V is the row vector (Lg, V). 
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feedback us also globally asymptoically stabilizes the nominal system 

f LfV(x) + x/ZfV(x) 2 'l- [ILoV(x)[IaLav(x) ' if LoV(x ) ~ O, 
us(x) = II Z~ V(x) ll 2 (4) 

0, if LoV(x)=O, 

where II'll denotes the usual Euclidian norm of R p. With this control we get the 
following positive definite function: 

W~(x) = - LtI+~ 1V(x). (5) 

The interest of this particular feedback is that we have, for all x, 

L G V(x) ~ 0 ~ L~ V(x)u~(x) < 0. (6) 

A2. The z-subsystem of(l)  with input (x, u) and output c is BIBS and IOpS. That 
is: 

BIBS. For each initial condition z(0) and each measurable essentially bounded 
function (x, u): R>_0---~Rn x R p, the corresponding solution z(t) is defined and 
bounded on R_>0. 

lOpS. There exist a function ~c of class j~ffLa, two functions V, and 7~ of class 
~ff, and a positive real number Co such that, for each initial condition z(0) and each 
measurable essentially bounded function (x, u): R_>o ~ R" x R p, the corresponding 
solution satisfies, for all t in R_>0, 4 

[c(t)l < Co +/~c(Iz(0)l, t) + ~,(U(t)) + ~x( sup {Ix(T)l}~, (7) 
\ ~ [ 0 , t )  / 

where 

U( t )=  sup {lu(r)l}, (8) 
t~[0,t) 

and for each vector v in R',  Iv[ denotes max {I vll . . . . .  [vp[}, and similarly for vectors 
in R". 

With Assumption A2, we are able to obtain a control law whose design is based 
on only the fact that inequality (7) holds. However, Krsti6 and Kokotovi6 have 
noticed in [-KK] that a better performance can be obtained if more a priori knowl- 
edge on c is used, namely that the last two terms in the right-hand side of (7) can 
be evaluated on line and therefore used in the control law. Unfortunately such 
terms involve U which is the output of an infinite-dimensional system with u as 
input. To overcome this difficulty, we remark that Assumption A2 could apply to 
systems with dynamics involving mathematical objects more complex than the 

4 For the sake of simplicity, here and throughout  the paper we make the following abuse of notation: 
sup is to be taken as the essential supremum norm and "for all t" should be "for almost all t with 
respect to the Lebesgue measure." 



Stabilization in Spite of Matched Unmodeled Dynamics 5 

system 

{~=a(x,z ,u) ,  
c(x, z, u). (9) 

In particular, when the initial condition z(0) is fixed, this system provides operators 
u ~ z and u ~ y which are finite-dimensional, the former being strictly proper, 
whereas, in (8), the operator u ~ U is only proper and infinite-dimensional. From 
this, we conjecture that the restriction of Assumption A2 to systems in the particu- 
lar form (9) should give a stronger property. These arguments lead us to restrain 
Assumption A2 by replacing the infinite-dimensional operator sup,~t0m {'} by a 
first-order one. This yields: 

A2'. The z-subsystem with input u and output c is BIBS and exp-IOpS. That is: 

exp-IOpS. For some positive real number # and some functions Vvx, Vv,, 7cx, 
and 7c of class ~ ,  there exist a positive real number Co, a function Vc, of class ~ ,  
and a function fl of class JC'LP, such that, for each initial condition z(0) and for each 
measurable essentially bounded function (x, u): R_>o ~ R" x R p, the corresponding 
solution satisfies, for all t in R_>o, 

Ic(t)[ < Co + fl(lz(0)l, t) + yc,(lu(t)[) + 7cx(lx(t)]) + 7c(r(t)), (10) 

where the function r(t) satisifes the following equations: 

= - ~ r  + ~v,(lul) + ~x(Ixl), r(0) = 0. (11) 

The main difference between IOpS and exp-IOpS is that in (10), through r, an 
exponentially weighted L 1 norm is used instead of the L ~~ one expressed in U. 
Clearly, exp-IOpS implies IOpS with the gains of the relations u ~ c and x ~ c 
given by 

1 1 
7u=7c~+7~o-7~,  7 ~ = ~ + 7 ~ o - 7 ~ ,  (12) # kt 

respectively. However, the previous arguments let us expect that the converse may 
be true. This is proved in Section 7 for the case when c = z. 

Assumption A2' is strongly related with Assumption UEC (73) in [JP1]. From 
this relation, we note 

- - L e m m a  1 of [JP1] is a helpful tool for selecting the real number/x and the 
functions 7~, 7~, 7~x, and 7~. 

- - T h e  equations in (11) provide us with r as a pseudostate for the stability 
analysis. In the proof of Proposition 1 of [JP1], it is shown that the proposi- 
tion is well suited for the application of Lyapunov's second method. 

- - T o  help the reader get a better understanding of the meaning of this signal r, 
we refer to Property 1 of [P]. 

We remark that Assumptions A1 and A2 or A2' are not sufficient for guaran- 
teeing the existence of a feedback law solving our problem. Consider the system 

{z x" S x2 - (u - ( u  - z)z 2, ~,(z))x, (13) 
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where 7 is a smooth odd function satisfying 

sign(r)[r - 7(r)] < M, Vr e R, (14) 

for some positive real number M. This condition says roughly that the function 7 
grows at least as much as the identity function. Assumption A1 holds, with 

V(x)  = �89 2, u .(x)  = x + x 2, (15) 

and Assumption A2 also holds since the z-subsystem with input u and output 7(z) 
is IOS with 7, - 0 and 7,, any gain function of class ~ strictly greater than 7. 
However, system (13) is not asymptotically controllable. We prove in Appendix A 
that there is no control law u(t) that can drive to zero the x-component of any 
solution starting from (Xo, 1) with Xo > M exp(1). 

This example shows that it is in general impossible to solve the problem stated 
in Section 1 if the function Id - 7, is bounded. 

3. First Solution with a Static Feedback 

Proposition 1. Assume Assumptions A1 and A2 hold. Under this condition, for any 
functions to, and tcx of class X~, there exists a continuous feedback law co(x) such 
that all the solutions of the closed-loop system (1) are bounded provided that we have 

(Id + P2) o [7, o (Id + Pl) o (Id + tq,) + 7~ o (Id + p j  o tr < Id (16) 

for some functions Pa and P2 of class ~o~. Moreover, for each closed-loop solution, 
we have 

lim sup Ix(t)l __ ~ o (Id + p21)(Co). (17) 
t'-* + oo 

Remark 2. If, in (7), Co = 0, that is, when the z-subsystem of (1) is IOS with (x, u) 
as input and c as output, then it follows immediately from (17) that 

lim Ix(t)l = 0. (18) 
t---~ + cr 

If c o # 0, since x x can be chosen as an arbitrarily small function of class oUoo, (16) is 
mainly a condition on 7, and (17) gives a practical convergence result. In fact, it can 
be shown that, for any given functions 7, and 7x of class s/f, satisfying 

Id - ~, > Po, (19) 

for some function Po of class ~o~, we can find functions Pl, P2, x,, and xx of class 
~ o  such that (16) holds. Note also that we do not claim stability in the proposition. 

