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Adding Integrations, Saturated Controls, and 
Stabilization for Feedforward Systems 

Fr6dCric Mazenc, Associate Member, IEEE, and Laurent Praly 

Abstract-Our study relates to systems whose dynamics gen- 
eralize .i = h ( y .  u ) .  Q = f ( y .  u ) ,  where the state components 
I integrate functions of the other components y and the inputs 
U .  We give sufficient conditions under which g1ob;il asymptotic 
stabilizability of the y subsystem (respectively, by saturated con- 
trol) implies global asymptotic stabilizability of the overall system 
(respectively, by saturated control). It is obtained by constructing 
explicitly a control Lyapunov function and provides feedback 
laws with several degrees of freedom which can be exploited to 
tackle design constraints. Also, we study how appropriate changes 
of coordinates allow us to extend its domain of application. 

Finally we show how the proposed approach serires as a basic 
tool to be used, in a recursive design, to deal with more complex 
systems. In particular the stabilization problem of the so-called 
feedforward systems is solved this way. 

I. INTRODUCTION 

A. Problem Statement 

HE idea of backstepping, also called adding one integra- T tor (see [28] for instance), has led to one of the basic 
tools proposed nowadays for designing stabilizing controllers. 
In [ 131, KrstiC et al. give a repertory of the many procedures 
which can be obtained to deal with various classes of systems 
by combining, maybe recursively, this particular Lypunov- 
based design with other ones (see [12]). 

This idea applies to the problem of knowing when asymp- 
totic stabilizability for the system Ij = f ( ? g ,  U )  implies asymp- 
totic stabilizability for the system 

I j  = f(y, x), :i = h ( X ,  y, U ) .  (1) 

In this paper, systems of a different class arc: considered. 
To simplify, in this introduction let us just mention that we 
propose a solution to the problem of knowing when global 
asymptotic stabilizability (respectively, by saturated control) 
of the system = f ( y ,  U,)  implies global asympmtic stabiliz- 
ability (respectively, by saturated control) for the system 

li: = h(y, U ) ,  1;, = f ( y ,  U ) .  ( 2 )  

That is, instead of making the control a state component, i.e., 
controlling through a differentiator, as in ( I ) ,  we add state 
components which integrate functions of the other compo- 
nents. Such components are called “integrating coordinates.” 
The k n o w l e d g e  of a so lu t ion  for t h i s  latter p r o b l e m ,  c a l l e d  here 
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“adding one integration,” allows us to deal with systems whose 
dynamics can be written, by using appropriate coordinates, in 
a specific recurrent structure called feedforward form’ 

( 3 )  

In particular we shall prove that for stabilizability of the system 
linearized at the origin being assumed, global asymptotic 
stabilizability holds if k = f l ( x .  U )  is globally asymptotically 
stabilizable with local exponential stability. Systems which can 
be written in  this feedforward form are not singularities in 
practice. For instance, consider the celebrated cart-pendulum 
system. Let: 

o ( A 4 . r )  be mass and position of the cart which is moving 
horizontally; 

*(m, 1 , B )  be mass, length, and angular deviation from the 
upward position for the pendulum which is pivoting around 
a point fixed on the cart; 

*finally, E be a horizontal force acting on the cart. 
The dynamics can be written as 

(4) 
{ ( M  + m)* + ml c o s ( ~ ) i ~ ’  = m1i2 sin(0) + F,  

By means of the following change of control, coordinates, 
and time: 

%cos(Q)  + 18 = gsin(0). 

and by denoting by ‘‘0” the derivation with respect to the new 
time 7 ,  we get the equivalent but normalized dynamics 

i- W O  = sin(&) - uo cos(&) 

0 

(6) z O =  so , g o =  , d o =  

which are exactly in the feedforward form (3) with 

:~‘1 = (Ho,wo), 2 2  = S O ,  2 3  = zo. (7)  

This system will be used in Section V-C to illustrate our 
feedback design. 

‘Systems in the form ( 3 )  are generically not feedback linearizable. In 
particular, this is the case when, controllability of the system linearized at 
the origin being assumed, $$ - !& $$ is not identically equal to 
zero on a neighborhood of the origin. 

3018-9286/96$05,00 0 1996 IEEE 



1560 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 41, NO. 1 1 ,  NOVEMBER 1906 

B. The Muin Sources of Our Work 

The first significant results about feedforward systems have 
been presented by Teel in [25] (see also [24]). The main 
point discovered in this work is that the knowledge of the 
system linearized at the origin is already sufficient to propose 
a family of feedback laws in which we are guaranteed to 
find one element appropriate for the particular system under 
consideration. This result follows from ’these two facts. 

1) Higher order terms (see our basic definitions) play a 
role only in the choice of an element in this family of 
feedback, not on the definition of the family itself. 

2) The “integrating” coordinates--rcz to IC,, in (3)-must 
be selected in such a way that only higher-order terms 
appear in  their time derivative. To meet such a constraint, 
a linear change of coordinates is appropriate. 

Such a result can be proved by using the new concepts in 
interconnected systems theory that Teel has formalized in 1271 
(see also 1261). 

Our main objective here is to propose a Lyapunov analysis 
counterpart to the interconnected systems point of view. This 
is made possible from the following remark: assume t h t  the 
functions in (2) are G2 and that we have 

h(y: 0) 0; v y. (8) 

In this case, there exist functions h2. f o ;  and f z  such that ( 2 )  
can be rewritten as 

(9) 

If y = 0 is a globally asymptotically stable solution of 
?j = , f o ( y ) ,  then the converse L,yapunov theorem [30, Th. 
V. 19.81 guarantees the existence of a Lyapunov function V(y) 
such that 

IE. = hz(y,71) U ;  7;, = fo(y) + f2(y; U )  U .  

U, = 0 -=+ zTz + V(?/)(q L -cV(y) .  (10) 

This proves that we are exactly in the context of the theory 
usually referred to as the Jurdjevic and Quinn approach to 
which many authors have contributed (see [ 11, 141, 191, [ l  I],  
[14], and [I61 and the references therein). Our goal in the 
following is mainly to relax (8). This is done by applying a 
change of coordinates which generalizes the one proposed by 
Tee1 and by translating in terms of stability margin the fact, 
exhibited by Teel, that higher-order terms play a minimal role. 

During the preparation of the final version of this paper, 
we received from M. Jankovic et al. a preprint of their paper 
[ IO] .  They propose also a Lyapunov design for feedforward 
systems but, instead of a change of coordinates which im- 
plicitly introduces a cross term in the Lyapunov function, 
they address directly the construction of such a term. Due to 
space limitation, we cannot go further into comparing the two 
methods, but the interested reader may refer to 1171. However, 
some of the ideas presented in that paper helped us. 

We realized that the arguments, used for the proof of 
our previous result [18, Proposition 2.11, were in fact 
powerful enough to establish Theorem 111.1, 
The set of assumptions introduced in [lo] will be used to 
illustrate our own assumptions. 

We are borrowing from [lo] the dynamic solution for 
(30). 

C. Organization of the Puper 

In Section 11, we first revisit the Jurdjevic and Quinn 
approach in a specific case. This allows us to present some 
technical results and make some discussions which are useful 
for the remainder of the paper. In Section 111, we state our 
main result with relaxing (8). In fact, we allow h in (2) to 
depend on y, U ;  and z, but we impose a restriction on the 
behavior of this function for y near the origin and 5 going to 
infinity. This constraint on the dependence in y generalizes the 
notion of “higher order” used by Teel. In Section IV, we show 
how it may be possible to enforce the satisfaction of such a 
constraint by a change of coordinates. 

In Sections V-A and V-B, by combining the Lyapunov 
design of Section 111 and the change of coordinates of 
Section IV, we are able to answer the question about global 
asymptotic stabilizability of forms generalizing (2) and (3). 
To help the reader in getting a better grasp on the design 
we propose, we apply it to the cart-pendulum system in 
Section V-C. 

Finally Section VI contains some concluding remarks. 

D. Notations and Basic Dejnitions 

Throughout the paper, the symbol c may be used to 
denote generically a strictly positive real number (i.e., 

For an element X in Rnl @ RrL @ RP and a vector z in 
E’, we denote their contraction by ( X ,  IC). It is a matrix 
in R” @ R” whose ( i ; , j )  entry ( X ,  z)iJ is 

c + c * c = c!). 

k=l 

Let p be a nonnegative real number. A continuous func- 
tion F ( x ,  g )  on R1 is said to have a zero of order p at 
:y_= 0 if there exists a nonnegative continuous function 
.F such that for all ( x , g )  t RI 

F ( Z : ; ? / ) l  I -%w) IYl”. (12) 

With Q a positive definite symmetric matrix, we denote 

For any matrix M we denote by Xmlz one of its eigen- 
values. 
By V(15) we denote the function defined as follows when 
this makes sense: 

The subscript (15) refers to the equation number of the 
differential equation 



MAZENC AND PRALY: ADDING INTEGRATIONS, SATURATED CONTROLS, AND STABILIZATION 1561 

If p is continuous and V is Lipschitz cont nuous, then 
we have (see [30, p. 31) 

is a true "integrating" coordinate. With (20), this is not 
the case of 2 2 .  In fact, at this stage, y and x2 play the 
same role. We have distinguished them for the sake of 

2) It is not easy to check when Assumption A2 holds. 
However, sufficient conditions implying it are known. 
For instance, the reader will find in [14] or [16] check- 
able sufficient geometric conditions. Note that without 
A2, asymptotic stabilization may be impossible. Indeed, 
consider the svstem 

lim V ( @ ( t ' X ) )  - ~ qI5](Jf) (16) coherence with Section 111. 
t+O+ t 

where @ ( t , X )  is any of the solutions of 

a@ 
at -((t, X )  = p(@(t, X)), q0, X )  = x. (17) 

This property as well as [30, Th. 11.8.11 will be used 
throughout the paper. 

derivative. 
For a real valued C1 function k ,  we denote by k' its first 

11. THE JURDJEVIC AND QUINN APPROACH 

(23)  
221 = -x, + [(Xf + X;) - 1]u,  i. x, = x, + [ (X? + xz') - 1 ] U .  

