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TOOLS FOR SEMIGLOBAL STABILIZATION BY PARTIAL STATE
AND OUTPUT FEEDBACK*

ANDREW TEEL' AND LAURENT PRALY*

Abstract. We develop tools for uniform semiglobal stabilization by partial state and output
feedback. We show, by means of examples, that these tools are useful for solving a variety of prob-
lems. One application is a general result on semiglobal output feedback stabilizability when global
state feedback stabilizability is achievable by a control function that is uniformly completely observ-
able. We provide more general results on semiglobal output feedback stabilization as well. Globally
minimum phase input-output linearizable systems are considered as a special case. Throughout our
discussion we demonstrate the usefulness of considering local convergence separate from boundedness
of solutions. For the former we employ a sufficient small gain condition guaranteeing convergence.
For the latter we rely on Lyapunov techniques.
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Notation.

e A function is said to be smooth if it is in C”, i.e., r times continuously differentiable,
for some integer r > 1.

e d(t) is a time-varying signal contained in a compact set D C R?. It will be appro-
priate to denote d(t) and its time derivatives d(t), d(t),... by the same symbol d,
ie,d=(d,d,d,...). Since this aggregated d is still assumed to lie in a compact set,
in some cases we shall implicitly introduce the strong requirement that the external
disturbance is smooth.

. V(O) denotes the function %—g(w) f(z,d) : R' x D — R and the subscript (0) refers
to equation number (0) of the differential equation

(0) &= f(z,d(t)).

e |- | denotes the Euclidean norm.

e ||-|l., denotes ess-sup, o<l - |

e A function v : R>o ——>—IR'20 is said to be of class-K if it is continuous, strictly
increasing, and satisfies v(0) = 0. It is of class-K if in addition v(s) — oo as
§ — o0.

o A function 8 : Ry x R»p — IRyg is said to be of class-K'L if, for each fixed
t € R0, the function (-, t) is of class-K and for each fixed s € R>¢ the function
B(s, ) is decreasing and

o) Jim B(s,t) =0,

o A function f: U — IR>o, where U is an open set of IR?, is said to be proper on U
if the preimage of a compact subset of IR>¢ is a compact subset of U.

o A function f: U — IR is said to be positive (negative) definite on U, a subset of
U, if f(x) is strictly positive (negative) for all z in U'.
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o A solution z(t) of an ordinary differential equation is said to be captured by a set
I if z(t) is defined on [0, +00) and there exists ¢, such that z(¢) € T for all ¢ in
[t07 +OO)

1. A motivating problem and some results. We are interested in the semi-
global stabilization! problem, as it is stated in [3], for example. In subsequent sections,
the following four tools for solving semiglobal stabilization problems will be presented:
two “backstepping” tools, a robust observer, and a local nonlinear small gain theorem.
The usefulness of these tools will be illustrated by examples throughout the paper.
Initially, to give the reader a sense for what can be proved with these tools, we will
state some general nonlinear output feedback stabilization results which will be proved
in a stronger form and with full details in later sections.

We start by considering the output feedback stabilization problem for nonlinear
systems in the general form

) {

We will make use of the following properties.
DEFINITION 1 (stabilizability). An equilibrium point z = 0 of a dynamical system

I

A(z,u),
C(2) .

(3) 2= A(z,u)

with A a smooth function, z in R", and u in IR is said to be globally (respectively,
locally exponentially and globally) stabilizable if there exists a smooth function @ such
that z = 0 is a globally asymptotically (respectively, locally exponentially and globally
asymptotically) stable equilibrium of

4) z = A(z,4(z2)) .

DEFINITION 2 (uniform complete observability). A function @(z) is said to be
uniformly completely observable (UCO) with respect to the dynamical system (2) if
there ezist two integers n, and n, and a C' function ¥ such that, for each solution

of

2z = A(z,uw),
Up = uj,
(5)
Up, = U,

u

we have, for all t where the solution makes sense,

(6) a(z(t)) = Ly (D), .-,y (1), uo(t), -, un, (1)),

where y®) (t) denotes the ith time derivative of y at time t.?
Achieving global stabilization by output feedback can be impossible for very sim-
ple systems that are globally stabilizable by state feedback even when each component

1 See Definition 3. Depending on the authors, this type of stabilization is also called “potentially
global”, “on compacta,” or “widely local.”
2 If u is not present in (6) we let n, = —1.
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of the state is uniformly completely observable. For example, it was shown in [28]
that there is no continuous, finite-dimensional dynamic output feedback to globally
stabilize the equilibrium point z = 0 of the system

2.:1 = 22,
(7> zZg = ZS +u,
Yy = Z,

with n > 3. This is true even though the system is globally feedback linearizable and
the state is related to the output by z; = y, 2o = ¢. For this reason we restrict our
attention to the semiglobal stabilization problem.

DEFINITION 3 (semiglobal stabilizability). 3 The equilibrium z = 0 of the system
(2) is said to be semiglobally stabilizable by dynamic state (respectively, output) feed-
back if, for each compact set K;, a neighborhood of 0, there erists a locally Lipschitz
dynamic state (respectively, output) feedback u = u(z,¢). ¢ = 6(2,() (respectively,
u=1u(y,(), ¢ =60(y.C)) and a compact set K¢; such that the equilibrium (z,¢) = (0,0)
is asymptotically stable, with basin of attraction containing Ky x K.

It was shown in [40] that, when each component of the state vector z is UCO,
global stabilizability by state feedback implies semiglobal stabilizability by output
feedback. An implication of the state being UCO is that any globally stabilizing
function @(z) is UCO. One might hope that this weaker assumption, existence of
a UCO globally stabilizing state feedback, would yield semiglobal stabilizability by
output feedback as well. Unfortunately, some difficulties appear in this case when
attempting to establish local asymptotic stability. To guarantee this local property,
we will impose extra local requirements on the system (4). A sufficient condition,
generalizations of which are discussed in §5, is local exponential stability.

THEOREM 1.1. If the equilibrium point z = 0 of the system (2) is locally exponen-
tially and globally stabilizable by a UCO and C? state feedback, then it is semiglobally
stabilizable by dynamic output feedback.

Otherwise, since the only obstruction is local, we can still achieve semiglobal
practical stabilization as summarized in the next definition and theorem.

DEFINITION 4 (semiglobal practical stabilizability). A point z = 0 (not necessar-
ily an equilibrium) is said to be semiglobally practically stabilizable by dynamic state
(respectively, output) feedback if, for each pair of compact sets (Ks, K;), neighborhoods
of (0,0) with Ky C K;, there exists a locally Lipschitz dynamic state (respectively,
output) feedback u = u(z, (), (= 0(z,¢) (respectively, u = u(y, (), (= 0(y,¢)) and a
pair of compact sets (K¢s,K¢i) such that all the solutions of the closed-loop system,
with initial condition in Ky x K¢y, are captured by the set Ky x K¢s.

THEOREM 1.2. If the equilibrium point z = 0 of the system (2) is globally stabi-
lizable by a UCO and C? state feedback, then it is semiglobally practically stabilizable
by dynamic output feedback.

The technique for proving these theorems is to exhibit a feedback controller based
on the given state feedback controller %, implemented dynamically using estimates of a
sufficient number of derivatives of iy provided by an observer and a sufficient number of
derivatives of u provided by a suitable dynamic extension. The idea of implementing
@ through dynamic extension comes from the work of Tornambe [43]. That such a
dynamically extended state feedback controller can be constructed while retaining
semiglobal (practical) stabilizability will be shown using the iterating tool of Lemma

3 It follows from this definition that a family of feedback laws is involved. This family is indexed
by K;.
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2.3. Further, we will show that combining the dynamically extended controller and an
appropriate observer still yields semiglobal (practical) stability. Our robust observer
tool, Lemma 2.4, will provide the technical result for showing this can be done.
Although different from the technicalities of the proof, the intuition behind our
analysis follows from considering the closed-loop behavior as having two phases. Dur-
ing the first phase while we are trying to find, in finite time, an exact estimate of
the derivatives of y, we acknowledge that this dynamically extended, estimated state
feedback makes no sense. Still we must make sure that there is no finite escape time.
To solve this problem, we use the a priori information that the actual control #(z)

——

is in a known compact set to disregard any estimation @(z) which would lie outside
this set. Mathematically there are many ways to reject these bad estimates but a
very simple and efficient way is to saturate the estimated control as proposed in [11].
Then, using the worst saturated control, we can estimate the smallest time period T
which will be needed by the system to go from its initial compact set to some larger
compact set on which our estimated state semiglobally stabilizing feedback is valid.
This time period is the period within which we should get our exact estimate of the
derivatives of y. (See [18, Rem. 5].)

In phase two, if the estimates of the derivatives of y were correct, we could apply
our dynamically extended state feedback. Unfortunately we are not always able to get
an exact estimate of the derivatives of y. This is due to the possible presence of un-
observed states and possible uncertainty in A. However, we can obtain an arbitrarily
good approximate estimate. If we have designed our (dynamic) state feedback control
using Lyapunov methods we have a measure of the stability robustness achieved by
our feedback controller via the derivative of the Lyapunov function. We consequently
build our approximate observer to account for this robustness margin. This strategy
in fact has been exactly applied in [13] but in discrete time. There, no finite escape
time is possible and exact estimation in finite time is assumed.

Finally note that Theorems 1.1 and 1.2 as well as the other results on semiglobal
stabilization to come are presented here only as existence results. Nevertheless, the
practical significance of the dynamic output feedback we shall exhibit has been inves-
tigated in the context of robotics applications in [1] and [2].

The remainder of the paper is organized as follows. In §2 we present tools for
semiglobal practical stabilization by state and output feedback. Several applications
of these tools are presented including, in §3, the proof of Theorem 1.2 and generaliza-
tions. In §4 we present a small gain theorem for local asymptotic stability analysis.
This tool along with the tools of §2 are used, in §5, to prove Theorem 1.1 and gen-
eralizations. In §6 several corollaries for minimum phase input—output linearizable
nonlinear systems are presented. A nonminimum phase example is also discussed.

2. Tools for semiglobal practical stabilization. As exhibited by the state-
ment of our two theorems, we have found it is very useful to decouple the local
convergence analysis in robust semiglobal stabilization problems from the analysis
regarding the boundedness of solutions. In this section we are concerned only with
the problem of uniform semiglobal practical stabilization by partial state and output
feedback. We defer study of local convergence until §4. We will present tools that will
be used to construct an output feedback for proving Theorem 1.2. However, these
tools have their own interest. As illustrated by examples throughout this section, they
can be used to address a wide variety of control problems.

These tools provide conditions under which solutions starting in some compact
set are captured by a “smaller” one. They consider systems with an interconnection
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structure and a state decomposed, accordingly, into two parts, say (z, ), where the &
equation contains a large gain, say K. The effect of this large gain K is to introduce
an exponential dichotomy between the x component and the z component. This im-
plies the existence of a center-stable manifold which can be described by z = H(z, K).
It follows that the motion of the solutions can be decomposed into two stages: con-
vergence to this manifold and sliding along this manifold. This decomposition has
been a standard tool used to prove early semiglobal stabilization results (see [36] and
[7] for example). Here instead, like in [4], we completely ignore this decomposition
and use a Lyapunov argument showing the decrease of an energy function outside a
neighborhood of the origin. More precisely what is implicitly used here is the fact
that as K — oo, the manifold tends to the set {(z,z) : x = 0}. So a Lyapunov func-
tion, which is simply the sum of the energy functions of x and z separately, should
be sufficient and indeed it is. The availability of a Lyapunov function is extremely
useful. It makes explicit the ultimate bound on trajectories as well as the domain of
attraction without the formalism of invariant manifolds. It will also allow us to use
our tools consecutively.

We will present two closely related “backstepping” tools, to borrow the terminol-
ogy of [17]. This will be followed by an observer tool useful for analysis when the
parameter K comes from a high gain observer. These tools are based on the following
technical lemma, inspired by a similar result in [4].

LEMMA 2.1. Let S be a compact set in a product space R™ x IR"™, and denote by
S, and Sy its respective projections (i.e., S C S, x Sg). Let x(z) be a continuous real
function on S, which is positive definite on the projection of the set {(z,x) : ¢ = 0}NS.
Let ¢(x) be a continuous real function on S, which is positive definite on S;\{0}. Let
p(z,z,d) be a continuous real function on S x D which satisfies

(8) o(z,2,d) =0 Y(z,z,d) € ({(z,2) : 2 =0}NS) x D.