Proposition 1 is established by showing first the existence of a continuous 
feedback law co(x) assigning appropriate gains to the system 

= f(x) + G(x)[co(x) + c] (20) 

with c as input and (x, co(x)) as output. The conclusion then follows from the 
Small-Gain Theorem [JTP, Theorem 2.1]. 
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Lemma 3 (Strong Gain Assignment Theorem). Assume Assumption A1 holds. 
Then, for any functions x, and xx of  class J~('~, there exists a continuous feedback law 
co(x) and functions ~lu and ~x of  class ~s such that, for each initial condition x(O) 
and for each measurable essentially bounded function c: R~o ~ R p, the correspond- 
ing solutions of  

2 = f(x) + G(x)[co(x) + c(t)] (21) 

satisfy, for all 0 <_ s < t, 

Ico(x(t))l </~,([x(s)[, t -  s) + (Id + t%)( sup {]e(z)[}), (22) 
\ t  ~ [s, t) / 

Ix(t)l < ~x(Ix(s)[, t--s)+ Kx( sup {[c('r)l}). (23) 
ks e Is, 0 / 

This result is to be compared with Theorem 2.2 of [JTP].  We have here a 
stronger statement since not only can any gain be assigned to the relation c ~ x 
but we can also limit the gain of the relation c ~ co. 

Proof of Lemma 3. Let V and ~1 be the functions as in Assumption A1, and let 
V(21) denote the function 

�9 

v~21~(x, t) = ( x ) ( f ( x )  + a(x)[co(x) + c(t)]). (24) 

With Assumption A1, we have 

~2l~(x, t) <_ - W ( x )  + L~ V(x)co(x) - L~ V(X)Un(X) + L~ V(x)c(t). (25) 

We restrict our attention to feedback laws co of the form 

co~(x) = - sign(L m V(x))ch~(x), d)~(x) >_ O, i = 1, 2 , . . . ,  p, (26) 

where the functions o5~ are defined below. This yields 

P 

~2 . (x ,  t) < - W(x) - 2 ILo, g(x)l(~,(x) - lUn , (X) [ -  Ic(t)l). (27) 
i=1  

To define eS~, we let 5 r be a function of class Jl~o such that, for all s and x, we have 

~c2~(lu.(x)[) ___ y ( g ( x ) ) ,  ~c2! o = ~ ( s )  ___ ~(s ) .  (28) 

Such a function exists since V is positive definite and proper. Then we choose eS~ as 

cb,(x) = Oi(x)b,(x), (29) 

where 

~,(x) = ru.,(x)l + s~(V(x))  (30) 

and 0, is a function introduced to enforce continuity and defined as follows: For  
each i, let 

~oi = {x: LaV(x  ) = O, x v a O} (31) 
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and 

~li={x:lLoV(x)l(Se(V(x))+lu,,(x)l)>_W2~,x4:0}. (32) 

Since W is positive definite, Not and &~i are closed and disjoint subsets of R"\  {0}. 
It follows that we can define this function 0~: R"\{0} ~ [0, 1] as a continuous 
function satisfying (see Appendix B for an explicit expression of such a function) 

1, if x~Nl~,  
Oi(x)= 0, if XeNoi. (33) 

To obtain a definition of 0~ on R" we simply add 0~(0) = 0. Then, though 0~ may fail 
to be continuous at zero, the function d) is continuous on R" since bt(0) = 0. Hence, 
from (27), we get 

p 

~zl)(x, t) < -W(x) - ~ IL,, V(x)l [Oi(x)(re(V(x)) + lu.,(x)l) - [ u . , ( x ) l -  ]c(t)l] 
i=1 

P 

< - W(x) + ~ [Lg, V(x)l (1 -- Oi(x))(Se(V(x)) + [u.,(x)l ) 
/ = l  

W(x) ( ~ [Lo, V(x)[)(5~(V(x)) _ lc(t)[). (34) 
< 2 t=l 

From this latter inequality, by using the fact that W is positive definite, V and 6 a 
are positive definite and proper and following the same lines as in the Claims on 
p. 441 in [$2], we can show the existence of a function fly of class jgs such that, for 
all 0 < s _ t, we have 

Inequality (23) follows readily with (28) and (2). Then, since we have 

Ico(x)[ < (Id +/%) o 5a(V(x)), 

the conclusion follows. 

(36) 

Remark 4. 
made simpler by modifying (29) and (30) so that 

cot(x) = us,(x) - Oi(x) sign(Lg, V(x))ra(V(x)), 
and Mxi in (32) into 

~li={x:lLg, g(x)lS~(g(x))>-~p),Xr 

If instead of using u., we use us satisfying (6), the control law co can be 

(37) 

(38) 

Remark 5. The control law co can be made smooth if the addition of arbitrarily 
small positive numbers to the right-hand side of (22) and (23) are allowed (see 
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[JTP]). More specifically, for any e0 > 0, each co~(x) can always be approximated 
by a smooth function oS~(x) so that, for all x �9 R", we have 

[coi(x) - chi(x)[ < Co. (39) 

However, with such a choice of oSi, 

Lo, V(x)chi(x ) _< 0, Vx �9 R", (40) 

may fail to hold. 

To obtain a smooth feedback o5, satisfying restriction (40), we proceed as follows: 
For each m �9 {1 . . . .  , m}, we let ~2~ denote the open subset of R" where coi(x) # 0. 
We define 

. fl o (x)l ] ~i(x)=man~ ~- ,e~ (41) 

so that Gi(x) > 0 for all x �9 ~2~. Hence, there exists a function ~i(x) that is smooth 
on ~zi and such that 

I~i(x) - coi(x)l < o'i(x) (42) 

for all x �9 ~2~ (see Theorem 4.8, p. 197, of [B]). The domain of ~ can then be 
extended to R" by letting ~(x)  = 0 for x r ~2i. Note then that ~i(x) is continuous 
everywhere, and, for all x �9 R", 

(43) >_ O. 

Now we let 0g(x): R" ~ [0, 1] be a smooth function satisfying the following: 

if x �9 ~ai, 0, (44) 
Oi(x)= 1, if x � 9  

where the two sets ~3i and ~4i are defined by 

~3i = x �9 R":  r~i(x)l < ~- , ~4i = x �9 R": I~i(x)l > �9 (45) 

As before, such a smooth function exists because ~a, and ~4i are two disjoint 
closed subsets of R". Finally we let 

chi(x) = O,(x)~(x). (46) 

Then chi is smooth everywhere, and, for all x �9 R", 

~i(x)Lg, V(x) < O, [~5,(x) - col(x)[ < %. (47) 

Consequently, when the controls cbi's are used instead of the co~'s, (34) becomes 

W(x) ( ~ [Lo V(x),)(Se(V(x)) _ ,c(t)[ _ eo)" (48) V(Z1)(X, t) _~ 2 i=1 
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It follows that (22) and (23) are replaced by 

]e3(x(t))[ _< fl,([x(s)[,t - s) + (Id + to,)( sup {c(z)} + So) + Peo 
\ t  ~ [s, t) / 

_   (Ix(stl,, - st + (Id + sup (49) 
\ze[s,t) / 

\ t  ~[s,t) / 

where ~ = [c] + (p + 1)e o. 

Proof of Proposition 1. By applying Lemma 3 we get a continuous feedback law 
co(x) which, when applied to (1), gives a closed-loop system which can be seen as 
the interconnection 

2 = f(x) + G(x)[co(x) + Yl], Yl = c(x, z, co(x)), (51) 

= a(y2t, z, y2z), y21 = x, y22 = co(x), (52) 

where, from (7), (22), and (23), 

]yl(t) l-<Co+ flc(lz(O)l,t)+y.( sup {ly22(z)l})+ Yx( sup {ly21(z)l}), (53) 
\re[0,t)  \te[O,t) 

ly22(t)l-<fl.(lx(O)[,t)+(Id+~c.)( sup {lyt(z)l}), (54) 
\t~[O,t) 

lyzl(t)l -< fl~(Ix(O)l, t ) +  tcx( sup {lyl(z)[}]. (55) 
\r~[O,t) / 

To conclude we could apply Theorem 2.1 of [JTP] if: 

- - t he  function co(x) were locally Lipschitz, 
- -we  would have a one channel interconnection instead of the two channels 

given by Y21 and Y22. 