Assumption A1 holds. But with Q(X, ,X , )  = Aff + 
X:, Assumption A2 does not hold. In fact, asymptotic 
stabilization is not possible since 

A. Result X l ( t )  = cos( t ) ,  X 2 ( t )  = sin@) (24) 
We start our analysis by restating, in a slightly inore general 

form (see also [4, Corollary 1.6]), a result by Bacciotti in 
[ l ,  Remark 10.91 which is based on the Jurdjevic: and Quinn 
approach 11 11. For this, we consider the controlled system 

is a solution whatever U may be. 
This example shows that Assumption A2 is related to 

the property that the control is able to force any solution 
to leave any level set Q(x1)  = q > 0. From this remark - ,  I ~ 

i.1 = ho(z1) + h 2 ( : q ,  z 2 ;  y; U )  7L 

3.2 = eo(z2) + ez(z1,z2jy,7~)u, 
Y = f o ( Y )  +"f2(z1,zz,Y,u)u 

we get readily the following lemma. 
(18) Lemma 11.2: Let Q be a C1 function and ho and H be 

CO functions. If there exists a CO function A satisfying 
A(z1,O) = 0, for all 21, and such that the system 21 = 
h o ( z l )  + A(x1, H ( z 1 ) )  has no solution remaining for ever 
in a fixed level set of Q except 2 1  = 0, then 2 1  = 0 is the 
only solution of 

where y is in R", 2 1  in R'"' zz in Rn'z2: U in E". We 
introduce the following assumptions. 

Assumption AO: The functions ho; ha, eo, e2 .fo, and f 2  
are Co and ho, eo, and f o  are zero at the origin. 

3Q 
8x1 

i :1 2 ho(zi), H ( z 1 )  = 0, -(XI) ha(~1) = 0. (25) 
Assumption AI :  There exist three positive definite and 

proper C1 functions Q,  S. and V so that 

Assumption A2: x1 = 0 is the only solution of 

Theorem 11. 1: Under Assumptions AO, A l ,  ancl A2, for any 
U in (0. + X I ,  the origin can be made a globally asymptotically 
stable solution of (18) by a state feedback bounded by U and 
zero at the origin. 

B. Discussion qf the Assumptions AI and A2 

So to check if Assumption A2 holds, it is sufficient to find 
such a function A with 

(26) a& 
821 

H ( z 1 )  = -(XI) hz(z1,O. 0: 0). 

As a direct consequence we have the following lemma. 
Lemma 11.3: Let M I  be a matrix such that there exists a 

positive definite matrix Q1 for which Q1 MI + MTQ1 is 
negative semidefinite. If ( M I ,  01) is a stabilizable pair, then 
XI = 0 is the only solution of 

C. Proof of Theorem 11.1 

We have 

1) The peculiarity of (18) is that it is made of three 

origin is respectively globally stable, glokially asymp- 

shall study in Section 111 a case where coipling terms 
are present, Using the terminology of the introduction, 

(19), the 2.1 subsystem is not strictly dissipative so 2 1  

= - W(y) - R(z1) - T ( x 2 )  + 6 ( 2 1 , 2 2 ,  y, 71) U (28) 
decoupled subsystems when is set to zero. Assumption 
A1 expresses the fact that for these three suksystems, the 

totically stable, and globally asymptotically stable. We 

with the notation 
8V 

4(21,22, y, U )  = -(y) . f 2 ( z 1 , 2 2 .  !I, U )  
ay 

+ - (z2) ez(z1 i z2: Y, U )  

+ -(XI) h2(21, Zz, Y, U > .  

3s 
8x2  
aQ 
3s 1 

(29) z1 and 2 2  represent the "integrating" coordinates. With 
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Since V, Q ,  and S are C1 and f2, e2 .  and hz are continuous, 

With (28), we see that global stability holds if the control 
the function 4 is continuous. 

U is chosen such that 

We propose two solutions for this inequality 
Static Solution: 

Lemma 11.4: Let G ( ( , u )  be a continuous function. 
For any strictly positive real number U ,  there exists a 
function A(<), as smooth as G ( ( ,  U )  is, such that if 

then, for all <, we have 

Moreover, if G is C1, then X is strictly positive on any 
compact set. 

Dynamic Solution2: From (28), the system with input U ,  

state ( x 1 , ~ 2 , y ) ,  andoutput~(Z1,22 ,Y,U)  is passive. In 
this context, instead of satisfying (30) for each time, it 
is sufficient to meet it dynamically, i.e., it is sufficient 
for U to be the output of a strictly passive system with 
- G ( x l ,  2 2 ,  y, U )  as input. However, we cannot forget 
the constraint on U .  By drawing our inspiration from 
barrier methods as they are used in optimization theory 
(see [7, ch. 31 for instance), we propose the following 
dynamic feedback: 

Pmo$ See Appendix A. 

U = z ,  z = -2 - ( U 2  - /z12)4(21: 2 2 ,  y; U ) ,  

lz(0)i < U. (33) 

This system with input - G ( L : ~ , x ~ , ~ . u ) ,  state z ,  and 
output U is strictly pasive and the set { z  : IzI < U} is 
positively invariant. Indeed, we have 

This equality proves the global stability of the origin of 
the extended system as well as the positive invariance 
of the set above. Moreover, we have 

'This idea is borrowed from [lo] and is one possible interpretation of [ Z I ,  
Th. I ] .  

These two solutions give a feedback law upperbounded in 
norm by U ,  as smooth as the function 4 is such that (35) holds. 
Also the derivatives (28) or (34) are zero if and only if 

y = 0, 2 2  = 0. R(z1) = 0. U = 0. (36) 

It remains to prove global attractiveness. With Assumption 
AO, the right-hand side of the closed-loop system is only 
continuous. So we do not have necessarily uniqueness of 
solutions. To prove asymptotic stability, we use the following 
generalized invariance principle. 

Lemma 11.5 [20, Th. 21: Consider the system 

X = d X )  (37) 

with X E R" and cp a continuous function. Let V :  RTL + R be 
a Lipschitz continuous nonnegative function and W :  R" 4 R 
be a nonnegative continuous function such that for all X 

V ( 3 7 ) ( X )  = - W X ) .  (38) 

Then, all the bounded maximal solutions of (37) exist on 
[0, +CO) and converge to the largest quasi-invariant3 set con- 
tained in {X t R": W ( X )  = O}. 

To apply this Lemma to the closed-loop system we have 
obtained, we evaluate what is the largest quasi-invariant set 
contained in 

{(x1.z2.y) :  y = 0. 2-2 = 0, R(z1) = 0, U = O}. 

From (3.3, the definition (29) of 4.  and Assumption A2, 
we see that this quasi-invariant set is reduced to the origin. 
Therefore, our feedback provides global asymptotic stability. 

+Note that the derivatives V(y)  + CJ(x1) + S ( Q ) ( ~ ~ )  or 
h r \ 

111. DESIGN TOOL 1: LYAPUNOV DESIGN 

A. Result 

Let us now extend the Jurdjevic and Quinn approach to 
a broader class of systems. Precisely, we modify (18) by 
introducing coupling terms which are identically zero when 
y is at the origin 

&I = f L O ( . r l )  + F L I  (21, z 2 ,  Y) Y + h ( J l , X 2 ,  Y: U )  U 

5 2  = eu(22) + e - 1 ( 5 1 , 2 2 ,  Y) Y + e-Z(.I, x2, Y, U )  U (40) { Y = f o  (Y) + fl (. 1 i 2 2 ,  Y) Y + f 2  ( 2  1 1 22 > Y ?  U )  U 

where y is in R", x1 in R.'"', 5 2  in Rm2, U in Rq. For this 
new system, we modify Assumption A0 as follows. 

3 A  set € is said to be quasi-invariant with respect to (37) if, for each .Y E E, 
there exists at least one maximal solution of (37),  defined on [O. +a) and 
remaining in &. 
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Assumption AO: The functions h o ,  hly,  h2, eo; e l y ,  e2;  s o ,  
hly ,  and f 2  are CO and IQ, eo, and f o  are zero at the origin. 