Let k be a function of class-K . Under these conditions, there erists a positive real
number K, such that, for all K > K,,

9) - x(2) = k(K)Y(z) + o(z,2,d) < 0 V(z,z,d) € S x D.

Proof. For purposes of contradiction, assume the result is false. This implies that,
for each n, there exists a point (2, Z,,d,) in S X D such that

(10) - X(zn) - K(n)w(wn) + @(2n, Zn, dn) > 0.

Consequently, since k is class-K, and ¥ > 0 we have, for each m > 1 and for all
n>m,

(11) - X(zn) - K(m)w(xn) + @(2n, Tn,dn) > 0.

Now, since S x D is compact, the (sub)sequence (z,,zn,d,) converges to a point
(24,24, ds) in S x D. By continuity, this point satisfies

(12) = X(2) = &(m)P(2.) + (24, 24, du) 2 0

for all m > 1. Then, if 2, = 0, (8), (12), and the properties of ¢ imply —x(z.) > 0
which is not possible since X is strictly positive on the projection of the set {(z,z) :
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z = 0}NS. On the other hand, if |z.| # 0 then ¥(x.) > 0 and there exists an m, > 1
such that, for all m > m,,

(13) = X(2«) = £(M)P(2s) + P(24, Tu, di) <O

since k(-) is of class-K. This contradicts (12), however, and completes the proof.
d

Throughout the remainder of this section we use the following assumption.
Assumption ULP (uniform Lyapunov property)*. For the system

(14) z = h(z,0,d(t)),

there exists an open set U; in IR™, a nonnegative real number ¥ < 1, a real number
c¢>1,and a C! function V : U; — Rxq such that the set {z: V(z) < c+1}isa
compact subset of J;, and we have

(15) Vg < —®1(2),

where ®;(z) is continuous on Uy and positive definite on the set {z : ¢ < V(z) < c+1}.
Remark 2.1. In the absence of d(t), if the equilibrium z = 0 of the system

(16) i = h(z,0)

is locally asymptotically stable with domain of attraction Uy, the converse Lyapunov
theorem [22, Thm. 7] provides a smooth Lyapunov function satisfying Assumption
ULP. Further, ¥ can be chosen to be equal to zero and ¢ can be chosen to be arbitrarily
large.

We now present our backstepping tools. The first lemma shows how one can
semiglobally practically stabilize from a disturbed first derivative of the control in-
stead of the control itself. The second lemma allows, in one step, the designer to
semiglobally practically stabilize from a jth disturbed derivative of the control when
the perturbations have a special form.

LEMMA 2.2 (semiglobal backstepping 1). Consider the C' nonlinear control sys-
tem

: = h(z,il?,d(t)),
(17) {x = f(z,z,d(t)) + g(z,z,d(t))u,

where z € R, z € R™, the sign of g(z,z,d) is constant, and the magnitude of g is
bounded away from zero by a strictly positive real number b

(18) lg(z,z,d)| > b V(z,z,d) e R™ x R x D.
Suppose Assumption ULP is satisfied. Given u > 1, we define the function
V(2) z?

1 ) =¢

(19) W(z,2) Cc+1——V(z) Mu-l-l-w?
and the set

(20) Ua={2:V(2)<c+1} x{z:2> <p+1}

4 The number “1,” here and in the following, is arbitrary and could be replaced by any strictly
positive real number.
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Under these conditions, W (z,x) : U2 — R>q is proper on Us. Further, if
(21) u = —Ksgn(g)x

then, for each strictly positive real number p, there exists a positive real number K.,
such that, for each K > K., W satisfies

(22) War < —®s(z,2),

where ®2(z, ) is continuous on Uy and positive definite on the set {(z,z) : 9+ p <
Wi(z,z) <c*+p?+1}.
Proof of Lemma 2.2. With v = —Ksgn(g)z the closed loop system is

¢ o= hzad(),
(23) {2 e

For sake of generality we replace 22 in (19) by U(z). Now assume W (z,z) < ¢>4+u2+1.
This implies

— Ksgn(g)g(z, z,d(t))z.

A4l ¢+ p?tl
24 SetDgrgars U@ <@+ gt
@) VE <t Dgrae @<+ mrTea
Now, we have
. cle+1) plp+1)
(25) W(23)=( T1-V) V(23)+( T1-0)2 U(23)

From (24), we get, when W (z,z) < ¢? + u? + 1,

2., 2 2

(26) c < cle+1) < (¢ +u*+1+0¢) ’
c+1 7 (e+1-V)? clc+1)
oo _Bept) _(@+pt+14p)?
p+17= (p+1-0)2 ~ u(p+1)

Then, let us define

X(2) = TR 0(2),
v(@) = H+1bw
(27) p(zz,d) = & +;gcjll)+°>| [h(z,z,d) = h(z,0,d)]|
+%J)’—")—2|xf(z,x,d)l,
K(K) = K,

and consider the left-hand side of (9) in Lemma 2.1. We pick an arbitrarily small but
strictly positive real number p and define a set S by

(28) S={(z,x):9+p<W(z,z) <+ p?+1}.

The set S is compact from (24) and Assumption ULP. Also, from (24) the projections
of S satisfy

(29) S, C{z:V(2) <ec+1}, S, Cc{zx:x® <u+1}.
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Consequently x(z) is continuous on S, and (z) is continuous on S, and positive
definite on S;\{0}. Further, (24) also implies that ¢(z,z,d) is continuous on S x D.
From (27), it follows that

(30) o(z,z,d) =0 V(z,z,d) € ({(z,2) :2=0}NS) x D.

Finally, to see that x(z) is positive definite on the projection of the set {(z,z): z =
0} NS, we note

V(z)
(31) {x=0,0+p<W(z,2)} = ﬂ+p*cc+1~V(z)
Further, for 0 < 9 <1,
(32) 'l9+p<(:-—‘—/—(—z)——- = J<V(z) Vp>0.
T c+1-V(z)

Then, from Assumption ULP, x(z) is positive definite on the projection of the set
{(z,z) : z = 0}NS. This demonstrates that the conditions of Lemma 2.1 are satisfied.
It follows that there exists a positive real number K, such that, for all K > K,, (22)
is satisfied with

(33) (2, 7) = eV 7 ®i(2) + — Kba?.

2c+1-V pt1
Also, since ¢ is positive, it follows, from (27) and (9), that this function @, is positive
definite on {(z,z) : 9+ p < W(z,z) < ® + pu? + 1} for all K > K,. a

Ezample 2.1. The first application of Lemma 2.2 is a result for the C'! control
system:

: = A(Z7C)’
(34) { { = F(z,¢4dt) +G(z,¢ d)u,

z € R™, ¢ € R, where the sign of G(z,(,d(t)) is constant and the magnitude of G is
bounded away from zero. Specifically, if the equilibrium point z = 0 is semiglobally
stabilizable by C* (¢ > 2) state feedback, with ( as control, then (z,¢) = (0,0) is
semiglobally practically stabilizable by C* state feedback.

This statement is to be added to the many results known on the stabilization via
a disturbed derivative of the input ([6], [9], [12], [44]). Its proof follows.

Let ii(2) represent the control law we get once the compact set K; of the semiglobal
stabilizability property for the z subsystem is chosen. Define z = { — %(z). Then we
have

A(z,u(z) + x)

h(z, )

= F(z,x+(2),d(t)) + G(z,x + @(2),d(t))u — $%(2)A(z,4(2) + x)
= fz2,d(t) + g(2,2,d(¢))u.

From [22, Thm. 7], Assumption ULP is satisfied with ¥ = 0 and a positive definite
function V such that KC,; is contained in the set {z : V(2) < ¢} for some real number
c> 1.

With K¢ C IR, a chosen compact set, we choose i to satisfy

IS8
|

il

(35)

(36) pzmac{l, max (c-a))

{zeK:1,CeKer}
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Similarly, let Ky, a neighborhood of (0,0), be the compact set we want the solutions
of the closed-loop system to be captured by. We choose p to satisfy

(37) 0 < p < min {1, é (z,iCr)léle {max{V(2), (¢ - a(z))Q}}} .
With these choices, the function W(z, z) defined in (19) satisfies

(38) W(z,(—a(z) <p = V() <2, ((~u(2))" <2p,
(39) = (2,0) e Ks .

Now, from Lemma 2.2, if u is chosen to be of the form
(40) u = —Ksgn(g)z = —Ksgn(G)[¢ — u(z)],

then there exists a positive real number K, such that, for each K > K, (22) holds
with ®5(z,2) positive definite on the set {(z,z) : p < W(z,z) < ¢ +pu? +1}. We
conclude that, for each initial condition (2(0),¢(0)) in K. x K¢, the corresponding
solution of (34), (40) is captured by the set {(z,() : W(z,({ — @(z)) < p} and therefore
by K. Since this holds for any compact sets K., K¢;, and K, the semiglobal practical
stabilizability result follows.

Now, if y = C(z) is an output function, the discussion above and the very special
structure of (40) yields the following result.

If the equilibrium point z = 0 is semiglobally stabilizable by C* (¢ > 2) and UCO
state feedback, with ¢ as control, and ¢ is UCO, then the point (z,¢) = (0,0) is
semiglobally practically stabilizable by C* and UCO state feedback.

Ezample 2.2 (almost disturbance decoupling). A solution to the almost distur-
bance decoupling problem as described in [25] can be obtained by repeated application
of Lemma 2.2 for systems that can be put in the following form:

(3 = h(z,x1),
d71 = T2 +f1(Z,CL'1,d(t)),
Ty = x3+ falz, 71, 22,d(t)),
(41) .
Tro1 = -7-77‘+fr—l(z7'r11‘-'wmr—lad(t))a
L & = fe(zzn,. 20, d(t) F9(2, 20, 2, d(2))u,

where the equilibrium point z = 0 of 2 = h(z,0) is globally asymptotically stable and
where the sign of g is constant and the magnitude of g is bounded away from zero.
This is illustrated by the following example (compare with (7)):

L1 = xo2+dy (t),
(42) &y = x3da(t) + d3(t) +u,
y = T,

where d; (t), dz2(t), d3(t) are unknown bounded disturbances. The problem is to achieve
|z1(t)| < o < 1 asymptotically from arbitrarily large domains of attraction. Without
loss of generality we assume |d;(¢)| < 1.

Assume the initial conditions satisfy |z;(0)|? < c¢. We first consider the interme-
diate subsystem

(43) Ty =u; + dl(t).
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If we choose the control u; = —Kjz1, and the Lyapunov function candidate W;(z1) =
22, then for the intermediate closed-loop system

(44) j)] = ‘—lel + d1 (t)
we have
(45) Wl(“) S —2:1)1[K1.’L’1 - d],

which is negative definite on the set {2 : gy < Wi(21)} x {|d| < 1}. We then
choose

2
(46) Ki=1+2
o

so that W1<44) is negative definite on the set {x : %2 < Wi(xq)} x {|d] < 1}. We now
make the coordinate change ( = zo + K27 to get the system

(47) & = =Kz +(+di(?),
C = u-+ (C - I(IIIJ])Sdg(t) -+ Kl(( — Kyx1 + dy (t)) -+ dg(t).

By applying Lemma 2.2 with 9 = p = f‘i—g, we get the final control
(48) u = --Kzg = —Kga}g - K2K11131
and a Lyapunov function candidate

p Wi (1) p2C?
p1+1—=Wi(z1)  pe+1-¢%

(49) Wa(z1,¢) =

where p; = ¢ and py is so that the initial value of ¢ satisfies (% < po, ie., po =
(1 + K;)%c. We then have that the initial condition satisfies Wa(z1,¢) < p? + u2.
Also, we know that, for K» large enough (see [41] for an explicit expression), the time
derivative of W5 is negative definite on the compact set

2

Therefore, the solutions, with |z;(0)|? < ¢, are captured by the set {(x1,() : Wa(z1,()
< %2-}, contained in the set {(z1,¢) : |z1| < p}.

It is important to note that, with our controller (48), we do not have the vanishing
regions of attraction phenomenon as described in [21] and [25]. Indeed, in these papers,
the same type of high gain controller is proposed but with the implicit constraint that
K, = K;. Here, instead, our iterative design leads to gains such that the ratio
K> /K, tends to infinity as K; tends to +oco. However, although z; and ¢ can be
made ultimately arbitrarily small, x4, called the peaking component, remains of unity
magnitude as long as d; is present. For a discussion of the peaking phenomenon in
feedback systems, see [36] and the references therein.