Nevertheless, if the statement of this theorem is not exactly appropriate, we can 
follow its proof line by line. First we can show with (16) that the outputs corre- 
sponding to any solutions are bounded on their maximal interval of definition. In 
particular, we have (see (80) of [JTP]) 

[yl(t)l-<co+3c(lz(O)l,t)+V.@.(lx(O)l,O)+(Id+~c.)(sup{[yx(z)l}))\re[o,o 

With (16), this yields (see (83) of [JTP]) 

sup {[y~(z)l} _< (Id + p;a)(3~(lz(O)l, 0) + v. o (Id + pi-x)(fl.(lx(0)l, 0)) 
~e[O,t) 

+ ?x o (Id + p;x)(3~(lx(O)l, 0)) + Co). (57) 
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With the BIBS property of both subsystems, this implies that all the solutions are 
defined and bounded on R_> o. This means that, for each (x(t), z(t)), there exists a 
positive real number 509 so that, for all t in R_> 0, we have 

I(x(t), z(t))l < s09. (58) 

Second, we obtain, for all t in R>o (see (93) of [JTP]), 

] 
+ (Id + p2)-1( sup {[y,(z)[}~ + c o. (59) 

k,z �9 [t/4, cr / 

So, with Lemma A.1 of [JTP], for any function P3 of class 0V09, we know the 
existence of a function/~ of class ~r162 such that we have, for all t in R>o, 

ly~(t)l </~(s09, t) + (Id + p2 a) o (Id + p3)(Co). (60) 

Since, with (58) and (52), (23) gives 

]x(t)[ <flx(S~,2)+x~(,s t t /p09){lyl(z , I}) ,  (61, 

it follows readily that 

lira sup Ix(t)[ < xx o (Id + p2 ~) o (Id + p3)(Co), (62) 
t --~ 09 

for any function P3 of class ~09. However, the solution (x(t), z(t)) is independent of 
P3, this implies (17). [] 

4. Second Solution with a Dynamic Feedback 

The solution we have proposed in the previous section relies on the use of high 
gain. This fact is hidden in the choice of the function 6 e which has to be sufficiently 
large and not only for small values. This may lead to problems if other robustness 
problems are considered. What leads to high gain in the previous approach is the 
use of the matching assumption and a worst-case design. By using more a priori 
knowledge on the unmodeled dynamics it may be hoped that high gain be involved 
in a different way. To this purpose, we incorporate Assumption A2' in the follow- 
ing result. 

Proposition 6. 
cisely 

Assume Assumption A1 holds with W a proper function, 5 i.e., pre- 

0 ~ 3 ( V ( x ' )  _~ 1 W ( x ) ,  (63) 

s With Assumption A1, we can always modify the function V to meet this requirement (see Proposi- 
tion 13, for instance). 
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where % is some function of class ~ffo~. We choose a real number #, functions Vvu and 
7c of class Jff, and a function tc i of class )ffoo so that 

?vu o (Id + P4) o ~c~ -i  o (Id + P4) o 7c - # Id  - Ps (64) 

for some functions P4 and Ps of class ~oo. We assume that, with such a choice, 
Assumption A2' holds with a function ~ ,  satisfying 

7~ -< Id - ~:1. (65) 

Under these conditions, for any functions x2, tc3, and ~4 of class Jf'~o, there exists a 
continuous dynamic feedback law co(x, r) with r given by (11) such that all the 
solutions of the closed-loop system are bounded and their x-components satisfy 

lim sup Ix(t)l _< a~-i o (Id + x~l) o ~ i  o (Id + x21)(CoX2(Co) ). (66) 
t'-~ + oO 

Remark 7. When c o = 0, we get convergence of the x-component: 

lim Ix(t)l = 0. (67) 

When Co ~ 0, since x2, x~i, and x~l can be chosen as arbitrarily small functions of 
class Jff~o, (66) gives a practical convergence result. 

Proof. First, we remark, with (11), that r(t) is nonnegative for any t in R _ o .  T h e n  
we follow the same lines as for the proof of Lemma 3. Let ~ )  denote the function 

�9 

V~l)(x, u, t) = (x)(f(x) + G(x)(u + c(t))), (68) 

and let co be chosen of the form 

co, = -sign(Lg V(x))c_bi, (3 i > O, i = 1, 2 , . . . ,  p, (69) 

with functions ~ defined below. With (10), we obtain 

P 

P(1)(x, co, t) < - W(x) - ~ ILa Vl(cb i - lu . , (x) l )  
i = 1  

P 

+ ~, [Lo, Vl(co + fl(lz(0)l, t) + 7~,(Icol) + 7~x(lXl) + 7r (70) 
i = 1  

To define the functions 03~, let x2 be the function of class 3foo chosen in Proposi- 
tion 6. We also choose a function l of class X and bounded by l~o. Since, for any 
positive real numbers a, b, we have 

~cz(b)b 
ab < + ~ i (pa)a  (71) 

P 

(consider two cases: a < x2(b)/p and a > xz(b)/p), we obtain 

P 

~) (x ,  co, t) <_ - W ( x )  - y ILg, Vl((o~ - ~c~(Icol) - ~e(x) - 7~(r)) + Vo(t)tc2(Vo(t)), 
i = 1  

(72) 
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where Vo(t) is defined as 

Vo(t) =/~(Iz(O)l, t) + Co, 

and, for each i, 

Let 

We define ~i as 

hi(x) = lun,(x)l + ~=(Ixl) + x~(plLg,  V(x)I). 

13 

(73) 

(74) 

Since both W and l are positive definite, it follows that  ~oi and Mli are disjoint 
closed subsets of R" x R\{(0,  0)}. Then we can define a continuous function 
0~: R" • R\{(0,  0)} --. [0, 1] such that  

1, if x ~ l ~ ,  
0i(x,r)= 0, if X e ~ o i .  (79) 

To obtain a definition of 0i on R" x R we simply let 0~(0, 0) = 0. Although 0i may  
fail to be continuous at (0, 0), the functions ~bg and ogi are continuous on R" x R 
since b(0) = 7c(0) = 0. 

Now, since condition (65) implies 

~bi(x , r) - 7cu(Iog(x, r)l) > ( - ( 1  - 0i(x, r))Id + Id - 7c,) o x~l(~(x) + yc(r)) 

_> - ( 1  - Oi(x, r))~c~l(b(x) + To(r)) + b(x) + To(r), (80) 

inequality (72) becomes, with (63), (76), (75), and the definition of 0~, 

P 
~x)(X, o9, t) < - W ( x )  + ~ ILo, VI(I - 0i(x, r))x-;~(b(x) + 7c(r)) + Vo(t)xz(Vo(t)) 

i=1 

<_ - �89  + Vo(t)Xz(Vo(t)) + l(r) 

< -e3(V(x))  + Vo(OX2(vo(t)) + l(r). (81) 

On the other hand, with the control law given by (76), equations (1 l) imply 

__ - ~ r  + ,/~. o Ki-x(~(x) + ~'c(r)) + '/~(Ixl). (82) 

and 

~i(x, r) = 0i(x, r)~c71(b(x) + yc(r)), (76) 

where xl is chosen in Proposit ion 6. As in (29), the function 0i: R" • R ~ [0, 1] is 
introduced to enforce the continuity. It is defined as follows: For  each i, let 

Moi = {(x, r): Lo, V(x ) = 0, (x, r) ~ (0, 0)) (77) 

b (x )=  max {~(x)}. (75) 
j~{1 ..... v} 
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With condition (64), it follows that  

#r - ~ ,  o tc~-i(b(x) + yc(r)) > pr - yvu(~c~ i o (Id + P4) o yc(r) + tc~ i o (Id + p~i)(b(x))) 

_> #r -- yvu o (Id + P4) o ~c~ a o (Id + P4) o ?~(r) 

- 7,,,, o ( Id  + p ; a )  o ~ - ~  o (Id  + p~) (b (x ) )  

> ps(r) - y~, o (Id + ps o tc] -1 o (Id + p,~l)(b(x)). (83) 

Let P6 be a function of class 3Coo satisfying 

Yox(Ixl) + y.. o (Id + p~-l) o ~c~ -i o (Id + p,~l)(b(x)) _< p6(V(x)). (84) 

Such a function exists since (2) holds for all x. With (81), we have finally obtained 
the following system of differential inequalities: 

f Vo)(x , a~, t) _< -~z3(V(x)) + Vo(t)lc2(Vo(t)) + l(r) 

<_ -cza(V(x)) + Vo(t)tc2(Vo(t)) + l~, (85) 

f* < --p5(r) "+ p6(V(x)). 