Within the context of Theorem 11.1, the coupling terms 
h l ,  e l ;  and f1 are inconvenient. However, global asymptotic 
stabilizability may hold only because of the presence of these 
terms. For instance, the linear system 

Throrem III.1: If Assumptions AO, A l ,  A2, and A3 hold, 
then for any 7L in (0, +CO], the origin of (40) is globally 
asymptotically stabilizable by a state feedback bounded by 
?L and zero at the origin. 

B. Discussion of Assumption A3 

is stabilizable if and only if n # 0, i.e., there is a ccupling term. 
On the other hand, we may hope that by choosing appropriate 
coordinates, this system can be written with no coupling terms 
as in the form (18). Indeed, by letting 

51 = XI + a y ,  7J = Y (42) 

we get the system 

which satisfies Assumptions AI and A2 if n ;f 0. Unfor- 
tunately for the general case, it may be hopeless to find 
a “computable” change of coordinates such that in these 
new coordinates, there is no coupling terms. This leads us 
to the question: are we allowed to replace an exact but 
“incomputable” change of coordinates by a “Computable” but 
approximated one? In the following we answer positively to 
this question. For this, we need to introduce the following 
new assumption. 

Assumption A3: 

A3.1) There exist a function p which is defined, nonneg- 
ative, and continuous on [U. +no) and I function 6 

which is defined, strictly positive, and continuous on 
(O,+no)  such that 2 )  

Assumption A3. I ) :  Assumption A3.1) introduces restric- 
tions on the coupling terms hl ,  e l ,  and f l  without which 
asymptotic stabilizability may be impossible (see Sections III- 
B-4 and 111-B-5). 

Inequality (47) implies that the term f l  cannot change 
the asymptotic stability of y = 0 whatever the function 
( z l ( i ) , z z ( t ) )  is, as long as it is measurable and locally 
essentially bounded. 

The other conditions in A3.1) limit the behavior of the 
functions hl and e l .  The starting point is (44). Being able 
to write such an inequality is by itself not a restriction. More 
precisely, from Lemma B.l in Appendix B, and since Q and 
S are proper functions, there always exist nonnegative and 
continuous functions y,,, and ys satisfying 

-(:cl) h l (51,  n2, y) Y + -(%) el(z1: 5 2 ,  Y) y an: 1 1 1;: I 
(48) I I Y I  YU( IYI )  (1 + ~ ~ ( Q ( : c i )  + S(z2))). 

The restriction arises with the Fdct that we need to find: 
. \  
1 )  a function p satisfying the nonintegrability condition 

(45) and, for instance 

This is a constraint concerning the behavior of the 
functions h , ~  and el  for ( 5 1 , z 2 )  going to infinity; 
a function IF. satisfying the regularity condition (46) and, 
for instance 

In view of Lemma B.2, this is a constraint concerning 
the order of the zeros of the functions hl and el  at y = 0. 

+ Jm] (44) We shall see, in the proof of Theorem 111.1, how this special 
kind of restriction in terms of bounding functions allows a 

A case where our assumptions are satisfied is given by AO, 
A 1, A2, and the set of the following three assumptions, related 
to the one considered in [lo], assuming: 

1 Lyapunov analysis. 
(45) ~ 52 L2( [0 ;  +CO)) 

V q  > 0; 3c2:  {y  E R”\{O}; /y j  :I q} 

l + P  

* ~ c ( V ( y ) )  l g ( y ) l  5 cz .  (46) f1(21,Z2.!/) = 0. (51) 

4The particular value 1 /4  in (47) is written lo simplify the further notalions. SNote that we can extract from a lower bound for the order of the zeros 
Any real number in [O. 1) would be right. of h i  and ( ‘ 1  at 7~ = 0. This function is not necessarily ~ e r o  at zero. 
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H2) We have 

H3) The solution y = 0 of y = fo(y) is locally exponen- 

Indeed, (51) implies that (47) is trivially satisfied. Then, 
tially stablle. 

with H1) and H2), we get 

where c1 is some positive real number. Hence, to meet (44), 
it is sufficient: 

1)  to choose p, satisfying (45), as 

p ( s )  = z/s+l- 1. (55) 

2) to find a function 6 satisfying (see (SO) above) 

c1 1Y1 r(llJI) I .(V(W)) W(Y). (56) 

This last inequality generalizes the notion of higher-order 
terms considered in 1251 and [24]. It illustrates how the 
behavior of hl and e l  for y near the origin, quantified by 7, 
should be related to the stability margin of the y-subsystem, 
quantified by W .  The smallest is the order of the zeros of hl 
and e l  at y = 0 and the stronger the local attractiveness of 
y = 0 for Ij = fo(y) should be. 

In the case where H3) holds, an appropriate function K 

meeting (46) and (56) always exists with no constraint on 
y and therefore no constraint on the order of the zeros of the 
functions hl and e l  at y = 0. Indeed, let us first remark that 
with A1 and H3), an appropriate convex combination of the 
function V ,  provided by A I ,  and a quadratic form, provided by 
the local exponential stability, gives a new Lyapunov function, 
still denoted V ,  which is C2 on a neighborhood of the origin 
and such that for all y with lyl I as, we have 

al ly l2  < V(Y) < Q21Y12, a3Iyl2 < W(Y) < a4lyl2 (57) 

Assumption A3.2): Assumption A3.2) is an extra smooth- 
ness condition for y near the origin. Let us study this point 
within the context of Assumptions AO-A2 and H1)-H3). 

Satisfaction of A3.1) does not require y(0) = 0. But for 
A3.2), we observe that if there exists a point (XI , U )  satisfying 

fZ(X110,0,U) # 0 (60) 

then with AO, (58), (46), (S6), and (S7), A3.2) cannot hold if 
we do not have $0) = 0. Conversely, we assume 

r ( lv l )  = IYI ? ( lY l )  (61) 

with some nonnegative continuous function. This means that 
the zeros of h l y  and e l y  at y = 0 are at least of order 
two. Then A3.1) and A3.2) are satisfied with (59) replaced 
by s I 1, K ( S )  = ~ 2 .  

So, if the zeros of h l y  and e l y  at y = 0 are at least of 
order two and Assumptions AO-A2 and H1)-H3) hold, then 
Assumptions AO-A3 are satisfied. However, in this discussion, 
we have not exploited the positive definiteness of T ,  or more 
precisely the presence of ,,/m in (44). This explains why, 
in some cases as in Theorem V. 1, no restriction on the order 
of the zero of e l y  at y = 0 is needed. 

Stability for  the (z1,z2) Subsystem When y = 0 and U = 0: 
Consider the system 

(62) j. = 7n z + U ;  y = -ay - y3 - y3 U 

with a a strictly positive real number. Assumptions A2 and 
A3 are satisfied, but Assumption A1 holds only if m I 0. In 
fact, for all real number m > 2a, there is no asymptotically 
stabilizing feedback. Indeed, in this case, the set 

is positively invariant whatever U may be. Since the origin 
is not in this set, it follows that m > 2a implies there is no 
asymptotically stabilizing state feedback. We conclude that in 
the general case, we cannot have instability for the systems 
j.1 = ho(zl) or j . 2  = eo(x2) without an extra assumption on 
the system y = fo(y). 

Restriction on the Behavior of hl and el for  (XI, XZ) Going 
to Infinity: We have observed that the nonintegrability condi- 
tion (45) implies a restriction on the behavior of hl and e l  
when ( X I ;  5 2 )  goes to infinity. To motivate this restriction, we 
consider the system dV T azv 

(63) 
lim sup < +cc U . 1  ( 5 8 )  

where the ai's are strictly positive real numbers. Hence to 
meet (46), it is sufficient to choose, for s 5 1 

+y22", T J =  -- x=---- 
2 y  

l d y ( Y )  - Y & d O ) I  

W(Y) 1 + U 2  
li+o 

with 2 1. Assumptions and ~2 are 
Case n = I: Assumption A3 holds with 

1 cz 
(59) K ( S )  = - 

where c2 is a strictly positive real number. With Lemma B.2, 

Q ( s )  = V ( s )  = W(s) = - s2; p ( s )  = &,.(s) = 2 fi 2 
(64) 

the definition '' can be (': in a so Theorem 111. I applies. In fact, Theorem 11.1 applies already 
way that (56) holds. after the change of coordinate 

So we have proved that Assumptions AO-A2 and Hl)-H3) 
imply Assumptions AO-A2 and A3.1). x = exp(y2)z.  (65) 
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Case n > 1: We first observe that there is no function p These various points allow us to conclude that the function 
such that & is nonintegrable and b'(Y) 

k(y) = ?'+W lim i,:,, ~ ( s ) d s  Vy # 0, k ( 0 )  = 0 (70) 

is well defined, proper, and Lipschitz continuous on R" and 
satisfies 

(66) 

dV So we do not know how to check if Assumption A3 holds. In 

Indeed, the set (71) 

1 

fact, there is no globally asymptotically stabilizing feedback. k ( y z )  - k(y i )  = 1 n(V(y(3)))  ~ ( y ( s ) )  ( ~ 2  ~ yi)ds 

for all y1 and y2 in R?. With (14), (46), this identity, 
and the continuity of the functions [ f "  + f l y  + fzu,] and 
n ( V ) E [ , f "  + f l y  + f 2 ~ ] ,  we can establish the equation 

4 
n-1 

is positively invariant whatever U may be. Since the origin is 
not in the closure of this set, our conclusion follows. 