Finally, we remark that, if d (t) has a known bound (see our notation section), by
applying our forthcoming robust observer tool, Lemma 2.4, the almost disturbance
decoupling problem for the system (42) can be solved semiglobally by output feedback.
(See [41].)
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It is possible to handle a block of integrators in one step, instead of iterating
the application of Lemma 2.2, when the system has the structure described in the
following lemma.

LEMMA 2.3 (semiglobal backstepping II). Consider the C'! nonlinear control sys-
tem

z = h(z,xl,d(t)),
I = T2 +f1(2,271,d(t)),
To = z3+ fa(z,21,d(t)),
(51) .
.’I.Ijml = j +fj_1(z,x1,d(t)),
;= u+ fi(zw,d()),

where © = (z1,...,x;)T € R?, 2 € R™. Suppose Assumption ULP is satisfied. "Let
the polynomial
(52) p(s)=s" +a;s8

be Hurwitz and let A, be the companion form matriz corresponding to p(s). Also let
P, solve the matriz equation AT P, + P.A. = —I. For K > 1 to be specified, define
the variables

(53) gi=%, i=1,...,].
Then given u > 1, define the function
T
(54) W(Z’O:Cc+i/—-V +uu+§—ljzil’c£
and the set
(55) Uo={z:V() <c+1}x{€: TPt < pu+1}.
Under these conditions, W (z,€) : U — IR>q is proper on Uq. Also, if
(56) u=—K¥(a1& + - +a;)

then, for each strictly positive real number p, there exists a positive real number K, > 1
such that, for oll K > K., W satisfies

(57) W’(l?') S —@2(376)7

where ®a(z,&) is continuous on Ug and positive definite on the set {(z,€) : ¥ + p <
W(z,€) <c?+p? +1}.

Proof of Lemma 2.3. With the control (56) and the coordinates ¢ defined in (53),
the closed-loop system becomes

z = h(zsglvd(t))a
(58) {g’ = KAL+ Fx(2,6,d(t)),

where

fl(zfglad)
%fz(z»ﬁhd)

K—J‘I—Tfj(z7£lvd)

(59) Fr(z,61,d) =
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From here, if we replace 7 P.£ in (54) by U(£), then we can follow the proof of
Lemma 2.2 with the only modifications being that, in (27) and (33), 22 is replaced
by 3€T¢, of by ETP.Fk, and b = 1. The fact that Fx(z,&;,d) depends on K is
immaterial because, for K > 1, ¢TP,Fg can be bounded by a continuous function
which is independent of K. 0

Remark 2.2. Lemma 2.3 is used in the same manner as Lemma 2.2 in Example
2.1. One difference is that the free parameter y is chosen so that the initial conditions
of = satisfy (7 P.£ < p with ¢ defined as in (53). The parameter u thus appears to
depend on K. However, for K > 1, we have

)\max{Pc}
/\min{Pc} ’

where the left-hand side can be achieved independent of K. Nevertheless, the in-
equality (57) will not guarantee that = ultimately becomes small but only that (z,&)
ultimately becomes small. As mentioned in Example 2.2, the coordinates = are called
peaking coordinates.

Ezample 2.3 (observer canonical form). We have used Lemma 2.3 as a tool in [42]
to design a semiglobally stabilizing output feedback for the following class of systems:

(60) zTPax<pu = ETPe<p

2 = h(z,xy1),

T = x2+ fi(z,21),
(61) :

Ty = u+ fr(z,21),

y = 1

under a global minimum phase assumption (the point z = 0 of the system 2 = h(z,0)
is globally asymptotically stable) and a small gain-based assumption which guarantees
local convergence. Here, h and f; are C! and u in IR. The special form of (61) permits
a technique for output feedback stabilization different from the one mentioned at the
end of §1 and used in the proof of Theorem 1.2. Here, on the contrary, we design the
observer first, then we define the controller in such a way that the stability it provides
is robust to the estimation errors. Our algorithm is inspired by the global results in
(17], [26], [27], and [29]. We begin by building the dynamic compensator

1 = Za+Lli(xr — 1),
(62)

T, = utLle(x) —I1),

where the coefficients ¢; are the coefficients of a Hurwitz polynomial. If we define
e; = x; — T; we get the error dynamics

(63) ¢ = Age + F(2,21).
We choose to consider the dynamics
(64) é= Aye + F(z,0)

as an augmentation of the zero dynamics 2 = h(z,0) so that the equilibrium point
(z,€) = (0,0) of the augmented system

(65) { <

h(z,0),

é Ase+ F(z,0)
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is globally asymptotically stable. This follows from the cascade structure and that
the state e is input-to-state stable with respect to the input z. (See [35] or Lemma
4.1.) Now we consider the complete system

z = h(Z,l’]),

e = Aje+ F(z,11),

Ty = Iz+e2+ fi(z @),
(66) To = &3+ leeq,

i = u+ lrey.

It is in the form (51), and we can apply Lemma 2.3 to construct a controller depend-
ing only on z,%s,...,%, and achieving bounded trajectories from a given compact
set of initial conditions. Local exponential stability of the point z = 0 of the sys-
tem 2 = h(z,0) is a sufficient condition to guarantee convergence to the equilibrium
(z,e,21,&2,...,37) = (0,...,0). This condition can be relaxed by using the tools of
84,

When the output feedback stabilization problem is approached from the point of
view discussed in §1, a linear high gain observer is introduced to get approximations
of the derivatives of the output. The high gain parameter is tuned according to size
of the compact set of initial conditions and the stability robustness that would be
achieved by the state feedback controller. However, the linear high gain observer
introduces possibly very large values of the state estimate over a short period of
time. As already noted, this means that during this short period of time, the state
estimate makes no sense and should be disregarded. This was achieved in [11] by
saturating the control when the estimates had a value which was known a priori to
be unreachable within this period of time by the actual state. The success of this
modification was demonstrated by using a singular perturbation approach. However,
the result seemed to require a form of nonlocal exponential stability [11, Assump. 2].
Even the more general interconnection conditions of [30] on which this assumption
is based are too restrictive for the problem of boundedness (only) of solutions from
compact sets. These assumptions mix the local and nonlocal analysis while weaker
assumptions can be imposed if these aspects are handled separately. The next lemma
demonstrates this.

LEMMA 2.4 (robust observer [11]). Consider the C' nonlinear system

(67) { :

where z € R™, e € R", and L is a strictly positive real number. Suppose Assumption
ULP is satisfied and let

h(z,e,d(t)),
LAoe + p(z,e,d(t)),

(68) F'={z:V(2)<c+1}.

Also assume the matriz A, is Hurwitz and there exist positive real numbers vy and vo
and a bounded continuous function v with v(0) = 0 satisfying

(69) k(= €,d) = hz0,d)] < (el V(z,e,d) e x R" x D
Ip(z,e,d)| < 1+ ale] o



1456 ANDREW TEEL AND LAURENT PRALY

Let u(L) be a class-K function satisfying

(70) lim inf

i (D) %

Let P, solve the matriz equation AT P, + P,A, = —I and, finally, define the function

_ V(z) In(1 + eT P,e)
(1) W(ze) = “Cri- V(z) +ull) w(L) +1 —1n(1 + eT Pe)
and the set
(72) Us={z:V(2)<c+1} x{e:In(1 +eTPe) < pu(L)+1} .

Under these conditions, for each strictly positive real number L, the function W (z,e) :
Uy — Ry is proper on Ua. Also, for each strictly positive real number p, there exists
a positive real number L, such that, for all L > L., W satisfies

(73) Wier < —®a(z,e),

where ®o(z,€) is continuous on Uz and positive definite on the set {(z,e) : 9+ p <
W(z,e) <c?+ p?(L) +1}.

Remark 2.3. The motivation for allowing u to depend on L, in contrast to the
previous two lemmas, is to allow the initial conditions of e to possibly depend on L.
If the initial conditions of e can be bounded independent of L, then

1. the bounds in (69) are not needed,

2. u can be chosen independent of L and the function In(1 + e P,e) in (71) can
be replaced by eT P,e.

Examples 2.4 and 2.5 demonstrate situations where the initial condition of the obser-
vation error can be bounded independent of L.

The motivation for the choice of the function In is that for our problem, as will be
seen later in the proof of Theorem 1.2, we wish to allow initial conditions of e to be
of order L™v. This requires that we choose a Lyapunov function U(e) and a function
u(L) satisfying the limit (70) and such that, given a strictly positive real number A;,
we have

(74) le| <ML = Ule) < w(L).

For instance, if we choose p(L) = In(1 + A2 L?(™)), with )y any strictly positive real
number, then the limit (70) is satisfied since we have

S

(75) lenolo ln(l + )\28"“)0‘2

=00 Vg, ap, a0 >0 .

Then, with the appropriate choice of Ag, (74) is satisfied if we choose U(e) = In(1 +
eTPoe). The choice of In in turn requires the special form of the bounds imposed in
(69).

With this remark, we see that if we disregard the issue of ultimate convergence,
we recover the result of [11, Thm. 2].

Proof of Lemma 2.4. We follow the lines of the proof of Lemma 2.2. We begin by
replacing In(1 +e% Pye) in (71) by U(e). Assume that W(z,e) < ¢+ u?(L) +1. From
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(24) and the definition of I in (68), this implies, for any L, that z is in I'. Hence from
Assumption ULP and the bounds in (69) we can write

(76)

—®1(2) + v3vy(lef)

V(G?‘) <
Usen < Tjr?}'ﬁ [—Lle|? + 2 max{ Po} €] (vale] + v1)]

}V(z,e,d) el'xR" x D,

where v3 is a positive real number which bounds %—‘: on the set I'. Such a bound exists
because V is C! and I is compact. Then, from (71), (25), and (76) we can write

Wier) < (Ti%l)'ﬁ' {=®1(2) + v3v(le))}

(77)
+ D b [~ Llel? + 2Amax{ P} el (vale] + 1)) .

Now fix L., so that p?(L.,) = ¢ + ¢+ 1. Such an L,, exists because u(L) is of
class-K,. Then, using the bounds from (24) and (26), using ¢ > 1 from Assumption
ULP, and choosing L > L., we have

cle+1) < ot

78 Ceri-vE=s

1
- <
5=

Thus we can rewrite (77) as

Wier < S5k {~1(2) + vay(lel)

79) plp+1) 1

L
TWF 1-UP T+ P [”z_ﬁﬂelz + 4Amax{ Po}le|(v2]e] + Vl)] }

Since (c(c + 1))/((c + 1 — V)?) is positive and bounded away from zero on T, it suffices
to consider the expression

(80)

L L
— ®@q(2) +v3y(le]) + (:((L))iq(_(}_(’—el))p 1+eil*poe [" QH(LL)4 [e|2 + 4)‘max{Po}|el (vele] + 11 )]

We are interested in evaluating this expression on the set

(81) AL ={(z,€) 10 +p < W(z,e) <&+ (L) + 1},
We do so by considering the two sets

(82) A ={(z,e):V(2)<c+1,1<U(e) < p(L)+ 1},

(83) Ao = {(2,€) : V(z) c+1,Ule) <1}

m{umyﬁ+pg;f¥%%5+U@ﬁ

and by observing that Ay is contained in A; U Ay, since we have

(80) {U()<1,0+p<W(zne)) — d+p<—2 &)

Scyicve Ve

In the set Ay, observe that the limit (70) holds, z is contained in a compact set
independent of L, the function y(le|) is bounded, and (—#f—l(ﬂ%v is bounded away
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from zero from (26). We do not use the upper bound on (;&Tul(% from (26) which

depends on L. Finally note that the function T—Tle‘%l‘if%’é is positive and hounded away
from 0 on A;. Thus, by examination of expression (80), it follows that there exists
a positive real number L,, such that, for each L > L,,, the function W(67) can be
upper bounded by a function of (z, e) which is negative definite on A;.

In the set Ay, to check that W(67) is negative for all (z,e,d) € Ag x D, we apply

Lemma 2.1 to the expression (80). We remark that, for L > L., , we have

. plp+1) W plp+1) .
= & — < .
(85) oéndrsll{(,uﬂ—lvﬂU)?} p+ 1 Ogll?ifl{(u-i—l—U)? 2

It follows that to know the sign of the expression (80), we can look at (9) by taking

x = e,
K = L,
(86) x(z) = 3%(2),
wle) = §irerea
® Z’e) = V3'7(|e|)+8)‘max{Po}|e|(V2|€l+V1)

and () any class-K, function satisfying

L

(87) R A AR

Such a function exists because L/(2u3(L)(u(L) + 1)) > 0 for L > 0 and (70) holds.
The set S in Lemma 2.1 is given by Ag. It is independent of L and compact. The
respective projections satisfy

(88) S, C{z:V(z)<c+1} =T, Sec{e:Ue) < 1}.