Now let (x(t), r(t), z(t)) be a solution of the closed-loop system (1), (11), (69), (76). 
Such a solution exists for any initial condition (x(0), z(0)) and has a right maximal 
interval of definition [0, T). However, since a 3 is of class :U~o, V is proper, v o and 1 
are bounded, and (85) implies that  x(t) is bounded on [0, T). This, with the fact that  
Ps is of class JC~, implies that  r(t) is also bounded on [0, T). It follows that  the 
control 

u(t) = co(x(t), r(t)) (86) 

is bounded on [0, T). So with the BIBS property of the z subsystem, z(t) is bounded 
on [0, T). Hence, by contradiction, it is shown that  the solution is defined and 
bounded on R_>o, i.e., for all t in R>o, 

II(V(x(t)), r(t), z(t))l] _< so~ < + ~ .  (87) 

Also, as in the proof of Proposit ion 1, by following the same lines as in the 
Claims on p. 441 in [$2], for any functions p~ and Pr of class 3Co~, with 

p~ _ Id, (88) 

we can show the existence of class ~CZZ functions fl~ and fir such that, for all 
0 _ s _< t, we have 

v(x(t)) _< s) + o (Id +  v/(sup (89) 
\ r e [ s , t )  

r(t) <_ f lr (r(s) , t -  s )+  p ; i o  2p6 ( sup {V(x(z))}~, (90) 
\ ~  e Is, t) / 

where we have introduced the function 

yr(t) = vo(t)~2(Vo(t)) + l(r(t)). (91)  
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However, since 

lira sup y,(t) < CoXe(Co) + loo, (92) 

by taking s = t/2 in (89) and using (87), we conclude readily that 

lim sup V(x(t)) <_ o~31 o (Id + pv)(Co1%(Co) + loo). (93) 
t --* cO 

The facts that function pv is arbitrary and the solution (x(t), r(t), z(t)) is independent 
of p~ imply that 

lira sup V(x(t)) < o~31(CorC2(Co) + loo), (94) 
t---r OO 

from which it follows that 

lim sup Ix(t)l _< ~i -1 o ~31(Co~2(Co) + Io~). (95) 
t --* -t- oO 

To show that this bound can be improved, we proceed as follows. We choose the 
function i not only of class ~ and bounded by Io~ but also satisfying 

1 _ PT, (96) 

where P7 is of class s(oo and is defined by 

P7 = (2(Id + x4)) -1 o e3 o (Id + K3) -1  o (2p6) -1 o (2p~l) -l. (97) 

The constraint (96) can always be satisfied and the function P7 depends only on 
known data. Indeed, 

- - the  functions x 3 and x,  are chosen in Proposition 6, 
- - the  function e3 is obtained, in order to meet (63), from the known function V 

and W, 
- - the  functions P, and P5 are obtained, in order to meet (64), from the chosen 

quantities p, 7~,, ?c, and xl,  
- - the  function P6 is obtained, in order to meet (84), from the known or chosen 

functions ?~u, P4,/q, u,, Vex,/~2, g, Vvx, and V. 

Then, from (89), (91), and (90), we can consider the interconnection of a fictitious 
system with state x, input y,, and output V(x) with a fictitious system with state r, 
input V(x), and output l(r). Although the systems are fictitious, the proof of the 
Small-Gain Theorem [JTP, Theorem 2.1] still applies. This can be seen by writing, 
in a way similar to (59), 

V(x(t)) <- ~v(Soo, 2) + c~ ~ + #,)~ + ~c2~)(Vo(2)~c2(Vo(~))) 

+ c~]~ o(Id + #~)o(Id + tc,)o l(2,,(soo, 4) ) 

+ ~ '  o(Id + po)o(Id + ~,)o l o 2p; ~ o 2p6( sup {V(x(t))}~. (98) 
\ t ~ [ t / * ,  + oo) / 
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So, with (88) and (96), we can again apply Lemma A.1 of [JTP] to conclude that 

lira sup V(x(t)) < (Id + x~ 1) o (Id + Ps) ~ ~ ~ (Id + p~) o (Id + ~:~)(CoXz(Co)) 
t"* 

(99) 

holds for any functions Ps and p~ of class ~ o  with (88) satisfied. From this we get 
(66). �9 

5. Comparison Between the Static and Dynamic Feedback Designs 

Two common features of the designs we have proposed are that they require a 
similar small-gain condition and, when c o # 0, they provide practical stability for 
the closed-loop system with a residual set which can be made smaller at the price 
of introducing a high-gain feature for small values: 

--Indeed, condition (16) of Proposition 1 and (64), (65) of Proposition 6 are 
approximately equivalent. In (16), since Pl, P2, and xx are arbitrary, this 
condition can be interpreted as mainly requiring that the function Id - Vu be 
bounded below by a function of class ~r Similarly in (64), since P4 and Ps are 
arbitrary, this condition is mainly that the real number # and the functions 
7w, xl, and L should be chosen such that the function ~c~ - (Ycv o (1//~)~vv) is 
bounded below by a function of class ~ffo~. Then (65) mainly requires that the 
function Id - (yc, + ?~ o (1/p)~J is bounded below by a function of class sY~. 
Our remark follows with (12). 

--Concerning the size of the residual set, in the static case, i.e., in the context of 
Proposition 1, the solutions can be made to converge to a smaller neighbor- 
hood of the origin by choosing a smaller function xx. In the dynamic design, 
i.e., in the context of Proposition 6, it is done by choosing a smaller function 
x2. In both cases this causes the "high-gain" phenomenon at least for small 
values: in the static design it is necessary to choose a bigger function 6 e (see 
(28)), while in the dynamic design the same problem occurs with the term 
~c-~l(p[Lg, V(x)[)in (74). 

Two significant differences between the designs are that the dynamic design 
requires more a priori knowledge and that, when c o is known to be zero and the 
unmodeled effect is more dynamic, and if we do not take into account the effects of 
the functions 0{s presented in both designs, the dynamic design is less demanding 
in high gain than the static design: 

--While  in the static design it is only necessary to know that Assumptions A1 
and A2 hold, in the dynamic design knowledge of the real number # and the 
functions Yv~, Y,u, ?~x, and ~, are required so that Assumption A2' holds. 

- - I n  the static design we cannot use the a priori knowledge c o = 0. Indeed, in 
any case, the function 50, involved in b~ defined in (30), needs to satisfy the 
"high-gain" inequality (28). However, in the dynamic design the function x2, 
involved in bi defined in (74), is completely arbitrary. For instance, we can take 
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x2 = p Id in (76) and (74). This yields 

bi(x) = [u,i(x)l + ycx(lxl) + IZgiV(x)l, (100) 

where every term is a "raw" data of the problem. When there is no static 
unmodeled effect, that is, when ~c, = 0, the gain function x] -1 in (76) can be 
taken as the identity function, so the high-gain feature is only caused by the 
function O(x, r) used to make the feedback smooth. This difference between 
the two designs follows from the fact that the static one is definitely a worst- 
case design using very little a priori knowledge. 