Restriction on the Behavior of hl and el  ,f(w y Near the 
Origin: Assumption A3 limits the behavior of ].he functions 
hl and el  for y near the origin. Indeed, consider the system 

Assumptions A1 and A2 are satisfied. But, we observe that 
the origin is a stable solution of (67) when 7~ = 11 if and only 
if n > 2. According to Lemma 111.2, this implies that A3.1) 
does not hold when T L  5 2. On the other hand, A3.1) holds 
when n 2 3 with 

With this choice, A3.2) holds when n > 3.  
In fact, for rb 5 3 this system is not globally asymptotically 

stabilizable by continuous dynamic state feedback. Indeed, it 
does not satisfy Brockett's condition (see [ l ,  Th. 7.11). 

C. Proof 

remarks. 
Proof of Theorem III.1: We begin with some preliminary 

1) By adding 1 to K if necessary, we can assJme that this 
function is not in L1([l, +x)). 

2) With (46) and AO, the functions n(V($))W(y) and 
.(V(y))~(y)fl(zl.z2.y)y can be extended as con- 
tinuous function? on the whole space. 

3 )  With K being continuous on (0 , fm)  and V being C1 
and positive definite, we have, with y(s)  = yl  + s(y2 - 

Y1 

x [fo(Y) + f l ( Z l ? z 2 ,  Y)Y + fZ(Zl?  2 2 .  Y, .).I. (72) 

Now, we denote by 1 the function which is zero at zero, C1, 
positive definite, and proper on [O, +CO) whose derivative 2' 
is [see (45)J 

(73) 

With these notations, we introduce the following candidate 
Lyapunov function: 

7 
U ( Z I , ~ ~ , Y )  = I(Q(zi) + S(z2)) + 3 k ( ~ ) .  (74) 

It is positive definite, proper, and Lipschitz continuous. Also 
the function ii(40) (r1, x 2 ,  y? U )  is well defined and continuous. 
Moreover, with (44), we get 

0(40)(J1. 5 2 ,  Y ?  U )  

7 
- < -3 .(V(y))W(y) + G ( ~ ~ , T ~ , Y . u ) ~ L  

+ Z'[-R(J1) - T(z2) 

+ J.(V(W))W(W)[1 + P l m l  

+ 1' 4V(Y))W(Y)[1+ PI2 (75) 

where 1' and p are evaluated at Q(z1) + S(z2) and with G the 
continuous function (see AO, A l ,  and A3.2) defined now as 

for all y1 and y2 in R" and such that the origin is not 
in the segment [yl, y z ] .  

4) Condition (46) implies Jb l i ; (V(sy))%(~y)yds is a 
well-defined Riemann integral. 

I 
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This inequality is the key point of our analysis. It has been 
established by using only Assumptions A1 and A3.1), with 
A3.2) helping only for getting continuity of G. It allows us to 
conclude the ‘proof‘ by following exactly the same arguments 

0 
Since (77) holds under Assumptions AO, A l ,  and A3. I ) ,  we 

have proved the following. 
Lemma 111.2: If Assumptions AO, AI ,  and A3.1) hold, then 

the origin is a globally stable solution of (40) with U set equal 
to zero. Moreover, all the solutions converge to the largest 
quasi-invariant set contained in {(XI, 2 2 ,  y):  R(x1)  = 0, xz = 

Let us finally remark that the feedback depends only on 
(j(x1,xZiy,u), where the functions eo, e l ,  / io,  hl ,  f o ,  and 
fl are not used. It follows that Theorem 111.1 also gives a 
kind of robust global asymptotic stabilizability result. Indeed, 
with the functions Q, S, V, h2, e 2 ;  f 2 ,  K ,  and p fixed, i.e., 
with G(xl. ~ 2 ,  y, U )  fixed, we have a globally asymptotically 
stabilizing feedback for any system of the form (40) whose 
functions eo ,  el, ho, hl, , fo :  and f1 are such that A0 to A3 
hold. 

A Larger Class qf Stabilizing Feedback For proving The- 
orem 111.1, we have used a feedback law which makes the 
product G(xl; x2, y, 7 1 ) n  nonpositive for each time, in the case 
of the static feedback, or in an integral sense, in the case of the 
dynamic feedback. This constraint of nonpositiveness follows 
from not taking advantage of the negativeness already pro- 
vided by the term - i ~ ( V ( y ) ) W ( y ) .  By using this property,6 
we shall be able to propose a broader family of feedback laws. 
The interesting fact about this new family is that it contains 
elements which can be written without the explicit knowledge 
of the function V .  This may be helpful when Theorem 111.1 is 
used repeatedly in a recursive design. 

To show how this new family can be obtained, we work 
within a smoother context than for Theorem 111.1. Namely, we 
modify Assumptions AO, A l ,  and A3.2) into the following. 

Assunzption AO’: The functions f o ,  f l :  e l :  and h1 are CO, 
the functions f 2 ,  eo. eZi ho. and h2 are C1, and ho, eo ,  and 
f o  are zero at the origin. 

A S S L W Z ~ ~ ~ C W Z  AZ’: There exist functions Q ,  S, and V satis- 
fying A1 and of class C?. 

Assumption A3.2‘: n(~(?,))~(y)~~(~~,2~:~,~) is a C1 
function on R“ x R”’‘ x R”‘2 x Rq. 

We introduce the following compact notations: 

as those invoked in the proof of Theorem 11.1. 

0, y = 0). 

Note that rlJ depends on V and 

r l ; ( 2 1 , 2 2 , 0 )  = 0. (79) 

The function I‘, on the other hand, does not depend on V but 
depends on I’. However, 1’ can be determined, via (73), (48), 
and Lemma B.l  from the data of the ( 2 1 ,  n?a)-subsystem only. 

of - P ( Q ( ~ T , )  + S ( . T L ) ) T ( . I . 2 ) .  
‘For the sake of simplicity, we do not take advantagc ofihe nonpositivcness 

The new Assumptions AO’, AI’, and A3.2’ imply that the 
function 6, defined in (76), is C1. It follows that there exists 
a continuous function 4 satisfying 

(G(J . I ! 22 ,Y iU) ,1L )  = G ( X 1 ; ” 2 , Y ; U )  - G ( X l , X 2 , Y , O ) .  (80) 
With these notations, (76) and (77) become simply 

q x l  x2, Y, U )  = K (  qr, + r + (4, U )  (81) 

U ( X ~ ,  2 2 ,  y; ~ ) ( q g )  5 -I‘ 

+ [ K ( V ) L  + r + (4 ,  U ) ]  U .  (82)  

So, global asymptotic stability can be concluded if U satisfies 
the constraints 

lyl f 0 j -I’ R+ -T - -K(V)W [ i ]  a 
+ [n(v)r, + r + (6: U ) ] ,  < o (83) 

{Y = 0, r # o} (84) 
{ y = ~ ,  r = ~ } = + - ~ = o .  (85 )  

[r + ( G , U ) ] U  < o 

Proposition 111.3: Assume (40) satisfies Assupptions AO‘, 
Al’, A2, A3.1), and A3.2’. Under this conditio%, for any ii 
in (0, +CO], the origin can be made a globally asymptotically 
stable solution by a static state feedback bounded by U and 
of the form 

4 n ; Q ; Y )  - P ( Z l : x 2 ; Y )  

x [4u. 2 2 ,  Y ) 4 ~ ( Y ) ) r , ( ~ l , e 2 , Y )  

(86) T + q 2 1 ,  2 2 ,  :!)I 

p(51 .x2 ;y )  L 0 (87) 

where a and p are any continuous functions satisfying 

1 
I G ( n *  2 2 :  w :  7!,(21, 2 2 ,  Y ) ) l P ( Z l ;  x2, Y) L j (90) 

and p is such that 1u (q3  2 2 ;  y) (  is upperbounded by U .  
Proo$ We first remark that (79), (88), and (90) imply 

(84) and (85). So it remains only to establish (83). Since, for 
any real numbers a ,  p, b ,  and c, we have 
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The function n(V)W being positive definite in y, with (87), 
(89), and (92) holds if 

Proposition 111.4: Assume (40) satisfies Assumptions AO', 
Al',  A2, A3.1), and A3.2'. Under this condition, if 

Therefore if an expression, not depending on V, can be found 
for /?, we have reached our objective of finding a feedback 
law not requiring the explicit knowledge of V .  So our new 
task is to find such a function /3. 

From Proposition 111.3, this function p must satisfy 
(87)-(90). With (88) and (89) and ox s 0, a necessary condition 
for the existence of such a function f i  is 

where p is any real number in (0?p*]  and I', (PR ,  and ,li,n,c 
are defined in (78), (97), and (98), respectively. 