Then, from (86) and the properties of ®;, x(z) is continuous on S, and ¥(e) is con-
tinuous on S.. Clearly, ¥(e) is positive definite on S.\{0}. Also, from the continuity
of v and the fact that v(0) = 0, ¢(z, €) is continuous on S and

(89) o(z,e) =0  V(z,e) € {(z,e):e=0}NS.

To see that x(z) is positive definite on the projection of the set {(z,e) : e =0} NS,
we have, with 0 <49 <1 and p > 0,

+1

So from Assumption ULP, x(2) is positive definite on the projection of the set {(z,e) :
e =0} NS. It follows that there exists a positive real number L., such that, for each
L > L,,, the expression (80) can be upper bounded on S by the function

10,4 (2) - I(L)—

—2®04(2) — 56(L) ————,

271 2 1+eTPye

which is negative definite on Ay since  is positive. We then take L, = max{L.,, L,,
L.}. 0
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Ezample 2.4 (mechanical systems). We consider the multi-input nonlinear system

i =
91 .
(81) {52 Tansdtam
where ¢ € R™, r € R", u € R™ is the input and f and g are C*. This system
could represent a robot model, for example. We assume the existence of a (dynamic)
compensator

v = C(g,ru),
@) {2
with v € IR! such that the closed-loop system
¢ =
(93) o= flg,r)+9g(gr)ulgrv),
v = Clg,ru(grv)),

which we rewrite, with z = (¢7,77,vT)T, as
(94) z=h(z0),

satisfies Assumption ULP for some neighborhood U; and some function V', proper
on U, with ¥ = 0 and ¢ arbitrarily large. Assumption ULP is satisfied if, for exam-
ple, the equilibrium (g, r,v) = (0,0,0) is made (locally) asymptotically stable by the
compensator (92). To implement the compensator (92) without measurement of r we
build the observer

(95) { = L%(q—q),

where L is an adjustable parameter and ¢, ¢5 are coefficients of a Hurwitz polynomial.
We implement the compensator

(96) { v o= C(q,A(),v,u),

=3

u = u(q,A(7),v),
where
(97) A(F) = # min {1, "m }

and rmay is the maximum value of |r| on the set I' = {(¢,7,v) = 2z : V(2) < c+ 1},
where V(z) and ¢ come from Assumption ULP. This idea for the modification of the
compensator is based on the idea in [11]. We choose to saturate the state # rather than
the entire control u and compensator C because the state r has physical significance
and thus determining r,,, in the region of interest should be quite natural. Compare
with equations (116) and (139) in the proof of Theorem 1.2. If we define the error
state

(98) eg=Llg—q), e =r-7,

we have the error dynamics

(99) { ¢q

€r

Le, — Ltyeg,
—Llyeq + f(q,7) + g(q,7)u(q, A(r —er),v)
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and we can apply Lemma 2.4. The bounds in (69) can be readily checked and follow
from the introduction of A in the compensator (96). Consequently, by choosing ¢ large
enough, the modified compensator (96) together with the observer (95) can be used
to yield bounded trajectories from the compact set of initial conditions K; x K57 C
R2"*! x R?"™, where K is any compact subset of Uy.

As pointed out in Remark 2.3, the bounds in (69) are required because the initial
conditions of e grow with L. Specifically, e, = L(q —§). However, observe that it may
be reasonable to initialize the value of ¢ such that ¢(0) = ¢(0) since ¢ is measured.
In this case, the initial condition of e is (eq(0) = 0,e,.(0) = r(0) — #(0)) which is
independent of L. As mentioned in Remark 2.3, in this case the bounds in (69), and
hence the function A in (96), are not needed. Nevertheless, if this initialization cannot
be done exactly, then the function A should be retained.

It would also be possible to build a reduced-order observer for this system. Con-
sider the state s = r — Lqg. We have

(100) $= f(q,7)+9g(q,7)u— Lr
(101) = f(q,7) + g(q,r)u — Ls — L?q.

If we build the observer

5 2 2
9 § = —=L3s-— L~q,
(102) { 7 = §+ Lq,
then for the error e, = r — 7, we have
(103) ér = flq,7) + g(q,r)u — Le,.

If we don’t specify the initial value of §, then we choose the modified compensator in
(96). If 3(0) is chosen so that 3(0) = —Lq(0) then e.(0) = r(0) and the function A
is not needed. Let us also remark that the linear operator ¢ — 7 defined by (102) is
output strictly passive. This important property has been exploited in [5].

In all cases, if the original compensator (92) is locally exponentially stabilizing
then the conditions of Lemma 4.1 will be satisfied and asymptotic stability is also
achieved.

As mentioned earlier, the ideas presented here have been investigated further in
[1] and [2].

Ezample 2.5 (the ball and beam). This example summarizes the result of [37].
Consider the ball-and-beam system

:b] = 2, 9
zy = -—Gsin(zs) + 123,
(104) T3 = I,
iy = m}{ﬁ [T —2Mz zo04 — M Gz cos(z3)],

with three strictly positive real numbers G, M, and J, four state variables x, to x4,
and one control 7. See [14] for an interpretation of the state variables and a derivation
of the dynamics. We wish to stabilize the system using measurement of z; and z3 only.
It can be shown that there exists a semiglobally stabilizing, and locally exponentially
stabilizing, control @(z1,x2,x3,z4). See [39] for the case when M, J are known. For
the case where M, J are unknown but have known bounds, the procedure is to use the
results of [39] to get a result for the (1, x2, z3) subsystem and then apply Lemma 2.2
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and Lemma 4.1 to get a result for the full system. See [37] for a complete discussion.
From the results of [22, Thm. 7], Assumption ULP is satisfied with ¥ = 0 for the
closed-loop system with @(z1,z2,x3,24) as the control. To implement this control,
we build the observer

Ty = Zo + Ll (21 — T1),

(105) T2 = —Gsin(zz) + L2a(z1 — 1),
T3 = 24+ Ll (x5 — 33),
Ty = L2y(z3 — 23),

and we let

(106) T=,ﬁ(ml7i27x37A(i’4))

where A is defined as in Example 2.4. Note that A does not need to act on Z5 because,
coincidentally, @ can be chosen so that the x2 dependence is already bounded. Again
we choose to saturate the state &4 instead of the entire control 7 because the state x4
has physical significance. If we define the observer error

(107) €1 =L($1 *1’1) , 62=l’2—:ﬁ2 y €3 ZL(ZB3 - :%3) s 64'——:!:4—.’2‘4 s

we have the error dynamics

é] = Leg - Lflel,
éo = —Llye; +x1xi,
(108) é3 = L64 - L£163,
ey = —Llses + + ][ ~2Mxizox4 — MG, COS(Ig)].

The bounds in (69) are satisfied and we can achieve bounded solutions from any
compact set of initial conditions (x,Z). Furthermore, since 4 is locally exponentially
stabilizing, asymptotic stability is also achieved.

Note that, as for the system in Example 2.4, we could choose the initial conditions
of 1 and &3 so that e;(0) = 0 and e3(0) = 0. This is possible because z;, and x5 are
measured. This, in turn, would remove the need for introducing the function A in
the control #. Building a reduced-order observer is also possible.

3. A generalized version of Theorem 1.2.

3.1. Assumptions and results. The proof of Theorem 1.2 follows from an
appropriate application of Lemmas 2.3 and 2.4. An even more general case can be
considered. Indeed, let the control system be®

(109) { ;

Il

A(z,u,d(t)),
C(z,d(t)).

We assume only that the point z = 0 is semiglobally practically stabilizable by UCO
static state feedback, as in the following assumption.

Assumption S-GPS. There exist two integers N, and N, so that, for each pair of
compact sets (K.s,K.;), neighborhoods of 0 and with K,; C K, we can find

Il

5 May be augmented with the dynamics of a controller in the case of a dynamically stabilizable
system.
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1. a positive C! function V, zero at 0, which is defined on U, an open set
containing K.;, and such that there exist three positive real numbers 9, c,, and ¢
satisfying

(110) cs < ¢, {z:V(2) <%} C Kss, Ka C{z:V(2) <cs}

and so that the set {z : V(2) < ¢;} is compact and contained in U.
2. a C? function %(z) which is zero at 0, is defined on U, and is UCO (i.e. (115)
holds) with n, < Ny, n, < Ny, such that, for the system

(111) Z= A(Z,ﬁ(Z),d(t)),
we have
(112) V(lu) < —9(2),

where ®(z) is continuous on U and positive definite on {z : ¥, < V(z) < ¢} for some
real number ¥, satisfying

(113) 0< 9, <.

The meaning of this assumption, as we shall make precise later, is that, once a
pair of compact sets (K.s, K,;) is chosen, we know the existence of a UCO control law
@ so that Assumption ULP holds for the system (14). We shall prove the following
proposition.

PROPOSITION 3.1. If Assumption S-GPS holds then the point z = 0 of the system
(109) is semiglobally practically stabilizable by dynamic output feedback.

Proof of Theorem 1.2. If the equilibrium z = 0 of the system (2) is globally
stabilizable by a C? state feedback #(z), i.e., z = 0 is a globally asymptotically stable
equilibrium of

(114) 5= A(z,a(2)),

then, according to the converse Lyapunov theorem [22, Thm. 7], there exists a C!
function V' defined on R™ which is positive definite on R™\{0} and proper on IR" so
that 17(114) is negative definite on IR™\{0}. It follows that point 1, (112), and (113)
in Assumption S-GPS hold for any pair of compact sets (.5, K.;). Therefore, if 4(z)
is also UCO, Assumption S-GPS holds. Thus Theorem 1.2 follows from Proposition
3.1. d

3.2. Proof of Proposition 3.1. Our idea for proving Proposition 3.1 is, instead
of using @(z) which cannot be “measured”, to use an approximation u. To get this
approximation, we use the fact that @ is UCO, i.e.,’

(115) a(z) =T <y y Oy ) g u(l)jmwu(nu)) '

Following [43], the control u and its n, derivatives can be obtained if we augment
the dynamics of the controller. But for y and its n, derivatives, we shall need an
observer. Our proof is made in three steps. The first two steps—dirty derivatives of
y and dynamic extension—concern the dynamic output feedback design. In the third
step, we shall establish practical stability.

6 Note the strong requirement that ® is independent of d.
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For the first two steps of this proof, the compact sets K.s and K,; are arbitrary
but fixed. So from Assumption S-GPS, @, V, and U are given. Then, the following
real number is well defined:

11 U = u(z .

( 6) Umax {z:‘f}(q?))éq} {lu( )1}

And, by picking ¥; as an arbitrary real number in (0,1/8), let k be a C* class-K .
function satisfying

(117) K(Us) =91, k() =283, klcs) =1, &rla)>1+«k(cs).
This function exists since our assumption gives

(118) 0< 9 < <cs <.

Then we let

(119) Vi(s) = k(V(2), 1 = r(es).

So Assumption ULP is satisfied and we have

(120) {z:Vi(2) <81} C K.s, Ka C{z:Vi(z) <1}
Let us also pick p as

(121) p= ’9_21,

3.2.1. Dirty derivatives of the measurement. With n, the number of deriva-
tives of y needed in (115) to reconstruct @, we see, by induction on the order of deriva-
tion (see also the notation section), that there exist n, + 1 smooth functions C; and
an integer m, < n, such that, for each solution of

z = A(z,ug,d(t)),
'iLO = U,

(122)
amu—l = Uy,

we have, for all ¢ where the solution makes sense,
(123) YD = Ci (2(t), uo(t)s U, (£),d(t)),  i=1,...,ny + 1.
Then, for the system

U =y,
(124) :
(.
Yy )= Cny+1 (Z(t)aUO(t)v",umu (t)vd(t)) )
we can propose the following approximate observer:
il\o = 171 + Ll(y—7o),
(125) ¢ . o A
y,}y -1 = Yn, + L™ eny—l (y - yO) )
gny = Lny+leny (y_/y\o) + C7Ly+l (O,UO,.-.,Umu,O),

with the ¢;’s chosen as the coefficients of a Hurwitz polynomial associated with a
matrix A, and the real number L to be specified later. It is important to note that
(125) is not a true observer since (y,y",...,y"™)) is not a solution of (125).
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3.2.2. Dynamic extension. To reconstruct 4, we need to know n, derivatives

of u. Similarly, to implement the above observer, we need m,, derivatives of u. So, by
letting”

(126) ly, = max{n,,m,}+1,

we see that, by adding [, integrators to the system (109) to be controlled, we shall
have u and its required derivatives as measured state components of the system

z = A(z,up,d(t)),
Ug = u,

(127)
'il,lu -1 = V.