To understand the difference between our two designs better, we consider the 
following system: 

= X 2 "[- g "[- C(Z, U), 

where the function c is assumed to satisfy 

Ic(z, u)l - c.luf + c=lzl 

and the unmodeled dynamics are given by 

2 = - 6 z  + u, 

for some 5 > 0. 
Assumption A1 is satisfied with V(x) = x z by taking 

u,(x) = - x ] l  + x[. 

Assumption A2 is satisfied with 

Co=0,  ,u(s) = (cu + ~ ) s ,  

Finally, by choosing 

~vx(s) = ~c~(s) = 0, ~v.(s) = s, 

Assumption A2' is satisfied with 

Co = O, ~,,,(s) = c,,s, 

if we have 

Our static feedback is 

(101) 

(102) 

(103) 

(104) 

~x(s) = 0. (105) 

y~(s) = hs, (106) 

(107) 

u ( x ) = - x  I i + x l + ~ ( l + l x l )  , (109) 

with the parameter k to be chosen. It is obtained by taking 

1 
~ ( s )  = ~ ( v / ~  + s). (110) 

To obtain boundedness of the solutions and global attractivity of the origin, it is 

# <_ (5, h >_ Cz. (108) 
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sufficient for the system to meet 

+ ~ < 1 (111) c, 

and for the controller parameter k to meet 

1 - (c .  + c /6 )  
k < (112) 

(c. + c/6) 

This shows that an upper bound for c.  + c J r  is needed for the design. 
Our dynamic feedback is, if continuity is not enforced, 

f" = - # r  + [u(x, r){, u(x,  r) = -~ - (x [1  + x] + x + hr sign(x)), (113) 

with the parameters/2, kl, and h to be chosen. It is obtained by taking 

x l ( s  ) = k l s ,  Kz(S ) = s, (114) 

where, according to (64) and (65), kl should satisfy 

h 
k~ </2, c. < 1 - k~. (115) 

To obtain boundedness of the solutions and global attractivity of the origin, it is 
sufficient for the controller parameters (/2, h, kl) to meet 

h 
I~ <- 6, h >_ Cz, < k I ~ 1 -- C u. (116) 

/2 

This shows that a lower bound for 6 and upper bounds for c, and cz are needed. 
Also the system must satisfy 

Cz 
c, + ~- < 1. (117) 

We conclude that the restrictions on the system are the same with both controllers. 
However, implementation of the dynamic controller requires more a priori knowl- 
edge. 

Concerning the gains l / k1 ,  used in the dynamic feedback, and l / k ,  used in the 
static feedback, we see, with (116) and (112), that their need to be high depends on 
cu and c/6. Notice, however, that the high gain occurs in different ways in the two 
methods: when the unmodeled effect is more static, the gain 1/k in the static 
feedback is lower than the gain 1/k~ used in the dynamic feedback; when the 
unmodeled effect is more dynamic, the gain 1/kl  is lower than the gain 1/k. This 
can be observed in two extreme cases when c~ = 0 and when c, = 0. When c z = 0, 
that is, when the unmodeled effect is purely static, the static gain 1/k = c./(1 - c.), 
and the dynamic gain is l /k1  = 1/(1 - c,). If cu gets close to 1, both 1/k and 1/k 1 
become high gain, but, clearly, 1/k is lower than 1/k 1. This suggests that when the 
unmodeled effect is more static, the static feedback is more suitable than the 
dynamic one. When c, = 0, that is, when the unmodeled effect is purely dynamic, 
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the static gain is 1/k = cl/(1 - cl), where c~ = c J6, and the dynamic gain 1/k~ can 
be taken as any number between 1 and p/h. When c~ gets close to one, the static 
gain k becomes a high gain, while the dynamic gain 1/kx remains bounded. With 
more detailed analysis, it can be shown that if cu is bounded away from one, then 
the dynamic unmodeled effect will cause the high gain the static design, while the 
gain used in the dynamic design remains bounded as long as cu remains bounded. 
This is what should be expected, because the dynamic feedback was introduced 
mainly to deal with the dynamic unmodeled effect. However, to be able to carry 
out the dynamic design, more data on how the unmodeled dynamics affects the 
system is necessary. 

Finally, since in this example x is in R and the functions a and c are linear, we 
can compare our second design method with the one proposed in [KSK]. This 
method leads to the dynamic state feedback 

~= - # r  + Ju(x,r)J, u(x ,r )= - x [ l  + xJ - k x ( l  + hr + [xJ[l + xJ), (118) 

with the parameters #, h, and k to be chosen. It guarantees boundedness of the 
solutions and convergence of x to the set 

max {c~, cJh} 

provided that the controller parameters h and # satisfy 

c z h 1 - cu 
- -  < / z  < 6,  - < - -  (119) 
1 - c u tt cu 

Hence the system should be such that 

C Z 
c,, + ~ < 1. (120) 

This shows that a lower bound for 6 and an upper bound for c u are needed for the 
design. So, in this case, as opposed to our second design method, c~ plays no 
explicit role in the control design. However, the convergence of the solutions to the 
origin is not guaranteed without further restriction. 

An interesting topic for future research would be to find a way to combine the 
two designs leading to a dynamic controller retaining the advantages of both. 

6.  E x t e n s i o n  t o  One-Sided I O p S  a n d  One-Sided e x p - I O p S  

In the case of linear systems, designs of static state feedback providing infinite gain 
margin are known. From Propositions 1 or 6, we get that u can be changed into ku 
with k in [e, 2 - el, with a chosen e > 0. Nevertheless, the property that k can be 
in [e, + ~ [  is recovered by noting that, in fact, our results still hold if, in Assump- 
tion A2, iOpS is replaced by one-sided IOpS, and, in Assumption A2', exp-IOpS is 
replaced by one-sided exp-IOpS where: 
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m a x  
i~{a ..... p} 

where 

One-sided lOpS is the same as IOpS except that (7) is replaced by 

{C~idea(t)} < CO + flr t )+ ~,(g(t)) + Y~(\~sUPto,t) {[x(z)[}), 

Csia~d(t) = m a x { -  sign(ui(t))ci(x(t), z(t), u(t)), 0}. 

(121) 

(122) 

One-sided exp-IOpS is the same as exp-IOpS except that (10) is replaced by 

m a x  {Csided(t)} < CO + fl(Iz(0)l, t) + ~c.(lu(t)l) + ~c~(Ix(t)l) + v~(r(t)). (123) 
i~{1 ..... p) 

Such a fact can be proved by following exactly the same lines as for the two-sided 
case with, in particular, the fact that Lemma 3 still holds if, in (22) and (23), we 
replace c(z) by c+(z) defined as 

c+(z)= max {c+i(t)}, (124) 
i~{1 ..... p} 

where 

c+i(t ) = max{ci(t) sign(Lg, V(x(t))), 0}. (125) 

With such one-sided properties, we see that if u is changed into ku, then c is 
given by 

c(x, z, u) = (k - 1)u. (126) 

It follows that we have, for all i, 

Csidea = max{1 -- k, 0} lui[. (127) 

In this case, we obtain 

~ = Ye~ = Yc = 0, 7u(s) = yc,(s) = max{1 - k, 0}s. (128) 

So, given e > 0, we can design our controller so that we can allow k ~ [e, +oo). 