Proof: Since (101) is obtained from (86) by letting 

a ( m , m > y )  = 0, 
p ( x 1 1 ~ ;  y) 7j>E.1L(2L ,z2)(i+ir(z1 ,z2rY)i)(i+if2(Z1,22,Y,o)i2) 

W R ( l Y I 2 )  

(1 02) 

it is sufficient to check that (87)-(90) hold. Clearly (87) and 
(88) are satisfied and, with p 5 U ,  we have 

> 0  IU(21?n2? Y) l  5 77,. (103) 
W(Y) ~ 

Y+O IF(V(Y))lr"(~1;22,y)l2 
T(z1, 2 2 ;  0) # 0 + h i n f  

(95) To check that (89) holds, we observe that since W is positive 
definite, (100) implies the following real number & I  is strictly which, with the definition (78), is guaranteed if 

lim inf w(y) > 0. (96) positive: 

= En7 > 0. (104) y-io K ( w ) l g ( v ) l  min W(Y) 
' y ' 5 R  .(V(Y/>>j F i v ) J  In fact this latter condition is also sufficient. To see this, let R 

and U be two strictly positive real numbers, and let us introduce 
two functions independent of V. 

1)  Let pn be a smooth nonnegative function onto [0,1] 
Then, since 01 0 and (102) implies that B(s~,x~,~J) is zero 
when lyI is larger than R, the Schwartz inequality and (78) 

such that yield 

Hence (89) holds if p < &[W. 

4, (801, (761, (731, (981, and (103) imply 
$ R , u ( : ~ l ,  x2) 2 111ax 1, sup {$(:El? n:2, y, U)} (98) TO check that (90) holds, we observe that the definition of 

IYI 5 R* IB(.l,..2,V,.(.1,..2,Y>)l 

IbISfi { M < H  

with the function 4 defined as 

This yields, for all ( X I ?  2 2 ,  y) 

I I 

which makes sense since the functions f 2 ,  h z ,  and e 2  

are C1 (see AO'). 
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But (102) gives 

So p satisfying 

is sufficient for (90) to hold. 
Finally, by taking 

the assumptions of Proposition 111.3 are met which implies the 
0 conclusion of Proposition 111.4 holds. 

Remark 111.5: 
As already mentioned, the interest of the feedback law 
(101) is that it does not depend on the functions V and 
k .  But we have the parameter p to be tuned. 
Requirement (100) is satisfied in the context of the 
discussion in Section 111-B, i.e., if Assumptions AO', 
Al',  A2, and H1) to H3) hold with y satisfying (61). 
If f 2 .  e2, and h2 do not depend on U ,  then is zero and 
(101) can be simplified to 

Iv. DESIGN TOOL 2: CHANGE OF COORDINATES 

A. The Context 

With Assumption A3, we have defined a context within 
which the Jurdjevic and Quinn approach can be applied to (40). 
Our task now is to investigate if there exists an appropriate 
change of coordinates so that the modified coupling terms f l ,  

h l ,  and el satisfy A3. Stated this way, the problem is difficult. 
Today, we have no general answer. To solve it here, we limit 
the field of investigation to a particular subclass of systems in 
the form (40). In [17], another subclass is considered. 

So, now we restrict our attention to the set of assumptions 
considered in Section 111-B.1 and for a system where the 
undriven x1 and x2 subsystems are linear and there is no 
coupling term , f l  

21 = MlXl+Hl(Xl,XZ,Y)Y +H2(Xl,X2,Y,")U 
2 2  = M2X2 + El (Xl , X 2  , Y)Y  + E2 (Xl , XZ? Y ,  u)u 
Y = Fo(Y) t F~(X~,XZ,Y,U)U { .  (1 13) 

where Y is in R", XI in Rml,  X2 in R"' , U in Rq. We use 
capital letters to distinguish the initial coordinates ( X I ,  X z ,  Y )  
from the transformed ones (zl, 22, t ~ )  in which Theorem 111.1 
is applied. We assume the following. 

Assumption BO: The functions H I ,  Hz ,  E l ,  Ez, Fo, and 
F2 are C3, and E'" is zero at the origin. 

Following the discussion in Section 111-B, we know that 
H I Y ,  at least, should have a zero at Y = 0 of order strictly 
larger than one and possibly of order two. This is generically 
not satisfied. So the problem we are addressing now is to find 
a global diffeomorphism 

(Xl,XZ?Y) ( 2 1 , ~ 2 , Y )  

such that in the new coordinates, the coupling term hl is of 
largest possible order or even that it is absent as it was the 
case for (41). 

B. Change of the XI-Coordinate 

C3,  it can be decomposed as 
For (1 13), since with Assumption BO the function H l Y  is 

Hl(Xl? XZ. Y )Y  = HlO(Y) + Hll(Y)Xl + HlZ(Xl,X2; Y )  
(1 14) 

where Hlz is a C2 function and 

Hl"(Y) = H1(0,0, Y)Y, 

To simplify our task, we look for an appropriate change of 
coordinates for an auxiliary system 

Xi = AdiXi + Hi"(Y) + H i i ( Y ) X I ,  Y = Fo(Y). (116) 

To preserve linearity in XI, we restrict ourselves with the 
following class of transformation: 

where the matrix function Pz and the vector PI are to be 
chosen. With these new coordinates ( I  16) is rewritten 

il = MlZl + hlO(Y) + hll(Y)Jl, B = fo(Y) (1 18) 

where, by using the identity7 

we have 

7Which is obtained from the identity 

d 
d 7 
- exp(--Pl(y)T) = -PZ(Y)C~P(--P~(Y~~~ 
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h o ( Y )  = ..P(-Pz(Y)) where P is the solution of the linear system 

This leads us to the following questions, 
1) Given two functions H11 and Fo, what can be done on 

hll defined in (120) with a function Pz? 
2 )  Given four functions Hj l ,  E b ,  Hlo, and 1'2, what can 

be done on hlo defined in (121) with a function PI? 
Lemma IV. I :  Assume BO holds and let A der ote 

If the spectra of A and M I  are such that 

AA, + A M I J  # A.l.llfi ( 1 24) 

AA,  # A M , ,  (125) 

for any ( i , j ,  k ) ,  then there exist smooth functions PI and Pz 
which give hl l ,  in (120), and hlo, in (121), ha\ing zeros of 
order two8 at y = 0, i.e., there exists a C1 -'unction 61, 
satisfying 

h o ( Y )  + hl(Y)x1 = ( ~ , 1 ? , ( ~ 1 , Y ) > Y ) V .  (126) 

Proof9: We remark that by denoting 

which can be solved in general if and only if (125) holds (see 
[S, Sec. 8.11). 0 

When Hl l (y)  = 0, in (121), we get hlo(y) = 0 if we can 
find a function F'1 solving the following partial differential 
equation: 

ap1 
dY 

-M1P1(W) + H1o(Y)  + Y - ( Y ) F O ( Y )  = 0. (132) 

This case is interesting since the Jurdjevic and Quinn approach, 
i.e., Theorem 11.1, applies in the new coordinates. We remark 
that if ( I  32) holds, then the graph {(XI Y): X I  +PI ( Y )  = 0} 
is an invariant set of 

x, = MlX1 + H1o(Y);  Y = Fo(Y) .  (133) 

If the matrix A is asymptotically stable, this graph is a subset 
of the stable manifold of the origin and even the stable 
manifold itself if all the eigenvalues of M I  have zero real 
part. So, in this latter case, the partial differential equation 
(1 32) has a solution at least on a neighborhood of the origin. 
In fact, here we can exploit the triangular structure of (133) 
to prove that when the following integral makes sense: 

P ~ ( Y )  = im exp(-sMl)Hlo(@(s, ~ ) ) d s  (1 34) 

and is C1, with @(t ,Y)  the solution of 

(135) 
33 
at -(t,  Y) = F " ( Q ( t , Y ) ) ,  q o ,  Y )  = Y 

then Pl(Y) is a solution of (132) [see (249)l. This has been 
remarked by Yang in [29]. Precisely, given (134) and out of 
the context of this paper, we have the following. 

by letting (P2(k, , ,1))  be the solution of the lineal- system 

0 = V H l l ( k , i , . i )  Lemma IV.2: If the matrix % ( O )  is asymptotically stable, 
the matrix -MI is stable and the function HI" is C1, then PI ,  
given by ( 134), makes sense and is C1 and a solution of (1 32). + [ w [ i . l ) ? 2 ( k : l . ; )  - ?2(k,i,l)M. ( l , j )  

Pmr$ See Appendix C. 1 

- % [ I  ,i ,;) A ( 1  ; I C )  ] (128) Remark IV.3: 

and by defining the matrix P2 as (see [lS, I (l0,lO)l) 1) When M I  is equal to zero, (134) gives 

we obtain a function h l l  with a zero of order two at y = 0. 
Arguments similar to those used in [2, Proof of Lcmma 1.  I ]  
show that (128) can be solved in general if and only if (124) 
holds. 

More simply, the function hlo in (121) has a zero of order 
two at y = 0 if we chooseJ0 

Pl(W) = P Y  (130) 

8By exploiting Poincark normal form theory one can makc these functions 
of higher orders by introducing other nonresonance conditions (see the proof 
of 12, Th. 3.11). 

"The formulas (129) and ( I  30) may not he the most appropriate for practice. 
The only important point to retain ahout the functions PI and F'L is that 
- (O)  d PI and % ( O )  are imposed. 