To design the control v for this augmented system we can use Lemma 2.3. By letting

wi— ‘
(128) 51=’U,0—ﬂ(2), é‘L:E_lf lzla"'alu7

73—

with K a positive real number to be specified later, we get the system

f% = A( ( )+§17d(t)) = (nglvd(t))7
(129) & = K&,
&, o v,

which is in the form of the system (51) written in the &;’s coordinates. As we men-
tioned earlier, Assumption ULP is satisfied by the system

(130) = h(2,0,d(t)) .

Then we choose coefficients, a;’s, of a Hurwitz polynomial associated with a matrix
A.. Let P. be the solution of

(131) ATP. + P A, = -1

Let K¢ be an arbitrary compact set where we choose to initialize £. We let

132 = 1, max {¢TP, :
(132) 11 maX{ , fmax {¢ cé}}
Then Lemma 2.3 gives the bound K, the intermediate control

(133) v=-K"(aé + ... +a,b,)
= —K" (a1 [uo — u(2)] + axéa + ... + ar, &)

and the intermediate Lyapunov function

__aVhi(z) €T Pt
(134) Wl(z,g)_ 01+1*V1(Z) ,ufl+]-"£TPc€ .

7 In fact the result holds with I, = max{n,, my} but such a choice leads to more complicated
notation.
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We have
(135) Wi(z,€) <cf+pf V(2,8 € KaxKa
and, for K > K,,
(136) Wi (27,133) < —®1(2,€),

where ®;(z, &) is positive definite on {(2,£) : 91 +p < Wi(2,€) < ¢f + p? + 1}
For future use we define the set

(137) T={(z8: Wi(z,§) <cf +pi +1} .

This set is compact. (See (24).) We also define the real number ¢; = ¢? + p?. To
summarize, by denoting by Z the state vector (27,£T)7, we can write the system
(127), (133) as

(138) Z = Ho(Z,d(t))

and we have that Assumption ULP is satisfied for this system with V = W, 94 = 9, +p,
and ¢ = co.

3.2.3. A dynamic output feedback. To summarize our design, we can pro-
pose the following dynamic output feedback for the system (109):

(139)

Yo =01 +Lb(y—17o),

Un, -1 =Fn, + L™, -1 (y = To),

i/\ny = Lny+1€ny (y_:ZJO) +Cny+l (Oau,K€2»"'vau€mu+lvO)w

U =K€2y

glu_l =K§lu7

&, =K',

L v =—K" (a1[u — A@)] + a2&a + ... + @, &) ,

where
(140) U=V (4, %1, On, 0, Koy ., K™ 1)
and
(141) A(s) = s min {1, UI"S‘TX }

with @max given in (116). This function A, already encountered in Examples 2.4 and
2.5, is one of the many possible ways of disregarding estimates when they are not
in a given compact set and therefore make no sense. More specifically, this function
guarantees that the assumption of Lemma 2.4 holds. And, in particular, we have

(142) |A(81) - A(Sg)} S min{lsl - 52‘, 2amax} .
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It would also be possible to saturate each component ¥; independently. See Examples
2.4 and 2.5.

For the controller (139), we have chosen the ¥;s and &;s as coordinates for its
realization. Indeed, it is for this state that we shall be able to prove the practical
stability.

Finally, note that we cannot implement the controller with &; as one of its state
components since é:l involves unknown quantities.

3.2.4. Practical stability. To study the closed-loop system (109), (139), we
use the coordinates Z = (27,¢7)T and e where

(143) e =L""" (y(” - ﬁi) :
The closed-loop dynamics can be written

(144) { Z H(Z,e,d(t)),

LAO e + Ee(z7 67 d(t))’

I

e

I

where Z.(z,£,d) is a vector whose components are zero except the last one which is

(145) Ee(zagad)ny = Cny+1 (Z,fl + I—L(Z) K&’Za ce aKmugmu‘l-lvd)
-_C"y“i'l (Oa fl + 'fl(Z), K€2» ) Kmugmu+170) .

This system is in the form (67) considered in Lemma 2.4 with the Z dynamics playing
the role of the z dynamics in that lemma.

From the conclusion of the dynamic extension stage and the facts
(146) e=0 = u=1u(z), Zel' = H(Z0,d(t)) = Ho(Z,d(t)),
which follow from

(147) Zel=V(2)<q,
(148) = A(a(z)) = a(z),
Assumption ULP is satisfied. We also have

0
(149) H(Z e, d) - H(Z,0,d) = 0
K a; [A(7) - A(a(2)))

But, with (123), (128), and the compactness of I and D, the following function ¥ on
IR220 is well defined:

(150) Y(K,E) = - dS:?L)eS{’% (y, y(l) _ 'L‘Tzf,——“f(’»h oy

~Oen, &1 +0(2), K&y, K™ ) |}

where

(151) S=Tx{e:le] <E}xDx|0,1] x {1,...,ny} x [1,00) .
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Then, from (115), (140), and (142), we have, for L > 1 and all (Z, e, d) in IxRMHD)
D,

(152) |H(Z,e,d) — H(Z,0,d)| < K |a1| min {|& — @(2)|, 2Tmax} ,
(153) < K |ay| min {¥(K, |el)le|, 2Umax} ,
(154) < y(lel)s

for some bounded and continuous function v : R>¢ — IR satisfying v(0) = 0. Note
that v depends on K which is fixed at this stage. Also Z.(z,&,d), given in (145), is
bounded on the compact set I' x D by a positive real number v;, independent of L
but dependent on K. Now, let P, satisfy the matrix equation

(155) ATp, + P,A, = -1

Also let Ky; be a compact set'where we choose to initialize the estimated derivatives
of y. Since, from (123), the y®s are bounded on K,; x K¢ x D, the following positive
real number is well defined and depends on K but not on L:

(156) k= sup {lw® -1} .
(z)g,(yi)vd)EKzlX’CEIXKy[XD

If we then choose

(157) p2(L) =In(1 + kAmax{Po}L*™)
we have, for the initial condition e(0),
(158) In(1 + €7 (0) Poe(0)) < pia(L)

and the limit (70) is satisfied. So Lemma 2.4 gives us a bound L., depending on K,
and the final Lyapunov function

caW1(Z) p2(L) In(1 + eT P,e)
Z =
(159) Wa(Ze) ca+1=Wi(Z) p2(L)+1—1In(l+eTPye)
so that for L > L,, we have

(160) (L) > 1
and
(161) W2(144) < =®y(Z,e),

where ®,(Z, e) is positive definite on {(Z,e) : 91 +2p < Wy < 3+ uo(L)? +1}. Since
the set K,; x K¢ % Ky is contained in {(Z,e) : W5 < ¢ + p2(L)?} and p = %—‘, we
conclude that the solutions initialized in C;; x K¢ X Ky remain forever in the set
{(Z,e) : Wo(Z,€) < c3 + u2(L)?} and are captured by the set {(Z,e) : Wa(Z,e) <
2¢1}. Then we remark that, ¢, 1, p2 being larger than 1, we have

(162) (Wa(Z,e) < 201) => (eTPoe < exp(491) — 1, T P.£ < 89y, Vi(2) < 8%4).

Since the real number ¥; can be chosen arbitrarily small and (120) holds, we have
proved the following.

For any pair of compact sets (K.s,K,1), neighborhoods of 0, with K,s C K.,
we can find compact sets (Kys,Kes) and (Kyi,Ker); gains £;s; a;s; a bound K.; a
bounding function L.(K); integers l,, ny; and functions @, A, ¥ so that, for each
K > K., L > L.(K), the dynamic output feedback (139) in closed loop with the system
(109) makes all the solutions, with initial condition in K, x Ky x Ke, be captured by
the set K,s x Kys x Kegs.
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4. The small gain theorem for asymptotic stability. Up to this point we
have focused on boundedness of solutions only . However, we have constructed Lya-
punov functions to guarantee that, in appropriate coordinates, the states become
ultimately arbitrarily small. Now, if the linear approximation in these coordinates
is exponentially stable we are effectively done. If the linear approximation is not
exponentially stable, then the problem reduces to studying the local stability on the
center manifold. See [8]. Because the center manifold analysis can be quite involved,
we choose to develop a sufficient condition, other than exponential stability, that can
be checked a priori.

Our approach will be to appeal to the notion of “small gain.” We will state here
a version of the small nonlinear gain theorem, expressed in terms closely related to
the nonlinear L.,-gain from input to state. This is inspired by Sontag’s input-to-
state (ISS) stability definition [33]. We start with the following definition and give an
illustrative fact.

DEFINITION 5. The system

(163) z = h(x,u,t)

with z € R", u € R™, and t € Rx¢ is said to be uniformly (e, ) input-to-state
stable (uniformly (e,8) ISS) if there exist a class-K L function 3, a class-K function
v, called the gain, and strictly positive real numbers §, € such that, for each t, > 0,
for each initial state x(t.) = zo satisfying |zo| < & and for each measurable control
u(+) satisfying ||ullt, < €, the solution of (163) exists for each t > t, and satisfies

(164) lz()] < B(lzol,t — to) + y(l|ulle,)-

FAcT 4.1 ([35],[20],[45]). For the system (163),
1. if h does not depend explicitly on time and the equilibrium point x = 0 of the
system

(165) & = h(z,0)

is locally asymptotically stable, then the system is (uniformly) (e, ) ISS.
2. if %(m,(), t) is bounded for sufficiently small x uniformly in t, h(z,u,t) is
locally Lipschitz in (x,u) uniformly in t, and the equilibrium point x = 0 of the system

(166) & = h(z,0,t)

is uniformly locally asymptotically stable, then the system (163) is uniformly (c,6)
ISS. Moreover, if x = 0 of (166) is locally exponentially stable then v can be taken to
be of the form ~v(s) = ks, for some positive real number k, and 3 can be taken to be
of the form [3(s,t) = bse™ %, for some strictly positive real numbers b and a.

Proof. See the appendix. O

Remark 4.1. For the local exponential stability case, this result was presented in
[45]. For the time invariant case, the result is essentially contained in [35, Thm. 2].
For the case where h is differentiable, the proof of this fact can be constructed from
theorems in [20, §4.5.2].

The local asymptotic stability of the equilibrium point of interconnected uniformly
(e,6) 1SS subsystems can then be analyzed using the following result.
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LEMMA 4.1 (small gain). Consider the feedback interconnection

(167) { %

I

hi(z1,u1,v,1), Uy = o,

Tg ha(z2,u2,v,t), uz = I,
with z; € R™ fori=1,2 and v € R™. Define x = (27,2%)T. Assume h; is locally
Lipschitz in (z;,u;,v) and piecewise continuous in t. Assume the ith subsystem is
uniformly (e;, 6;) ISS with respect to both u; and v (characterized by 6;, €%, €/, Bi, 73
and v¥).8

Suppose there exist strictly positive real numbers w and X\ such that®

I+ )70 (L+ )3 (s)

(168) (14 A o (1+ A)ri(s)

<
*s} Vs € [0,u] .
<s

Under these conditions, the feedback interconnection is uniformly (e, ) ISS.
More specifically, define

$1(s) 1+ Eﬂl(s,O) + §(1 +ATHA +A7H(Ba(s, 0));3 ,
(169) ¢ d2(s) = (1 +A71)(B2(5,0) +% (L +A"H(A+A"1)(Bi(5,0))

9y

o(s) = ¢1(s) + da(s)
and
ri(s) = (L+ATHF +91 o L+ ATHA+X)(9))(s),
(170) ra(s) = (1+AH( +73 o (L+A"H(L+N(1))(s),
r(s) = ri(s)+ras).