7. On the Equivalence of the lOS and exp-IOS Properties 

We now study the relation between IOS and exp-IOS properties. We have already 
mentioned that exp-IOS implies lOS. For finite-dimensional observable linear 
systems, the converse is true. Indeed, in this case IOS implies that the eigenvalues 
of any appropriate realization have strictly negative real part. For nonlinear sys- 
tems, we replace observability by the strong unboundedness observability (SUO) 
property introduced in [JTP-1, i.e.: 

SUO. There exist a function flo of class Y{~, a function yo of class •, and a 
nonnegative real number d o such that, for each initial condition z(0) and each 
measurable function (x, u): [0, T) ~ R" x R p, with 0 < T _< 0o, the corresponding 
solution z(t), right maximally defined on [0, T'), with T' in (0, T], satisfies, for all t 
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in [0, T'), 

Iz(t)[ < ~~ t) + 7~ {[(x(,), u(z), c(x(z), z(z), u(~))l}) + d ~ (129) 

Indeed, by following exactly the same arguments as in the proof of Proposition 
3.1 of [JTP], we see that IOS and SUO, with d o = 0, imply ISS, and if in addition 
c(0, 0, 0) = 0, then exp-ISS implies exp-IOS. Therefore if ISS and exp-ISS are 
equivalent properties, IOS and exp-IOS are also equivalent properties under the 
extra assumptions SUO, with d o = 0, and c(0, 0, 0) = 0. 

To study this equivalence of ISS and exp-ISS, consider the following system: 

Yc = f(x,  u), (130) 

with x in R" and f :  R n x R v ~ R" a locally Lipschitz function satisfying f(0, 0) = 0. 
We assume this system is ISS, i.e.: 

ISS. There exist a funct ion/ /of  class ~s  and a function y of class JT such that, 
for each initial condition x(0) and each measurable essentially bounded function 
u: R_>o ~ R p, the corresponding solution x(t) satisfies, for all t in R>__o, 

Ix(t)[ ~ P(Ix(0)l, t) + y(U(t)), (131) 

where U(t) is defined in (8). 

In this context, the exp-ISS property is: 

exp-ISS. Given/~ > 0, there exist a function fl of class ~L~, a function 7c of class 
Jg which is C 1 on R>o, and a function 7~ of class ~ which is C 1 on R_o, such that, 
for each initial condition z(0) and each measurable essentially bounded function 
u: R_>o ~ R p, the corresponding solution x(t) satisfies, for all t in R~o, 

Ix(t)l </~(Ix(0), t) + 7c(r(t)), (132) 

where r(t) is the solution of the following initial value problem: 

= - # r  + 7v(luf), r(0) = 0. (133) 

Clearly, exp-ISS implies ISS with 7 in (131) given by Yc o (1//1)7 v. The converse is 
also true. We have, precisely: 

Proposition 8. System (130) is ISS if and only if it is exp-ISS. This result still holds 
if we impose that 7c be concave and Yv be convex. 

To establish this statement, we need to recall the definition of the ISS-Lyapunov 
functions introduced in [SW]. 

Definition 9. A smooth function V: R" ~ R>_o is called an ISS-Lyapunov function 
for system (130) if there exist functions ~1 and ~2 of class ~f~ and ~3 and X of class 
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o~f such that, for all x, 

~l(Ixl) - g(x) <_ ~2(Ixl) 
and 

Ixl -> x(lul) ~ ~ u) < -~3(Ixl).  
u x  

(134) 

(135) 

One of the main results in [SW] provides the following Lyapunov characteriza- 
tion of ISS: 

Lemma 10. System (130) is ISS if and only if it admits an ISS-Lyapunov function. 

In fact, the property for a system to have an ISS-Lyapunov function can be 
strengthened as follows: 

Lemma 11. I f  a system admits an ISS-Lyapunov function V satisfying (134) and 
(135), then, for any # > O, there exists a C 1 function ~t r and functions 41 and 4 2 of  

class JY-~ such that, for all x, 

41(Ixl) _ ~(x)  _< 42(Ix1) (136) 
and 

O f  
Ixl > x(lul) =" (x)f(x, u) <_ - # f ( x ) .  (137) 

Ox 

Note that if ~ is smooth, then ~K is again an ISS-Lyapunov function with an 
associated function e3 equal to - # ~ .  

Proof. 
still a function of class J~((, (135) becomes 

2 t~V x x 
Ixl -- x(lul) ~ ~ ~xx ( )f( , u) < -~3(V(x)). 

Now consider a C a function a of class o~ff with the property 6 

a(z) < rain{z, c%(z)), a'(0) = 0. 

For  instance, we can take 

2 I t min{s, c~3(s)} ds. 
a ( ~ )  = - J o  s 2 7t 1 +  

Then let p be the function defined as 

p(z) = exp 2ds~ Vz ~ R> o, 
a(s) / '  

.p(o) = o. 

First observe that by renaming by 0~ 3 the function (2/#)a 3 o 0~ 1 which is 

(138) 

(139) 

(140) 

(141) 

6 a' denotes the first derivative of the real function a. 
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This function is continuous on R>o. Since the integral inside the exponential 
function diverges to - o o  as z tends to zero, and diverges to +0o as z tends to +oo, 
it is seen that p is of class Jff~o. Furthermore, we have the following: 

Lemma 12. The function p can be extended as a C 1 function on R_o. 

Before proving this lemma, we remark that the function ~ ,  defined as 

~F = p o V, (142) 

allows us to prove Lemma 11. Indeed, in this ease, (136) holds with 

ai = P o ~l, a2 = P o a 2. (143) 

We get 

Ix[ > z(lul) ~x  (X)f(x, u) _ 2 r goV (x)f(x, u) < _#,f~(x). �9 a(V(x)) 
(144) 

Clearly, p is a C 2 function on R>o. So it is enough to show 

(145) 

P r o o f  o f  L e m m a  12. 

p'(O) = O, lim p'(~) = O. 
~:---~ 0 + 

First note that, for z small enough, we have the estimation 

p(z) = exp - a(s)] <- exp - = exp(ln ~2) = z2. (146) 

It follows that p'(0) exists and 

p'(0) = 0. (147) 

To show the second point of (145), we proceed as follows: For  v # 0, we readily 
obtain 

2 ,(a~T)4 2a'(z)) , ,  
p'(z) = ~(~p(T), p"(~) = a - ~ ) p t z ) .  (148) 

Since a'(0) is zero, it follows that there exists some strictly positive real number 6 
such that 

0 < z < 5  =*- 0 < a ' ( z ) < l .  (149) 

We conclude: 

�9 The function p'  is positive and strictly increasing on (0, 6). This implies that 
lim,_,o+ p'(v) exists and is nonnegative. 

�9 The function p" is bounded below by p'(z)/a(z) on (0, 6). 

Now to obtain a contradiction we assume that lim~_.o+ p'(z) is strictly positive. In 
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this case there exists some strictly positive real number c such that 

However, with 

this implies 

, e ( o ,  5) ~ p'(,)>__c, 

C C 
=~ p " ( ~ )  >_ - -  > - .  

a(z) - z 

p ' ( z )  = p ' ( , ~ )  - p " ( s )  d s ,  

(150) 

(151) 

(152) 

lim p ' (z )=  - ~ .  (153) 
~..-~0 § 

This contradicts the fact that p' is positive on R> o. So p' must be continuous on 
R>o. �9 

In proving Lemma 11, we have also reestablished the following statement which 
can be found, for example, in Theorem 3.6.10 of ILL] but is rarely used: 

Proposition 13. I f  a system/c = f (x)  admits a C 1 Lyapunov function V, that is, 
there exist functions oq and o~ 2 of class j~r and o: 3 of class Jd, such that we have, for 
all x, 

~l([xL) < V(x) <_ ~2(Lxl), ~-~(x)f(x) < -Cta(lX]), (154) 

then, for each # > O, the system also admits a C 1 Lyapunov function ~e" satisfying, 
for all x, 

~l(Ixl) ___ V(x) _ ~2(Ixl), ~ x ( X ) f ( x )  <_ - # V ( x ) ,  (155) 

for some functions ~1 and ~2 of class X'o~. 