'"(130) is the change of coordinates proposed by Tee1 in 26, (21)]. 

erty is of prime importance in the applications. It will 
be extensively used for the cart-pendulum system in 
Section V-C. 

2 )  The existence result, given by Lemma IV.2, has been 
exploited by Yang in [29], and Sontag and Sussmann 
in [23], to prove global asymptotic stabilizability by 
saturated feedback of globally null-controllable linear 
systems via a Lyapunov technique similar to the one 
used in Theorem 11.1 (with 5 replaced by X + Pl(Y)) .  

3) When X is of dimension 1 with nil, = 0, the matrix A 
is asymptotically stable and the function H11(Y)  ic GI, 
the (scalar) function Pz, given as 

(137) 
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with @(s, Y ) ,  the solution of (135), well defined (see 
Appendix C). In this case, we get [see (120)] 

We remark also that (137) gives 

meaning that Hll(Y) is a total derivative. 

V. APPLICATIONS 

With the tools we have proposed in the previous sections, we 
are now equipped to grapple with various global asymptotic 
stabilization problems as those stated in the first section. We 
begin with a generalization of the question of adding one 
integration [see (2)]. This will be followed by a solution 
for feedforward systems [see (3)]. Finally, we shall illustrate 
the various aspects of the proposed design by studying the 
cart-pendulum system. 

A. Adding Integration 

Result: We consider ( 1 13) again under Assumption BO, 
with the notation (123) and the decomposition (114). We 
introduce the following assumptions. 

Assumption B I :  
B1.l) The point Y = 0 is a globally asymptotically stable 

equilibrium point of the Y-subsystem when U is set 
to zero. 

B 1.2) The matrices A and M2 are asymptotically stable, the 
matrix MI is stable, and the spectra of these matrices 
are such that for any ( 2 ,  j ,  k )  

Assumption B 1.2) implies the existence of positive definite 
symmetric matrices Q1 and Q2 satisfying 

and of P and P2, solutions of, respectively, (131) and (128). 
(See Lemma IV.l). Then let E2 be 

Assumption B2: X1 = 0 is the only solution of 

2 1  = MlX1.  X,TQ1MIX, = 0, X,TQ1%(X1) = 0. 
(1 43) 

Assumption B3: The functions Hlz and E1 are such that 
there exists a nonnegative continuous function y satisfying 

Theorem V.1: If" assumptions BO to B3 hold, then for any 
U in (O,+m], the origin of (113) can be made a globally 
asymptotically stable solution by a C3 state feedback bounded 
by U and zero at the origin. Moreover, if the linearization 
of (1 13) is stabilizable, the linearized closed-loop system 
is asymptotically stable. Finally, in the case where the X I  
component is not present, the origin of (1 13) with U = 0 is 
globally asymptotically stable. 

Discussion: 
1) Assumptions B1 and B3 give guidelines on how to 

decompose the "integrating" coordinates X into XI and 
X2. First, the coupling terms H I  and El can grow at 
most linearly in X at infinity. Second, the decomposition 
must be done so that matrix M2 is asymptotically stable 
and matrix M I  is only stable but satisfying the spectral 
separation (140). Finally, the remainder H12 in (1 14), 
when divided by ( Y ( ,  should vanish with X2 and Y. 

2) We observe that Assumption B2 involves the function 
Kz(X1) and not the function Hz(X1;  0,O. 0) as would 
be the case with A2. This is a consequence of the change 
of coordinates. Unfortunately, there is no guarantee that 
B2 holds if A2 holds and vice versa. For instance, 
consider the following system proposed in [lo]: 

XI = Y 3  - Y + U ,  Y = -Y + U,. (145) 

Assumption A2 is satisfied but not A3. The change of 
coordinates given by Lemma IV.1 is 

Then the system is rewritten as 

This time Assumption A3 holds but not A2.I2 
3) Another important constraint imposed by Assumption 

B 1.1) is the asymptotic stability of A. It is known to be 
superfluous in some cases. In our general context, the 
properties of A are used: 
a) to make Hlo and Hl1 have a zero of order two at 

y = 0, as discussed in Lemma IV. 1. But in this case, 
we need only the nonresonance condition (140); 

b) to guarantee that (57) holds to make sure that we 
can find a function n satisfying the requirements in 
Assumption A3. But, if we can make the change of 
coordinates (117) so that Hlo and H11 have a zero 
of high order at y = 0, then Assumption A3 may 
hold without the need of asymptotic stability of A. 
However, the existence of this particular change of 
coordinates will involve more nonresonance condi- 
tions than simply (140). 

"If there is no term H l z ( S 1  >>Yz,Y) in the decomposition (114), we can 

''A Dossihle solution is simuly to change the control as t i  = lr - Y 3  + 11 

replace C 3  by C2 in BO. The resulting feedback is C2 in that case. 

I .  

(144) and to apply Theorem 11.1. 
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Proof of Theorem V.l: 
1) Global asymptotic stability: To prove the first point 

of Theorem V.l ,  we check that after a change of 
coordinates, Theorem 111.1 applies 

Using (114) and the fact that H I  is C3, B3 implies 
the existence of continuous functions Hlzlr and H12x 
such that 

H12(Xl ,X2,Y)  = [ (Hl2Y(Xl ,X2,Y) .Y)  
+ (HlZX(X1, x2, Y ) ,  J-2)ly. (148) 

Then, since the spectra of A and MI berify (140), 
Lemma IV.1 gives functions PI and P2 so that by 
applying the change of coordinates, linear in (XI, X 2 )  

(149) 

(1 13) can be rewritten, with (1  26) and (1 48), in the form 

..P(-p2(y))(Xl + PI(Y)) 

Y 

?I = M I X I  + ( h y ( z l , z 2 ,  Y), Y)Y 

where h2, e 2 ,  and f 2  are C3 and all the other functions 
are at least continuous so that Assumption A0 holds. 

Then, we have that Bl.1) and (141) imply that A1 
holds with, as mentioned in Section 111-B 1, functions 
V and W satisfying (57) and V of class possibly C4. 

Second, we remark that PI and Pz, given by Lemma 
IV. 1, satisfy 

(151) 
ap2 PI(Y)  = PY, --(O) = F2. ay 

It follows that A2 in the new coordinates is, nothing but 
B2 with: 

Q(zi) = I ~ I I & ,  ho(zi) AJizi, 
hz(z1,0,0,0) = %?(ZI) (1 52) 

where R2 is defined in (142). 
Third, we see, with B3 and the linearity in (XI, X, )  

of (149), that there exists a nonnegative continuous 
function 7 such that 

Ihiy(xi,x2,Y)I < ( I +  /xi1 + / Q ~ ) ? ( v )  (153) 
lhlz(~l,zz,y)l L ?(Y) (1 54) 
Iei(zi,xz,y)I 1. (1 + (zi1 + \ Z ~ I ) ? ( Y ) .  (15.5) 

This yields 

12TQi (hiy(zi  , 5 2 ,  Y), Y ) Y ~  

I C l Y I 2 Y ( Y ) 1 ~ 1 1 ( ~  + IZ1l + 1221) (156) 

(157) 

I ClYlY(Y)l~lll~2l (158) 

I CIY l2Y(Y)  (1 + Jm:) 
I I L . T & 1 ( h 1 2 ( 5 I r X 2 , Y ) , 5 2 ) Y I  

the main inequality (44) of A3.1) holds. We also have 
the following. 

The function p is nonnegative and continuous on 
[0, +oc) and satisfies (45). 
With (57) and the fact that W is positive definite, 
the function IE. can be chosen nonnegative and C3 
on [O, +m) and to satisfy (46) and A3.2. 

a) 

b) 

We conclude that A3 holds. 
Theorem 111.1 applies and guarantees the existence of 

a C3 globally stabilizing feedback law. Note that since 
B 1 implies that (100) holds, a possible feedback law is 
(101). Let us finally recall that (74) gives an appropriate 
Lyapunov function with negative definite time derivative 
if 

/ & h W x 1 1  + ~ X X ? l % ( X I ) ~  # 0 VZl # 0. (163) 

Local exponentiul stability: To prove the asymptotic 
stability of the linearized closed-loop system, we write 
the linearization of (150) at the origin 

X I  = M i x i  + D i u ,  iz = M 2 ~ 2  + V ~ U ,  y = Ay + BU 
(1 64) 

with the notations 

Ll = f z ( O ,  0, 0, O), D1 = hZ(0,O,O,O) 
D2 = eZ(O, 0, O , O ) .  (165) 

To prove that the linearization of the control given, for 
instance by (86), is stabilizing this system, we proceed 
in two steps. 
a) We apply Theorem 11.1 to obtain a linear feedback 

b) We check that this linear feedback u~ is nothing but 

Step I :  We first remark that (164) is of the form (18). 
Then Assumption B1.2) implies that A1 holds. Also, 
the assumed stabilizability of the linearization of ( I  13) 
implies the stabilizability of the pair (M1,Dl) .  This 
fact with Lemma 11.3 implies A2 holds. From (86) in 
Proposition 111.3, the following linear feedback globally 
asymptotically stabilizes the origin of (164): 

UL for this linear system (164). 

the linearization at the origin of (86). 

with the notations 

.7: = ("'), V = (gi), Q = ('I ) (167) 
2 2  0 Q 2  
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and where: C3) The pair 

a) V is the Lyapunov function satisfying (21) and 
(57) and therefore 

b) 
c) 

60 and lo are any strictly positive real numbers; 
a0 and PO are any real numbers satisfying 

Step 2: With (87)-(90), we can take 
n 

a0 = a(O,O,O), P o  = P ( 0 , 0 , 0 )  

to satisfy (169). So, the linear approximation of (86) at 
the origin is equal to (166). 