Then, for any pair (€,8) satisfying
(171) e < min{e}, 5} @(8) + r(e) < min{by, b2, €}, €5, w}

and for each class-Koo function o there exists a class-K L function 8 such that, for
each t, > 0, for each initial state satisfying |z(to)| < 8, and for each measurable input
v(+) satisfying ||v||¢, < €, the solution of (167) exists for each t > t, and satisfies

(172) ()] < B(lz(to)l t —to) + (r + @)([[v]ls, )-

If each subsystem is uniformly globally ISS and inequality (168) holds for all s €
[0,00), then inequality (172) holds for all initial conditions and all measurable inputs
v(-).
Proof. See the appendix. 0
Remark 4.2. 1. Notice that when ||v||;, = 0, the lemma provides an asymptotic
stability result. For the local case, this lemma can be seen as a generalization of [7,
Lem. 4.13] where, there, 72 = 0. In the global case, this lemma is a generalization
of the result that the cascade of an ISS system and a globally asymptotically stable
(GAS) system is GAS.

2. This lemma is a form of the small nonlinear gain theorem (see [10]) which
includes explicitly the effects of initial conditions. Its condition (168) was introduced
in [24]. For other purely input-output results see [24] and [32] and the references

8 For example, |x1(2)] < B1(|z1(to)],t — to) + ¥ (llurlleo) + 7 (l]to)-
9 See Fact A.2
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therein. In [16], a generalization of this lemma is presented dealing, in particular,
with practical stability and the input-output case.

To make this small gain result more efficient we remark that [20, Thm. 4.10],
reproduced here, gives us a way to compute effectively the gain function ~.

LEMMA 4.2, Let B} be the set {x € R" : |z] < r}, V : R>g x B} — R
be a C' function, oy, os, a3, and a;l be class-K functions defined on [0,7], and
h:Blx B™ xRso — R" be piecewise continuous in t and locally Lipschitz in (z,u).
Assume € satisfies

(173) e < ag'(ay (an(r)))

and, for allt >0, for all (x,u) in B} x B, we have

(174) a1(lz]) < V(t,z) < aof|z])

and

(173) w2 asul) = D+ W) < —as(lal)
Under these conditions, the system

(176) & = h(z,u,t)

is uniformly (e,6) ISS with

(177) §=ay'(a1(r), ~(s) = ay ' (az(as(s))).

Furthermore, if a;(s) = k;s?, fori =1,...,3 and some k; > 0 then

(178) B(S,t)_\/l:s exp( %, t).

Example 4.1. Let us consider the system

i = =24y
1 )
(179) {y S

where j is some nonnegative real number. We can apply Lemma 2.2 to deduce that
the point (0,0) is semiglobally practically stabilizable by the output feedback

(180) u=—Ky

with K large enough. To study whether we have asymptotic stability, we check to see
if Lemma 4.1 applies.
First we consider the system

(181) &y o= —xd 4 uy.
To get an expression for v, we apply Lemma 4.2. We have

.
(182) %:E?USI) = —2] + x u,

(183) < —Igi- £l (Jz1]® = 8Juil) -
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It follows that
(184) i(s) = 253, €1 =01 = +00 .

Similarly, for the system

(185) &y = —Kzy + usfusl’ |
we get
s 1 j+1
(]86) 72(5) = 7 1!3‘] , €3 = 0y = +00 .

Therefore by choosing K large enough, we can meet the constraint (168) for some A
strictly positive and w = 1 if

(187) i>2.

In this condition, we know that the equilibrium (0,0) of (179) and (180) is locally
asymptotically stable.
In fact the condition (187) given by Lemma 4.1 is not necessary. Indeed, we have

| Ij+2' 2
z y N
(188) ) = —Ky? - [zt

(179)—~(180)

This implies global asymptotic stability for all nonnegative j.

Ezample 4.2 (A continuation of Example 2.1). Consider again the system (34)
of Example 2.1. We have seen that the semiglobal stabilizability of the z subsystem,
the definite sign of G, as well as the existence of a lower bound for G, are sufficient
conditions for the existence of semiglobally practically stabilizing feedback.

We study now whether we have not only practical stability but also asymptotic
stability when

(189) A(0,0)=0, a@(0)=0, F(0,0,d)=0 vde D .

For this study and with the notation of Example 2.1, consider the system
(190) z = f(z,z,d(t)) + g(z,z,d(t))(— Ksgn(g)z)

with input 2z and a disturbance d. We consider the analysis on the set
(191) B(6) = {(z,2) : max{|z],|z|} <6},

where § is some strictly positive real number. Because of smoothness, compactness
of D, and the definition of f, we can write

(192) Ifl <vs(lz) + Ralz] - ¥((z,2),d) € B(6) x D,

where 7 is any class-K function satisfying

(193) v5(8) = |z|§“fé‘ep{|f(z’°’ d)|}

and k; is some positive real number independent of K. Recall also that b < |g| = |G|.
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We show now that the system (190) is locally asymptotically stable when z = 0
and that it has the uniform (e, §) ISS property with respect to z. Indeed we have, for
((z,2),d) € B(6) x D,

(194) 12 100) < —Kbz® + |al[k |2] + v7(]2])],
(195) < 2% — || [(Kb — ks — )z] — v7(2])] .

So, from Lemma 4.2, we have established that, for K > 517;—*'—2, the system (190) is
uniformly (e, 6;) with

b, = 6,
(196) "Yf(ez) < 6, 1
Yz(s) = m’)’f(s) »
Bz(s,t) = sexp(—t).

On the other hand, we notice with Fact 4.1 that the asymptotic stability assumption
for the z subsystem implies the existence of a class-K function ~, and two strictly
positive real numbers 6, and €, such that the system (see (35))

(197) = Alz,a(z) + )

with z as input is (e,, §,) ISS with gain function ~, and class-K L function 3,.
So let us assume the existence of strictly positive real numbers A, M, o such that

(198) 1+ X7y:0—=75(s) <s Vse[0,].

Then by imposing the constraint:

{(1+/\)]W+1+]€1 k'1+2}

(199) K > max 5 S

the conditions of Lemma 4.1 are satisfied with
(200) w=min{w, (1 + A)v. (=)} .

This result gives that the system

2 = A(za(z) +zx),
(20D { = (o md(t) + gz 2, d()(~ Ksgn(g)z)

has a basin of attraction for local asymptotic stability. Precisely, as shown with full
details in §5.2.3, there exists a strictly positive number ¥ independent of K, such
that the basin of attraction contains the set

(202) A= {(Z,Z(J) : l(z‘rm)l < 190} .

To complete our proof of semiglobal stabilizability under the condition in (198),
it remains to establish that the solutions of the closed-loop system are captured by .A.
But this follows easily by choosing, in the design, the compact set s so that K, C A
and picking K large enough.
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5. A generalized version of Theorem 1.1.

5.1. Assumptions and results. As was done for Theorem 1.2, we prove here
a proposition from which Theorem 1.1 follows directly. We consider again the system
(109) under the following assumptions (see (145)).

(203) Z.(0,0,d) =0 A(0,0,d)=0 VdeD

and

Assumption S. We can find

1. a strictly positive real number ¢; and a positive C' function V' which is zero
at 0, defined on U, an open neighborhood of 0, so that the set {z: V(z) < ¢} is a
neighborhood of 0, compact and contained in U,

2. a C? function #(z) which is zero at 0, is defined on U, and is UCO (i.e., (6)
holds), such that

(204) V(111) < —-9(2)

where ®(z) is continuous on U and positive definite on {z : V(2) < ¢} \{0}.
PROPOSITION 5.1. Suppose the system (109) is so that Assumption S and (203)
hold and there exist strictly positive real numbers A\, M, w such that

1
(205) (1+ M0 M“/O,(Sye)(s) <s Vs € [0, ],

where Yo, (¢,e) 45 a class-K function satisfying (see (145))

g—g(zwzﬁﬁ(z)’d)i ! lEe(z’O’d)‘}

206 >
(206) Yo,(,e)(8) 2 (z’d):mgdw{

and vy, 1s the (¢,6) gain, with respect to u and uniform in d, of the system
(207) 2= A(z,u(z) + u,d(t)) .

Under these conditions, there exists a dynamic output feedback making the origin of
the closed-loop system uniformly asymptotically stable with a basin of attraction such
that its projection contains any strict compact subset of {z : V(2) < ¢}.

Proof of Theorem 1.1. As already mentioned in the proof of Theorem 1.2, there
exists a C! function V defined and proper on IR™ and positive definite on IR™\{0}
and a C? UCO control law so that Assumption S holds for any strictly positive real
number ¢;. Also, this control being locally exponentially stabilizing, it follows from
Fact 4.1 that . (s) in (205) is linearly bounded on a neighborhood of 0. On the other
hand, with the functions involved in (206) being at least C!, the function Yo,(¢,e)(8)
can be chosen linear on a neighborhood of 0. Inequality (205) follows readily. The
conclusion of Theorem 1.1 then follows from Proposition 5.1. |

5.2. Proof of Proposition 5.1.

5.2.1. Practical stabilization. Let us first notice that Assumption S implies
the existence of a class-K function a; so that

(208) Vi) < = ai(lz]) < V(2).
Then, let us pick three strictly positive real numbers J;, 9, and cs so that

(209) P <Y < s <
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and define the following compact sets:
(210) K.s ={z:V(z) <9}, Ka={z:V(z) <cs}.

We are in the condition where the controller design in the proof of Theorem 1.2
arplies. So, for any strictly positive real number 9,, and any compact sets (Ky, Kgi),
we can find, in particular, a real number K, a compact set

(211) | Al {g :¢TP.£ < sup {ngcg}} ,

§eKq
and positive functions L.;(K), pa(K), so that, for each K > K., L > L, (K),
the dynamic output feedback (139) in closed-loop with the system (109) makes all
the solutions, with initial condition in KC;; x ICyy X K¢, remain in the set {(z,y,€) :
(2,6) €T, eTP,e < exp(ua(L) + 1) — 1} and be captured by

(212) R={(2,3,8) : |z| <a7'(¥), e’ Pe <exp(49;) — 1, £TP.£ < 801},
where P, is given by (155) and P, is given by (131).

To study under which condition we have attractivity of a single point, we remark
that the closed-loop system is made of the interconnection of

(213) z= A(z,u(z) + &, d(t))
with:

£ = KAL+Ze(z,€e4d)),
(214) { D= LAce+Eing dlt)),

where Z, is defined in (145) and

—88(2)A(2, 4(2) + &1, d)
0

(215) EE(Z,&,@,d) = .
0
Kay [AT) — u(2)]

From Assumption S, Fact 4.1 applies. So there exist a class-K function 7y, and two
strictly positive real numbers §, and ¢, such that the system

(216) z = A(z,u(z) + u, d(t))

is uniformly (e,, §.) ISS stable with gain function «y,. It follows then from Lemma 4.1
that local asymptotic stability can be proved if the (&, e)-subsystem is also uniformly
(€(,e)» O(e,e)) 1SS for some strictly positive real numbers €(¢ oy, (¢ ey, and gain g )
satisfying a small gain condition like (168).

5.2.2. Input-to-state stability of the (&, e)-subsystem. With (115), (140)
and the function ¥ defined in (150), we have, for all e, K > 0, and L > 1,

(217) [u—a(z)] <U(K,le])|e]  V((z,€),d)eT xD.
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Also there exists a positive real number vy satisfying, for all ((z,£), d) in the compact
set I' x D,

(218) %Z(z)A(z,ﬂ(z) +&,d) ~ -?g(z)A(z,a(z),d) <y l€.

So, with (142), (148), for all ((z,£),d) in ' x D and all e, we have
(219) IEE(Z:5567 d) - EE(Z, 0, 03d)| <y lf' + W(]:(7 Iel) K lall |€| .

Similarly, from (145), we see that there exists a positive function C satisfying, for
K >1,

(220)  |Ze(z,6,d) — Ze(2,0,d)| S C(K) K™ €] Y((2,€),d) €T x D
With (203), let 7o, (¢,e) be any class-K function satisfying

A1), Bl 0.0

221 o(s) >
( ) 0.8, )(S) - (z,d):]rﬁg,dep{
We have, for all ((z,€),d) in ' x D and all e,
(222)
£TPC€ S —KETg + 2>\max{Pc}l£| [V4 Iél + 70,(6,6)(!'2!) + @-(Ka lel) K |al| '6]] 5
Tpe < —LeTe+ 2 max{P. C(K)K™
e o€ > e’ e+ 2Amax{Po}lel [_/( ) i€ +’YO,(§,e)(|z|)] .