We are now ready to prove Proposition 8. 

Proof of Proposition 8. We know already that exp-ISS implies ISS. We now show 
that ISS implies exp-ISS. Assume that system (130) is ISS. Then, by Lemma 11, 
there exists some C 1 function ~ satisfying (136) and (137). We define on R>__ o the 
function 7v as follows: 

7v(s) = s + max (x)f(x, u) + II~(x) . (156) 
Ix l<z( lu l ) , lu l -<s  

It is of class ~g~ and, from (137), we readily get (see also [SW] for more detailed 
reasoning), for all (x, u), 

Ox (x)f(x, u) < -# 'U(x )  + ~o(lul). (157) 
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Now pick any measurable essentially bounded function u: R_> o ~ R p and any 
initial condition x(0) in R". By (157), the corresponding solution x(t) satisfies, for all 
t in R>o, 

It follows that 

~(x( t ) )  <_ - p ~ ( x ( t ) )  + y~(lu(t)[). (158) 

V(x(t))  < exp(-#t)~(x(0))  + r(t), (159) 

where r(t), defined here as 

r(t) = i i  e x p ( - # [ t  - s])y~(ru(s)[) ds, (160) 

is the unique solution of the initial value problem (133). With (136), we have 
obtained 

Ix(t)l _ ~-~(exp(-#t)~e~(x(0)) + r(t)) < fl(s, t) + 7r (161) 

where 

fl(s, 0 = ~71(2 exp(-#t)~2(s)), 7~(s) = ~71(2s). (162) 

To complete the proof of the proposition, we need to show that 7~ and 7~ can be 
restricted to being concave and convex, respectively, with the desired continuous 
differentiability. To this purpose, we need the following: 

Lemma 14. For any function y of class ~f, there exist a convex function y~, of class 
J f  and C 1 on R_>o, and a concave function y~, of class ~ff and C 1 on R>o, such that 

Proofi 

L ~ 7~ ~ 7- (163) 

Let [0, S] (where S < +oo) be the image by 7 of R_>o and let 

so=m n{l } 
We define 

(164) 

y~q(s) = y-l(z) dz, Vs _< So, (165) 

L~2~(So) + (s - So)7-1(So), VSo < s. 

Since 7 -1 is increasing and continuous on [0, So], the function 7; -1 is convex, of 
class ~ and C 1 on Rzo. So the function Vc is concave, of class X and C 1 on R>o. 
We also have 

Vcl(S) _~ S~-I(s) ~ ~-I(s), VS __< S o. (166) 

This implies 

yc(s) > 7(s), Vs < 7-1(So). (167) 
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Now we define a function ~ as 

?v(s) - ~-l(s~ y(r) dr + s. (168) 
So 

This function yv is convex, of class A ~ and C 1 on Rzo and we have 

<1(So) 
y~(s) > sy(s) + s. (169) 

So 

Then, for s < y-l(So) , we have, with (167) and (169), 

/<~(S~ "s" ) yc(y.(s)) >__ 7c ~ - ~ o - -  Yt ) + s >__ y(s). (170) 

For s _> y-a(So), we have, with (166) and (169), 

y~(s) > 7-1(%) >__ Yc'(So). (171) 

So, in this case, we can use the second definition in (165) to evaluate yr With 
(169), this yields 

((<~(So)/So)S~(S) + s) + <~(So)So - <~(So) ~c(~(s)) >_ 
<i(So) 

(~-;(So)/So)S~(S) 
> 7_~(So ) > 7(s). �9 (172) 

Lemma 15. For any functions Y2 and Y3 of class auf, there exist a convex function 
~, of class ~ and C 1 on R>_o , and a concave function y~, of class af" and C 1 on R>o, 
such that 

~ 2 ( f : e x p ( - # ( t - r ) ) , 3 , l u ( z , [ , d z  ) < , ~ ( f l e x p ( - # ( t - J ) y ~ ( l u ( j l ) d z ) .  (173, 

Proof. From Lemma 14, we know the existence of functions ~'va and 7c3 with the 
desired properties so that 

Y3 < 7c3 o Yv3. (174) 

Let 

1 - exp( -# t )  1 
f(t) - < -. (175) 

# # 

Then, with Jensen's inequality and concavity, we get 

f l  exp( -p( t -  J)73(lu(z)l) dz < f(t)yc3 (-~(t) f l exp(-I~(t- r))Tv3(lu(J,) dT) 

<l?e3(# f l  exp(-l~(t- z))yvz(lu(Ol, dz). (176) 



Stabilization in Spite of Matched Unmodeled Dynamics 27 

However, again there exist functions 7~2 and Yc2 with the desired properties so that 

So we get 

1 
~2 0 --~c3 m- 7c2 o 7v2" (177) // 

l(fo ) < 72 ~ ~c3 ~ exp(-~(t-r))7~a(lU(r)l) dr 

<7~2~ ) 

(fo ) NTC 2 ~ exp(-/~(t - -  r))Tv 2 o 7v3(lu(T)l) dr . 

Hence, we can take 

~c(S) = 7c2(S), 

Proof of Proposition 8 (continued). 

(178) 

From (161), we get 

,x(t)l<H(lx(O)l, t)+ 7c(f I exp( - /~ ( t -  ~))7~(lu(r)l)dr). (180) 

By Lemma 15, there exist a concave function ~c of class ~ and a convex function 
~v of class X with all the desired properties such that 

7c(fs e x p ( - # ( t -  z))Tv(lu(z)l)dr)< 7c ( f l  exp(- / l ( t -z ) )~( ,u(z) l )dr ) .  (181) 

The conclusion of Proposition 8 follows readily. �9 

The advantage of the exp-ISS is that it allows us to replace the Lo~ norm with a 
memory fading L1 norm in the ISS estimation. However, one may worry whether 
the exp-ISS will lead to more conservative results. Our objective of the following 
example is to show that this is not necessarily the case if some care is taken in 
choosing the real number/~ and the functions 7c and 7~. 

Consider the system 

= -ax3 + 7o(lUl), a > 0, (182) 

where 7o is a function of class ~ .  This system is ISS and its gain function 7 can be 
taken as any function of class ~( satisfying 

~ > - -  . ( 1 8 3 )  

7v(S)  = 7v2 o 7v3(S). �9 (179) 
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To obtain an estimation on yv and 7r we let, for each integer k strictly larger than 
3a and #/2, 

Vk(x ) = ~k([x[), (184) 

where, for each k, ak is a C 1 function of class ~ defined as 

I e x p ( ~ [  1 - ~ 1 ) '  if O < s < l ,  
~k(S) = (185) 

L S 2k/a, if  s > l .  

Then, for Ix[in (0, 1], we have 

2 k K ( x )  ,, , 
l?k(ls2)(x) = --/Wk(X) -- (2k - #)Vk(X) + a ~ - Y o t l U  ) 

f2kVk(X) . . . .  ] 
< -#Vk(x) + max ~ a--d]~7otlUl);  

Ixl-<z(lul) 

< --/~Vk(X) + (2k - P)Vk(Zk(IUl)), (186) 

where Zk is a function of class Off defined as 

( 2k "~1,3 F 2k7~ (187) 
Zt(s) = \2k  - #J ~(s) > L(2~-~a j 

with 7 given in (183). To obtain (186), we used the fact that Vk(X)/IX[ a is an 
increasing function in Ixl for all k strictly larger than 3a. 