3) No X I  component: When X I  is not present and U is set 
to zero, (14-1) and (144) imply that the XZ, subsystem 
with Y as input is convergent input bounded state 
(CIBS) as defined in [22]. It follows that the last point 
of Theorem V. 1 is a direct consequence of [22, Th.] and 
that asymptotic stability of -4 is in fact not needed in 
this case. 0 

B. Feedforward System 

following system is globally asymptotically stabilizable: 
Theorem V.l  can be used repeatedly to prove that the 

kTL = hOn(Yn--1)2n + hn(yn- - l )  + h2n(Zn,Yn-1; v)v  

where yo is in Rn, xl in R"., U in Rq, and with 

We introduce the following assumption. 
Assumption CO: The functions f o ,  hoi, hli are C2, the 

functions f 2o  and ha; are C3,  and h l j  and f o  are zero at 
the origin. 

This assumption allows us to introduce the following no- 
tations: 

M: = h o i ( O ) ,  C: = e ( 0 ) ,  Di = h';(O, 0,0), 
A - af0 0 ( 1  73) i 0 - =( 1, Bo = f ' O ( 0 , O ) .  

Theorem V.2: Assume CO holds and: 
C1) There exists a C' feedback law ?iO(yo), with ~ ~ ( 0 )  = 0, 

which globally asymptotically stabilizes the origin of 
the yo-subsystem of (171) and so that the linearized 
closed-loop system is asymptotically stable. 

C2) For any i in { 1, . . , n} ,  the matrix Mi is such that 
there exists a positive definite matrix Qi satisfying 

&;Mi + M:Qi = 0. ( 174) 

I I 

M1 
0 An 

is stabilizable. 
C4) For any i in { 1, . . . , n} ,  the function h2i satisfies, for 

all ( G , W Z - I , V )  

Under these conditions, for any U in (0, -too], the origin can be 
made a globally asymptotically stable solution of the system 
(171) by a C2 state feedback bounded by U+supyo{ IVo(Yo)l}, 
and the linearized closed-loop system is asymptotically stable. 

Remark V.3: 
1) Going back to (3 ) ,  we see that the assumptions of 

Theorem V.2 are satisfied if ri: = f l ( x , u )  is glob- 
ally asymptotically stabilizable with local exponential 
stability and the linearization at the origin of (3) is 
stabilizable. 

2) Theorem V.2 is just one of the many statements which 
can be obtained by repeatedly applying Theorem 111.1. 
Note in particular that (174) is restrictive. This is made 
with the purpose of verifying more easily that the 
spectral condition B 1.2) holds. 

Proof of Theorem V.2: We prove this theorem by induc- 
tion. We will call i-system the subsystem of (171) whose state 
vector is y: = (yo, 2 1 , .  . . ,xi) and which we rewrite in more 
compact form as 

Induction Assumption: The functions f i  and f z 2  are C 2 ,  
and the origin can be made a globally asymptotically stable 
solution of the system (176) by a C2 state feedback vi(yz) 
bounded by i G  + sup,,{IwO(y~)I}, with vi(0) = 0, and the 
linearized closed-loop system is asymptotically stable. 

This assumption is satisfied for i = 0 thanks to assumptions 
CO and C l ) .  To prove that it holds also for i + 1, we first 
remark that the functions 

are C' as a direct consequence of the induction assumption 
and CO. Then let us show that Theorem V.l  applies. 
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Also note that f 2  does not depend on z.;+1. All the 
functions appearing on the left-hand side are C2.  Since 
(175) implies that h2i+l is linear in z;+1, the i+l system 
can be written in the form 

(179) 

which is a simpler version of (1 13), with, in particular 

Zi+l = ho(Yi) + hl(Yi)%+l + hZ(G+l, $4.1 U ) U  { .  i i  = f o ( Y i )  + . fZ(Yi ,U)U 

and 

where 

2) Assumption B1.l) follows from the induction assump- 

3) Since the matrix A is given by the IinearLzation of the 
tion. 

closed-loop system 

Y b  = L(Wd + f21(Yz,.%(Y%)).z(y,) (183) 

its asymptotic stability is given by the indu1:tion assump- 
tion. So with (174) Assumption B1.2) holds. 

4) Assumption B2 is a consequence of Assumption C3), 
Lemma 11.2, and the fact that (175) and f ;  , not depend- 
ing on z7+1, imply 

' ~ ! H z ( T , + I )  = ~ H Z ~ + I ( ~ , + I ,  0,O) = D .  (184) 

5) Assumption B3 is trivially satisfied. 
So, with Theorem V.l ,  we get U , + ~ ( Y ~ , Z , + ~ ) ,  a C2 state 
feedback, bounded by :ti, such that the induction assumption 
is satisfied for the i + 1 system. This completes the proof of 
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C. The Cart-Pendulum System 

The cart-pendulum system, whose dynamics can be ex- 
pressed as in (6), is a good example to illustrate some aspects 
of the designs which can be done by combining the tools 
described in Sections 11, 111, and IV. 

The procedure proposed in Section V-B goes with first sta- 
bilizing the (00, W O )  subsystem. Then we add one integration 
for the stabilization of the (so, 00,  W O )  subsystem. Finally, a 
last integration will give us the full system. However, we 
remark that for the first step, the (00, W O )  subsystem is living 
in the cylinder S1 x R. The topology of this manifold as well 
as the presence of cos(80) multiplying ug lead us to restrict 
our attention to (-2, ;) x R. Then to make our problem a 
global stabilization problem we let 

t o  = tan(eo), T O  = (1 + t ; )wo. (1 85) 

This allows us to rewrite (6) as 

Following Section IV, at each step of adding an integration, 
an appropriate change of coordinates will be needed. With 
Remark IV.3, we know that this change of coordinates is easily 
found when total derivatives are known. So let us start by 
writing a repertory of some total derivatives not depending on 
the control 

I- 

The ( t o ,  T O )  Subsystem: Since the control uo is integrated 
in (186), we propose the following feedback which, from the 
list of (187), is a total derivative: 

It is stabilizing as can be seen with 

The ( so , to ,  T O )  Subsystem: To write this subsystem in the 
form (IS), we let, using (187) 

z1 = 20 + 2 In ( t o  + m) , 
s1 = so + 2 A  

tl = to, 7-1 = T o ,  ( I 90) 
fl + t o ,  

This yields a (sl, t l ,  T I )  subsystem in the form (18) 

Theorem V.2. 
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So the technique of Theorem 11.1 applies. In particular, an 
appropriate Lyapunov function is 

The ( 2 0 ,  so, to: T O )  System: From Lemma IV.2, we know 
there exist coordinates allowing us to write this system in the 
form (1 8). But we have not found the explicit expression for 
the change of coordinates. Instead, we look for obtaining the 
form ( 11 8). For this, inspired by ( I  16) and Lemma IV. 1, and 
using (187) and (194), we let 

V1(S~;tl,Tl) = Vo(t1,Tl) + I ( s : ) .  (192) 

However, once again, in designing the feedback u1, we have 
to think of the next step where SI - tl is integrated in the 
system (191). Then we remark that by letting 

rc2 = IC1 + 1 0 S l  + 
s2 = SI, t 2  = t l ,  7-2 = 7'1, 

U 2  = 'U1 - L S l .  10 
1 

10 ~I(sl,~l,Tl) = -s1 (193) We get 

0 t 2 =  T 2 ,  

we get a new total derivative, depending this time on the 
feedback we use 

1 
10 + 1'2 + &s2) JW - U : , d W .  SI= --SI. 

This is the form (1 18) with a third order term 

(202), we get 

Using This feedback is stabilizing as can be seen by taking (l+t$ ' 

(195) 
1 

I ( $ )  = 5s: + Gls1/3. 

Indeed, in this case, we get 
which follows from the implication: 

But we have, using Young's inequality 
So the technique of Theorem 111.1 applies. In particular, a 
possible Lyapunov function is 

&(m, s g .  t 2 .  ~ 2 )  = 2V1(a.  h, ~ 2 )  + 1 a ( s ) d s  (207) 
b21 

(197) 

(198) where a is any continuous odd function satisfying 

(208) 
a(0 )  = 0; 0 < scT(s) 5 Is1 v s  f 0, c liminf,,+, a ( s )  > 0. 