Then, from the properties of V, there exists a strictly positive real number € )
satisfying

(223) lz| < €(¢e) = z e K.
Let also
su Tp,
(224) r= \/ Peerce (€7 Pel)
)\max{Pc}

Then, with (211), we have

(225) (]z] < €e) ‘( E )’ < r) = ((z,8) el le]<7).
Finally, define!?
K2 = 2max {)\max{Pc} (3+4vy),

)‘xnax PC »An)a.x PO A1.'"!!,)( PC +/\max PE’ P
(226) 1 el Gl D U ) G B Pal) 5 ) (e6,00)2

¢ Amax{ P} K E K, 2 Amax { Po Kmua K 2
L*Q(A) = QAHIQX{Po} +K+2( { } Iall ( ;in?gr} { } ( )) .

10 The second argument in the max guarantees the condition (173) of Lemma 4.2 holds.
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We have established that the condition
de D, |z] <e€ee and ‘( i )' <r

implies, for all K > K, and L > L,2(K),

(227) €TP.c+eTPe< —% (€T¢ +eTe) + (Amax{Pe} + Amax{Po}) 70,(e.e)(|2])%.

Then by applying Lemma 4.2, we see that, for K > K, and L > L. (K), the
(€, e)-subsystem is uniformly (e ., 0(¢,e)) ISS with

(228)
teals) =zt /PPl Rl Qe 0 e (2D
Ceo = mmbentERsEE
Beo(st) = \/mxlimelplmelBl s exp (~ ey 1)

5.2.3. Uniform asymptotic stability. With Lemma 4.1, we can now conclude
that the origin is a uniformly asymptotically stable equilibrium point of the closed-
loop system under consideration with domain of attraction containing

(229) P= {(z7€=e) 2o((2,6,e),K) < min{é(é,e)v 6z»€(§,e)» €z, w0, (14 }‘)'}’:(w)}}
if

1. there exist strictly positive real numbers A, M, @ such that

(230) (I+ Ny, 0 %70,(5@)(5) <s Vs € [0,w]
2. K and L are chosen to satisfy
(231)
K 2 max { Koy, Koy, 24 9Pl f fume () Qe LAl 21 072 (1427}
L > max {L.(K), L.o(K)}.

In (229), the function ¢(s, K') is obtained from (169) as

$1(s) = (1 +A1)(B:(5,0) +v: (L +A7H(1 + A_l)(ﬁ(f,e)(svo))%) )
(232) { d2(s, K) = (1+X71) (B2(5,0) + v, (L+ AT +AT1)(8:(5,0))))
¢(57K) = ¢1(8)+¢2(S,K),

where (¢ ), dependent on K but not on L, and S ) are given by (228). From (228),
we see that there exists a class-K function ¢ independent of K and L satisfying

(233) o(s, K) < o(s)

for all s > 0 and K, L satisfying (231). It follows from (229) and (233) that there
exists a strictly positive number 9, independent of K and L, such that the set

(234) A= {(2¢,¢e): max{|z],ET P eT Pe} < o}
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is contained in P and therefore in the domain of attraction for all K and L satisfying
(231). Then since, in the controller (139), the gains ¢; and a; and the bound umax
are chosen independent of ¥, and ¥;, ¥9 does not depend on ¥; and ;. Therefore,
we can choose ©¥; and ¥; strictly positive and such that

(235) 97 < min {}1 In(1 + do), %0} , 9 < aq (Vo).

With such a choice, we are guaranteed that A contains R defined in (212). This
implies that the solutions are captured by the set A.

6. Other examples.

6.1. Minimum phase i/o linearizable systems. Many results in the spirit of
Theorems 1.1 and 1.2 can be formulated for minimum phase i/o linearizable systems
using the tools developed in this paper. Consider the C! system

(2 = h(z2,0),
Ty = xo,
236 :
(236) Ll
C = f(z7x7 C, d(t)) ‘*‘ g(z5$7 C7 d(t))u’
) = I,

yeR, ueR, 2 € R" and ¢ = (21,...,2,)T € R” and ¢ € IR. We assume a
well-defined relative degree and the global minimum phase property as follows.
Assumption HFG. The sign of g is constant and the magnitude of g is bounded
away from zero.
Assumption MP. z = 0 is a globally asymptotically stable equilibrium for the
system

(237) 5 = h(z,0,0).

We will also assume semiglobal stabilizability for the origin of the (z,x) subsystem:

Assumption RSE. The equilibrium point (0,0) of the (z,z) subsystem, with ¢ as
input, is semiglobally stabilizable by C? (¢ > 2) partial state feedback depending
only x. Furthermore, this feedback locally exponentially stabilizes the origin of the x
subsystem.

Note that, with Assumption MP, Assumption RSE holds in the following cases:

1. [34], [31] the state z remains bounded for all “disturbances” z and ¢ which
converge to zero. A special case is when the z subsystem is globally ISS with respect
to x and (.

2. [36, Thm. 6.2] h is globally Lipschitz.

3. [7], [36] h depends only on z and x;.

4. [38] h depends on only one component of the vector (z1,...,z,¢)7.

Then, using Example 2.1 and Proposition 3.1, respectively, we have the following
results.

COROLLARY 6.1. If Assumptions HFG, MP, and RSE hold, then the origin of
the system (236) is semiglobally practically stabilizable by C* (¢ > 2) and UCO state
feedback.

COROLLARY 6.2. If Assumptions HFG, MP, and RSE hold, then then the origin
of (236) is semiglobally practically stabilizable by dynamic output feedback.
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The feedback used to prove Corollary 6.1 is of the form u = —sgn(g)K (¢ —
u(x)), where @ is the feedback given by assumption RSE. See Example 2.1. We then
remark that the dynamic extension of §3.2.2 is not needed in Corollary 6.2 because
the practically stabilizing feedback of Corollary 6.1 is UCO without using u or its
derivatives.

Local exponential stability for the origin of the x subsystem is not used in either
of these results. It will be used, together with the next assumption, to guarantee
asymptotic stabilizability.

Assumption LSG. With +, the local gain function of the z subsystem with (z, ()
as input, there exist a class-K function vy and positive real numbers A\, M, and @
such that

(238) (14202l S5 Vs e(0,w),
(239) v(8) > sup {I£(2,0,0,d)}.
|z|<s,deD

We remark that local exponential stability of the origin of the system (237) and
£(0,0,0,d) = 0 for all d € D are sufficient to guarantee that Assumption LSG holds.
COROLLARY 6.3. If Assumptions HFG, MP, RSE, and LSG hold, then the origin
of the system (236) is semiglobally stabilizable by C* (£ > 2) and UCO state feedback.
Proof. Define £ = ¢ — @(z). With the feedback law mentioned above, the (z,£)
subsystem has the form

(240)

z = E(z,u(x)+ &),

£ = [flzaa@)+&d(t) - |g(z ,a(z) + & d(t))| KE - §E(2)E(z, (@) + &),
where
(241) |E(z, u(z) +§) — E(z,u(z))| < [¢] .

We will show that, for K sufficiently large, the (z,£) subsystem with z as input is
uniformly (e, §) ISS with

(242) B(s,t) = kisexp(—kat),  ~(s) = \/k_%'Yf(S)

for some positive real numbers ¢, 8, k;, k2, k3, which can all be taken independent of
K. The equilibrium point z = 0 of

(243) & = E(z,u(z))

is locally exponentially stable. This guarantees the existence of a function V(z) and
strictly positive real numbers ¢;, ¢2, c3, and r such that, for all |z| < 7,

aleg? < V() <ecolaf?,
(244) Vi2a3)
15

< e
< cglz| .
We restrict our analysis to the set

(245) B(6) = {(z,2,€) : max{|2], =], [¢]} < 6},
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where 6 < r is some strictly positive real number. Because of smoothness and com-
pactness of D we can write

016)  |f(ema@) + &d) - 5L @Bl a() +

< ys(lz]) + ealz| + esl€] V(2 ,€),d) € B(6) x D,

where vy is defined in (239) and ¢4 and c5 are some positive real numbers independent

of K. With assumption HFG, let 0 < b < |g|. Then, for all ((z,z,€&),d) € B(é) x D,

(247) V() + €% (g40) < —lz? + calz||€] — 2KBIEP + 2/€][vs(|2]) + cal] + esé]],
(248) »%M? — (Kb —4c2 - c?, — 2c5)[€]? + Rl—b’y?(lzl)

IA

For K sufficiently large, the uniform (e, §) ISS property. with 8 and 7 of the form
(242), follows by applying Lemma 4.2. Compare with (227), (228).

From Assumption MP and Fact 4.1, the z subsystem is (e,.8,) ISS with respect
to (z,¢) with gain function v,. To identify the gain function with respect to (z,§)
observe that, % being at least C?, there exists a positive real number k4 such that

(249) lz| <€, = a(x) < kqlz|.
Then, we can take

(250) YO () = 7, ((1 + ky)s).

Finally, applying Lemma 4.1 to the interconnection of the z and (z,£) subsystems,
one finds that condition (238) of Assumption LSG is sufficient to guarantee local
asymptotic stability for K sufficiently large. Moreover, as in Example 4.2, Lemma
4.1 demonstrates that a neighborhood A can be described, independent of K, which
is contained in the basin of attraction for all K sufficiently large. Then, semiglobal
stabilizability follows from Corollary 6.1. 0

COROLLARY 6.4. If Assumptions HFG, MP, RSE, and LSG hold, then the origin
of the system (236) is semiglobally stabilizable by dynamic output feedback.

Sketch of proof. The proof is the same as that of the previous corollary. In this
instance, the closed-loop system has the state (z,z,£,e) and the (z,&,e) subsystem
is uniformly (e, 6) ISS with 3 and v again of the form (242). The conclusion follows
from the small gain theorem and Corollary 6.2 with K chosen large enough.

Weaker versions of this last corollary have been published. In [15, §4.7] a similar
local result is established for systems with locally exponentially stable zero dynamics.
In [19], a similar global result is established for globally Lipschitz nonlinearities. More
recently, for the case where the Z equation in (236) is linear in z, it has been shown
in [11] that the equilibrium point (z,2) = (0,0) is locally stabilizable by output
feedback. This result provided estimates for the region of attraction but did not
guarantee arbitrarily large domains of attraction. In all of these cases, Assumption
LSG is automatically satisfied. When the system does not have zero dynamics it was
shown in [18] that the equilibrium point x = 0 is semiglobally stabilizable by output
feedback. For these results, high gain observers are used. In the special case where
only x; appears in h, f is generated by differentiation of nonlinearities that depend
only on z; and z, and g(z;) is known (see (61)), it has been shown in [42] that the
system (236) is semiglobally stabilizable by output feedback, under an assumption
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similar to Assumption LSG, but without requiring high gain observers. See Example
2.3. If, in addition, the inverse dynamics satisfy an input-to-state stability property
with respect to z; then, as was shown in [29], the system (236) is globally stabilizable
by output feedback. This generalized the results of [17] and [26], [27] where it was
required that the system be linear up to output injection.

6.2. A nonminimum phase i/o linearizable system. Consider the non-
minimum phase system on R? with y as the output

s o= -2+ 22— 21y,
(251) 29 = 224y+ 2022
Yy = u+ 2.

The origin of the zero dynamics

z = =21+ 29
252 1 SERREN
(252) { 2y = 224 22}

is unstable. Indeed, any solution with initial condition satisfying 22(0) > 0 exhibits
finite escape time. Instead of a decomposition into z and y subsystems, we view the
system (251) as in Lemma 2.3 with z; playing the role of z and (z2,y) as the block
of integrators. Although the assumptions of Lemma 2.3 cannot be satisfied because
of the presence of y in the 2; equation, the result is still valid. Namely, for K, large
enough, the control

is semiglobally stabilizing. This can be checked by looking at the time derivative of

z2 322+ mit + ()
(254) W=c st u 223 22K1 y(Al TRV
ct+1l—2 bt 1= (525 + 2285 +(#)%)

Local exponential convergence follows from the exponential stability of the undriven z;
subsystem as discussed above. To conclude semiglobal output feedback stabilizability
from Propositions 3.1 and 5.1, it remains to verify that the control (253) is UCO.
This property holds trivially since we have

(255) 20 =7~ u

7. Conclusion. We have developed tools for semiglobal stabilization by partial
state and output feedback with, as a main application, semiglobal output feedback
stabilization for nonlinear systems that admit a uniformly completely observable sta-
bilizing function. Our approach for this problem uses the observer idea of [11] and
the dynamic extension of [43]. This result can be seen as an extension of the result
given in [40].