When ]x[ is in (1, +oo), by applying the same arguments, we have 

�9 2kxZVk(X) 
g k , ( 1 8 2  ) = - - / A x 2 g k ( x )  - -  (2k - ~ ) x 2 g k ( x )  -q- a[x[ 3 ~o(lul) 

< --#Vk(X ) + (2k - ~)Xg(lul)Vk(zk(lul)). 
Thus, for any solution x(t)  of (182), we have 

Vk(X(t)) = Vk(X(O))exp(--st) + r(t), 

with r(t) the solution of 

= - w  + 7v~(lul), r(0) = 0, 

where, for each k, 

((2k - #) VkO~k(S)), if 
7vk(S) = ((2k ~t))~2(s)Vk(Zk(S)), if 

From (189), we get 

Ix(t)l <_/~k(lXol, t) + 7ck(r(t)), 

for some function fig of class aY~ and with 7ck given as 

Y~k(s) = ~kl \2k - / ~  J" 

(188) 

(189) 

(190) 

zk(s) -< 1, 
(191) 

Zk(S) > 1. 

(192) 

(193) 
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We now prove that, as k is going to +0% the function 7ck o (1/#)Tvk approaches 
y. When Xk(S) is in (1, +oo), Vk(s is strictly larger than one. Thus we have 

f 2k\a/2k 

~-- \ 7 / I  \2k  ~ J  7(s)(l+a/k)" (194) 

When Zk(S) is in [0, 1] but (2k/#) [Vk(Zk(S)) ] is still strictly larger than one, we have 

~)ck O ~ ~)vk(S) ~ O~kl ( ( 2~k ) vk(Zk(S) ) ) (195) 

I/2kx~ a/2k / I* 1 I 
< ~ - )  ~/exp ~1 - Zk2(S ~ 

/ 

<_ )~k(S) (196) 

< \ # } \2k  - #J 7(s). (197) 

When both Zk(S) and (2k/#)[Vk(Zk(S))] are in [0, 1], we have 

,ck o l-- ,vk(S) akl (2~k Vk(Zk(S))) (198) 

1 
< (199) 
- .,,/1 - (a/k) ln((Zk/p) Vk(Zk(S))) 

1 
< (200) 
- -  .,,/1 -- (a/k)ln(2k//0 - (a/k) ln(exp((k/a)(1 - 1/Z2(s) ))) 

z~(s) 
< (201) 
- x/~ - (a/k)Zk(S) 2 ln(Zk/p) 

1 ( 2k ~ 1/3 
<- ~/1 - (a/k) ln(2k//~) \ 2 k - ~ -  p /  7(s). (202) 

Combining (194), (197), and (202), we see that, for any strictly positive real number 
e, there exists some integer K such that, for any k _> K, 

{(1 + 07(0, if ?(s)_< 1, (203) 
7ck 0 7vk(S) ~ (1 + e)(y(s)) 1+~, if 7(s) > 1. 

With (203), we conclude that, for the system (182), by working with the exp-ISS 
gain function instead of the ISS gain function, we can obtain results which are as 
equally conservative as we want on any compact set. 
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8. Conclusion 

COnsider the system 

f p 

Yc = f(x)  + ~ gi(x)[ul + ci(x, z, u)], i=1 
= a(x, z, u). 

Under the following conditions 

-- the system 

(204) 

p 
= f(x)  + • g~(x)u~ (205) i=1 

is globally asymptotically stabilizable by a feedback law (u,i(x)) (see Assump- 
tion A1), 

- - the system 

{ ~ = a(x, z, u), 
Yi ci(x, z, u) (206) 

has appropriate input-to-state and input-to-output properties (see Assump- 
tions A2 or A2'), 

we have shown how to modify the feedback u, into a static or a dynamic feedback 
in order to guarantee that all the solutions of (204) are bounded and their x- 
components are captured by an arbitrarily small neighborhood of the origin. This 
result belongs to the broad class of results known on uncertain systems (see [C] for 
a survey and [QI], [Q2], [KSK], [KK], and [JMP] for some recent develop- 
ments). 

The modifications we have proposed for the control law u, are based on 
Lyapunov design and gain assignment techniques as introduced in [JTP]. The 
analysis of the properties of the closed-loop system is based on the application of 
the Small-Gain Theorem [JTP, Theorem 2.11. The assumptions on the z-subsystem 
are written in terms of the notion of IOS introduced in [JTP] which is an extension 
of the notion of ISS as introduced by Sontag in [$2]. 

To carry out our design of a dynamic feedback, we have been led to introduce a 
new notion of ISS systems called exp-ISS. We have shown that for finite-dimen- 
sional systems the two notions are equivalent. For this we have used the link 
between the ISS property and the existence of an appropriate Lyapunov function 
which has been established in [LSW] and [SW]. 

An important feature of the system (204) is that the unmodeled effects are in the 
"range" of the input. This is the well-known matching assumption. By using argu- 
ments similar to those used for propagating the ISS property through integrators 
in Corollary 2.3 of [JTP], this matching assumption can be relaxed for systems and 
uncertainties having a recurrent so-called feedback structure. 
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Appendix A. On the Nonexistence of a Stabilizing Feedback for (13) 

We prove that there is no control law u(O that can drive to zero the x-component 
of any solution of (13), starting from (Xo, 1) with Xo > M exp(1). To do this, we 
assume that such a control exists. By the uniqueness property, the corresponding 
solution (x(t), z(t)) of (13) remains in R2o for all positive time. Moreover, since 

qo ) x(t)  = exp (x(s) - u(s) + 7(z(s))) ds xo,  Vt > 0, (207) 

we have, necessarily, 

I t (u(s) - 7(z(s)) - x(s))  ds = +oo. (208) lim 
t--+ OO do 

On the other hand, we have 

dz 
z~ = (u(t) - z(t)) dr. (209) 

With (14) and the fact that z(t) is strictly positive, (209) yields 

and 

1 ; ;  
- z ( t ~  + 1 = (u(s) - z(s)) ds >_ (u(s) - M - 7(z(s))) ds, (210) 

- -  < 1 - ( u ( s )  - 7(z(s)) - x ( s ) )  d s  - x ( s )  d s  + M t .  (211) z(t) - 
Now we define 

tl=inf{t>_o:f~(u(s)-e(z(s))-x(s))ds>_l}. (212) 

This real number is well defined (see (208)) and is positive. By continuity, we get 

x(tl) = Xo e x p ( -  1), (213) 

1 <_ 1 (u(s) 7(z(s)) x ( s ) ) d s  x(s)  ds + M t l  z(tO 
Xotl 

< - - -  + M t  1. (214) 
- exp(1) 

By the choice of x o, this yields that 1/z(t~) < 0 which contradicts the fact that 
z(t) > 0 for all positive t. 
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Appendix B. An Explicit Expression for 0i 

Working within the context of the proof of Lemma 3, we propose here an explicit 
expression for the function 0i. 

First we define a function 0i as 

I ~ + 3(ILo V(x)lq~i(x)) 2 - W(x)/2p if {Lo V(x)[ 4: O, 
O~(x) = IL., V(x)  l q~,(x) ' 

[.0, if ]Lo, V(x)] = O, 
(215) 

where 

q~i(x) = 6P(V(x)) + ]u,,(x)[. (216) 

According to the arguments in the proof of Theorem 1 of [$1], this function is 
continuous on R"\{0}. Moreover, we have 

X E ~ l i  \ 2p J +3([Lg'V(x)lq~'(x))2>\ 2p (217) I 

/ 

It follows that 0i(x) is larger than one on ~21i. This allows us to define 0/on R"\{0} 
as 

9i(x) = sat(0i(x)), (218) 

where sat: R> o ~ [0, 1] is the saturation function 

r, if r e [0, 1], 
sat(r)= l, if r > l .  (219) 
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