By using (205), we get 
0 2 

3 
vz 5 --W1(sz,t2,7.2) (199) 

3 

(209) 

So, by choosing the function u2(xz, s2, t g , r 2 )  with sign op- 
posite to the sign of 

[T? + t?] J m l t l 1 3  

Jm[Jm + 11 [T? + t?] * + 100(1(.2) u2. 1 1 
(200) 

1 + 51~43 + [T: + t:] + 5s: 

(201) 
when the term between brackets is not zero, we finally get a 
globally stabilizing feedback for (1  86) as We conclude 

= uo(t0,ro) +ul(sl,tl;rl) +U2(22,Sz,tz;T2). (210) 
0 

Wl(S1, tl,Tl) =vl((I91).(193)) For the cart-pendulum system this implies that asymptotic 
stability can be guaranteed provided the initial deviation from 
the upward position for the pendulum is strictly less than 90". - ( T ~  + t;) d G  - is; (202) 
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Remark V.4: 
1)  This result of asymptotic stabilization on the upper half 

space is not new and can be found at least in [3]. 
2) For the sake of clarity, we have not introduced any 

parameters in our feedback law. By introducing them 
we would get degrees of freedom allowing us to modify 
the behavior. 

3) We have tried to take full advantage of the dynamics of 
the system with the systematic use of total derivatives in 
our change of coordinates. But, for both the (so ,  t o ,  7-0) 
and the ( . E o , s ~ . ~ o , T o )  systems, we could also have 
solved the correcponding linear equation (131) and used 
the feedback law given by (101) which, in this particular 

an application to the problem of orbit transfer for a satellite. 
More generally, the dissertation [ 171 contains many results, 
extensions, and applications about the technique proposed 
here. 

APPENDIX 

A. Proof o j  Lemma 11.4 

We need the following technical lemma. 
Lemma A.1: Let G be a CO function. For each integer 

IC, we can find two functions yo and 71, strictly increasing, 
continuous, and onto [0, +x) such that for all (I. U ) ,  we have 

IG(I' U )  - G( I ,  011 5 YO(I4) [I + Tl(lEl2 + I.12)] (213) case where h l ,  ha, and f 2  depend only on y, can be 
simplified in 

with r defined in (78) where, using (208), we can 

feedback law can be obtained: 
choose 1'( s) = 9. Proceeding this way the following e(<, U) = WE, U )  - G(E; 011. (2 14) 

We define two functions jo and 51 as follows: for s > 0, we let 

U = uO(tO, 7-01 + P.s'PR, ( f g  + T g )  

x o b  (so + 27-0 + t o )  + IJz'PR, (si + t i  + 7-;) 
1 

P.i 
x oz 2 0  + 2to + -(so + 27-0 + t o )  + s o  + 7-0 

(2 12) 

where the functions p ~ ,  and P R ,  satisfy (97) with H, 
and R, any strictly positive real numbers, the functions 
os and oz satisfy (208), and the real numbers ps and 
bx are to be chosen strictly positive and not too large. 

( 

VI. CONCLUDING REMARKS 

We have proposed a Lyapunov design for deriving a 

and for s = 0, we let 

Yo(0) = 0, ql(0) = 1. (216) 

Since G is a continuous function and G(E'u)  goes to 
zero as ( goes to 30, the functions Yo and y1 are well defined, 
nondecreasing, and continuous at s = 0. This allows us to 
define two new functions 

1 +!E I +i: ( E  ,..I2 

(217) 
yo(.s) = ; .Ips ?"( t )d t  + s 2 y0(s) + s. 

Yl(S) = + J$*" (?l(t) - 1)dt + 2 ( j l ( S )  - 1) + s. 
state feedback law for a class of systems in the form 
i = h , ( z ,y ,u ) ,y  = f (y ,u ) ,  assuming global asymptotic 
stabilizability for the y subsystem. We have also shown that 

They are strictly increasing, continuous, onto [O: +x) and 
satisfy, for all ( [ , U )  

if a saturated control is sufficient for this subsystem, the same 
holds for the overall. We have called our technique udding 
integration, since the required ascumptions on the .7: subsystem 

G ( C . 4  I G(C [l + IEl + G ( E ,  
1 + IEl + GK, .I2 

are mainly implying that the IC components integrate functions I -Yo(lul) [1 + % ( I C l Z  + I ~ I " , ] .  (218) 
of y and U .  Finally, we let 

This key technical tool can be used in combination with 
others. In particular, the availability of a Lyapunov function 

adding one integrator or for the design of adaptive feedback 

{ YO(S) = + y - Y O ( s ) >  
makes it very well suited for association with the technique of 

(see [19]) or output feedback. For instance, in 1171, the 
problem of stabilization of the VTOL aircraft is solved with 
position measurement only. 

We have applied this tool repeatedly to prove global asymp- 
totic stabilizability for systems having a special recurrent 
structure called feedforward form and which are generically 
not feedback linearizable. 

Due to space limitations we have concentrated our attention 

reader will find in [18] an application to a problem of sta- 

yl(s) = J2' f Z s 1  . . .JlSkp1 a & k , j S k - l . .  

(21% 

The function y1 is C k ,  and (213) holds since we have 

"io(lUl) [l -k % ( / E 1 2  f I U I ' ) ]  1. %(lUl) [I + n/ l ( l< /2 + lUl*)] 

(220) 

which follows from the fact that for all s 2 1, we have 

(22 1) 71 ($1 
1 + %(I)' mainly on presenting a new technique. But the interested 

bilization of a partially linear composite system and in [ 5 ]  

Yl(S) 2 

0 
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Remark A.2: If G is C1, we have Proof: Since F has a zero of order p at y = 0, there 

This yields At this point, we could conclude the proof by using the same 
construction as in the proof of Lemma A. 1. But this leads to 
a too conservative function yz. Another solution is to define 

yo(sj = S ,  

i)G {yl(") = m a x { ( ~ ~ ~ ) : I E ! ' + ~ ~ ! Z l s )  {I + S O  T u ) l d T } .  the following nonnegative and continuous function: 
(223) 

We now prove ]Lemma 11.4. Since G is continuous, Lemma 
yy(s) = 1 5  SUP {W, 4,)). (232) 

{ ( X , u ) :  1 /Y 15 Id1 1 I s }  
A. l  gives two functions yo and 71, such that with (31), we 
have Then, since we have 

G(E, .(<)).(E) I -A(E)IG(t; O r  
+ ro(x(E)lG(Elo)o X(OIG(E>O)l 
[' + y1(lE12 + 

To get (32), i t  is therefore sufficient to find X a solution of 

0 ) 1 2 ) 1  ' (224) the following function is well defined, nonnegative, continu- 
ous, and such that (230) holds 

When G is C1, using (223), (225) gives Lemma B.2: Let V and W be continuous functions such 
that V is positive definite and proper and W is positive 

1 1 (226) definite. Let y be a nonnegative continuous function satisfying A(<) I - -  
2c 1 + Y1(lt12 + ~(<)21G(<>o)12) '  

Since yl is strictly increasing, a possible solution is (235) 

1 1 
A(<) = A-- (227) Under these conditions, there exists K;, a positive definite and 

continuous function on [0, +oo) which satisfies 1 + %(IEl2 + X;lG(t,O)l2) 1 + IG(t.O)?' 

B. About (44) 

To check if (449 holds, the following two Lemmas may be 
useful. 

Lemma B.1: For any function F ( x ,  y) with a zero of order 
p at y = 0, with p possibly zero, we can find two nonnegative 
and continuous functions yv and ys such that for all (x, y)  

It is positive, nondecreasing, and constantly equal to e, a 
sufficiently large positive real number on a neighborhood of 
the origin. So we may define another positive function on 
10, fw) by 

, V + l  

K ( s  ) d s  . (239) 

This function is continuous, positive definite, proper, and 

1, .(v) = 

satisfies (236). 0 
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C. Proof of Lemma IV.2 
Let 0 be an open bounded subset of R”. We first remark 

that since the matrix A = s ( 0 )  is asymptotically stable, the 
function Q defined as 

Q(s ,Y)  = exp --As @(s ,Y)  (240) 

is bounded on [0, +CO) x 0 as well as is g. This implies 
in particular 

( I  1 

uniformly in Y E 0. Also, since H l o ( Y )  is C1, zero at the 
origin, and I exp(-Ms)l is bounded, we have 

lim s2(  exp(-sM)Hlo(@(s, Y))l  < +m (242) 
S - t + o O  

uniformly in Y E 0. This yields 

l+m /exP(-sM)Hlo(@(., Y))l < +a (243) 

which proves that PI given by (134) is well defined. 

assumptions of [6, Th. 3.1501 hold. 
To prove that this function is C’, we check that the 

1) For each s E [ O , + o o ) ,  e xp ( - sM)Nio (@(s ,Y ) )  is a 

2) We have 
continuously differentiable function in Y E 0. 

d 
d Y  -[exP(-sM)H1o(@(sl Y ) ) ]  

where I exp(-sM)+(@(s, Y))l  and l g ( s ,Y ) l  are 
functions bounded on R 2 0 x 0. This implies the 
existence of a strictly positive real number c such that 

d 
-[[exp(-sM)Hlo(@(s,Y))] 

(246) 

for any ( s ,Y )  in [ O , + c m )  x 0. 
3) The function I exp(4As)l is integrable on [0, +m). 

These three points imply that the function PI is C1 with 

dHl0 a@ 
3Y 0 3Y dY 
%(Y)  = -I+^ exp(-sM)---(~(s,Y))_(s,Y)ds. 

(247) 
We remark also that 

for all ( s , t )  ?mplies 
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