An important feature in our approach is to consider the issue of bounded solutions
separate from convergence to the equilibrium. To guarantee convergence we have
imposed a sufficient, but not necessary, small gain condition which generalizes local
exponential stability assumptions.

We have given several applications illustrating our tools:
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e We have shown that semiglobal stabilizability by uniformly completely ob-
servable state feedback is a sufficient condition for semiglobal practical stabi-
lization by output feedback. Stabilization itself is obtained if an extra local
small gain property is satisfied. We have applied this result to input-output
linearizable systems.

e We have given output feedback solutions for certain robotics problems (Ex-
ample 2.4), for the ball and beam (Example 2.5), and for a nonminimum
phase system (§6.2).

e We have applied our semiglobal stabilization design to the almost disturbance
decoupling problem to eliminate the vanishing regions of the attraction prob-
lem discussed in [21] and [25]. See Example 2.2.

Appendix A. Appendix.

A.1. Proof of Fact 4.1. For a strictly positive real number r and a positive
integer n, define the set Bl, a closed subset of R"™, by

(256) B!={zeR":|z|<r}.

CrAaIM. Under the conditions of Fact 4.1, there exist a strictly positive real number
r, a C! function V : R>ox B — R, lass K functions oy, oo, az, and oz ' defined

on [0,7] such that, for allt > 0 and all (z,u) in B x B’"_l( ) we have
(257) o (fe]) < V(t, ) < ox(]z])
and
oV oV
(258) |z] > as(|ul) = 5 T . £ h(z,u,t) < —asz(|z]) .

In the time-invariant case, V can be taken independent of t.

Proof. We start this proof by defining a function d, : [0,7] — IR>o as follows:

1. For the time-invariant case, as in [35, Eqgs. (13), ( 4)] but assuming only LAS
of x = 0 for £ = h(z,0), we know that there exist a strictly positive real number r,
a C! function V : B — IR0, and functions a1, a2, as of class-K defined on [0, 7]
such that

(259) a1(lz]) < V(z) < aqo(|z|)vVz € BY,

(260) %l;-(m)h(x,m taz(z)) < 0 Vae BM\{0}.

Then following (35, Proofs of Lem. 3.1 and 3.2, there exists a piecewise constant
function d, : [0,7] — IR>0 such that

d(0) = 0,
(261) do(s) > 0 Vse(0,r],

lu] <ds(Jz|) = %‘g(w)h(w,O) < —as(|z]).

2. For the time-variant case, from the assumptions on h, there exist strictly
positive real numbers r and L, a C! function V : R>o x B — R>g, and class-K
functions ay, a9, a3, and a4 defined on [0, 7] such that, for all (z,t) in B x R>o,

arlz]) < V(tz) < as(|z)),
(262) % (t,2) + 32 (t,2)h(,0,1) —2as(|z),

% (t,2)] ay(lzl),
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(see [20, Thm. 4.7] for example) and
(263) |h(z,u,t) — h(z,0,t)| < L]yl V(z,u,t) € B x B" xRxo .
From (262) and (263) it follows that

ov ov
E (tv 37) + —a_—m_ (ta Cl?)h(:l‘, U, t)

< —204(jal) + aalle) iy V(w,u,t) € BY x BI* x Rao.

(264)

In this case, we let the function d, be

do(0) = 0,
(265) © o (5)
do(s) = Ton(s) VS € (0,7].
From our definitions of d,, we have
(266) 1r[1f {o,ds(0)} >0 vr € (0,7].
o€lr,r]

So let 8 be the function defined on R>q by

900) = 0,
(267) 0(s) = é /0 <1 _: - aE[‘rfr] {o,ds(0 )}) dr Vs e (0,7] ,
f(s) = 0(r) ; Vs € (r,+00) .

This function is of class-K and the definitions of d, imply, for all (x,u) in B x B,

%_Y(t,x) + Z—‘;(t,x)h(m,u, t) < —as(|z|) .

(268) lul < 6(lzl) =
So, the claim follows by defining a5 = 67 1.

If the equilibrium point is locally exponentially stable, then from the assumptions
on h, it is well known (see [20, Thm. 4.5]) that the functions a;, for ¢ = 1,2, 3, can be
taken to be of the form «;(s) = k;r? for some k; > 0. Furthermore, a4 can be taken of
the form ay4(s) = kqs for some k4 > 0. It follows that a5 has the form as(s) = L’”“ s.

Finally, Fact 4.1 is established using Lemma 4.2 and the fact that, when o;( ss) =

kis?, fori=1,...,3, a5 = Lk’“s implies
ko Lk

(269) arY(az(as(s))) = \/ = ——s. O
ki k3

A.2. Proof of Lemma 4.1. We will make use of the following facts (see [24]).
Fact A.1. Let v be a function of class-K and let g be a function of class-Koo
We have

(270) Y(a+b) <yo(Id+g)(a)+yo(Id+g ) (b) .

Proof. The proof follows from considering the two cases b < g(a) and
b> g(a). 0
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FacT A.2. Let v1 and 2 be functions of class-K and let A and w be positive real
numbers. Then

T+ N7o(l+N)r(s)<s Vs [0,w]
(271)
= (1+A)yo(l+A)m <s Vs € [0, (1 + N)y2(w)].

Proof. We prove Fact A.2 by contradiction. Assume there exists an s’ € [0, (1 +
A)v2(w)] such that

(272) (1+XNy20(1+N)7(s") > 5.

Since (1 + A)72 is of class-K, this inequality implies that ((1 + X)vy2)~!(s) is well
defined and that

(273) (1+X)n(s) > (L + X)) 7H(s) = t.
This further implies
(274) T+ Mmoo I+ N)n(t) >t

which is a contradiction since ¢ € [0,w]. 0

We now prove Lemma 4.1.

CLAIM. For the class-K functions ¢ and r defined in (169) and (170), for positive
real numbers 6 and € satisfying (171), and for each t, > 0, we have

(275) {lz(to)l <6, [vlle, <€} = {lz(®)] < o(lz(to)]) + r(|[vlle,) VE 2 o} .
Proof. Define
(276) 6 = min{é;, o, €, ¥, w}.

The positive real numbers on the right-hand side come from the uniform (e;, 6;) ISS
assumption on each subsystem and condition (168). Notice, from (164) and (169),
that for any pair (8, €) satisfying (171) we have

(277) 5 <.

Then, from the assumptions on the system (167), for any initial condition z(t,) sat-
isfying |z(t.)| < 6 and any measurable function v(-) satisfying ||v||;, < min{e}, €5},
one can find a strictly positive real number T, possibly infinite, corresponding to a
maximal interval [t,,t, + T') such that there exists a unique solution to the feedback
interconnection satisfying |z;(t)| < 6 for all t € [to,t, + T). Define

(278) llzillf, = sup |ai(7)|.
to<T<to+T

For ease of notation, we take

(279) Y= di = v} (|[v][7,)-
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From the uniform (e;, 6;) ISS assumption and causality of the feedback interconnec-
tion, for all t € [to,to + T'), we have

(280) {'W)' i Br (a1 (to)lst = to) + v ([[z2lIF) + di,

|2 ()] Balz2(to)l t = to) + v2(llz1][)) + da.
Now, using Fact A.1 and (168), we get

(281)  lzllf, < Bi(2(to)],0) + 1 (Ba(l2(to)],0) + ol |IF)) + d2) +

< Bz (to)],0) + 71 (14X (Ba(|x(ts)], 0) + da))
(282) + (1 + A)“/2(||$1||g;)) +di

< Bi(Jz(to)],0) + m ((1 AT+ AT (B2(]z(to)]. 0)))
(283) 71 (L ATA+A)(d2)) + (1 + Az [ +dy

From this we conclude:

ol < (14271 [Bullz(te)],0) + 7 (L4 A7) (1 + A7) (B2(|x(ts)], 0))]
(284)

(AT (dr A7 (A ATHA+ A)(dr))) -
Using the definition of ¢ in (169), 71 in (170), and d; in (279), we get
(285) llz1llE, < r(z(to)]) +ri(lloll)-

We can repeat the analysis for x4 obtaining the class-K functions ¢2 and 7y defined
in (169) and (170), respectively. Then choose

(286) d(s) = P1(8) + P2(s), r(s) = 11(s) + ra(s).

Then, since 6 and € are strictly positive real numbers satisfying (171), by contradiction
it is easy to see that if |z(t5)] < 6§ and ||v||s, < €, T must be infinite which establishes
the claim. Note for the global case, there are no restrictions on |z(t,)| or ||v||,

CLAIM. Let (€,8) be an arbitrary pair satisfying (171). For each strictly positive
real number o and each (z(to),v) satisfying

(287) [z(to)l <65 ol <€,

there exists a time T so that the corresponding solution satisfies
(288) lz@®)] <o +r(lvlle,)  VE2to +T.

Moreover
1. T depends only on o and m defined as

(289) m = ¢(|z(to)]) + r(lv]le, )-

2. T is zero for any o if m is zero.
8. For any fized 0 > 0, T increases with m.
4. For any fited m > 0, T decreases with o.
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Proof. Given a pair (e, §) satisfying (171), let z(t,) and v satisfy
(290) lz(to)l <6, v, <e
Then, given the strictly positive real number o, we pick t1 (o, m) to satisfy
io

(291) Balm,t2) + 7 (1 + A7) Ba(m. 1) < 2y -

It is possible to pick such a t; because J; is of class-K L and =, is of class-K. We will
show that T given as

(292) B SNGE v R

where Z(s) is the smallest nonnegative integer greater than or equal to s, is sufficient
to establish (288). From (291), (292) this choice satisfies points 1-4 of the claim.
From the uniform (e;, §;) ISS property and the previous claim, we have

(293) '.’Ez(t)l < ﬁg(m,t])+’72(]|$]“ts) + dQ VYt > bty +ts
for each ts > t,. Using this information, we can establish that
(294) |z1(t)| < Bi(m,t1) + 1 (Ba(m, t1) + v2(l|z1]le,) + d2) + dy Yt > 2ty +ts

for each ts > t,. Using the choice of ¢; in (291), the definition of d; in (279), and Fact
A.1 we get

1

(205) | (O] < iy +

+ (1 + N el + @+ AT (foll,)  VE2 260+ 8

for each ts > t,. From this we get
1

(296) llzallanse, < pymry + (04Nl + (04 A7) el Vs 2

Since, from the previous claim, we have
(297) lzille, <m0,
it follows by induction that, for any positive integer j,
(208) loalle < A+ N T mt Lo trllll) Ve 20+t
Thus, with T defined in (292), we have obtained
(209) lzulle o +r(ll)  VE2 T+t
The analysis can be repeated for x5(t) to establish the claim. 0

With the previous claim established, by following the same lines as in [23, Lem. 2.1.4],
we can construct a family of mappings {1, }m>0 with
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1. for each fixed m > 0, T, : IR>g — Rs¢ is continuous, strictly decreasing, and
onto;

2. for each fixed o > 0, Tp,,(0) is increasing as m increases, and limy, oo T (c) =
0035
such that, for each pair (e, §) satisfying (171), we have
(300) {lz(to)l < 6, [[v]le, <€ m >0} = {|z(t)] < o +7(|[v]le,) YVt = Tin(0) + to},
(301) {lz(to)] = llvllt, =0} = {|z(t)| =0 ¥Vt >t.},
where m is defined in (289).

The discussion now follows the proof of [23, Prop. 2.1.5] closely. For each m > 0,
denote ¥, = T.7'. Then for each m > 0, ¥, : Rsg — Rsg is continuous, strictly
decreasing, and onto. And, for each fixed ¢ > 0, ¥.,, () is nondecreasing as m increases.

We also write ¥, (0) = oo which is consistent with v, being strictly decreasing and
onto. Finally, we extend this family with

(302) Yo(t) =0 Vt € Rxo.

To summarize the situation, we have established the following implications, for
each pair (e, §) satisfying (171):

(303)  {lz(to)l <&, [[vlle, < €} = {|a(t)] < hm(t —to) +r(l[v]le,) VE 2 Lo},
(304)  {lz(to)l <6, |lvlle, < €} = {Jz(t)] <m Vt = to},

with m given in (289).
Now, as in the proof of [23, Prop. 2.1.5], for any s > 0, d > 0, and ¢t > 0, let

(305) P(s,d,t) = min{ty(s)4ra) (t), 4(s)},

where ¢ may need to be extended to be defined for all s > 0. Since ¢ and r are
increasing, for any fixed d,t, ¥(-,d,t) is a nondecreasing function and, for any fixed
s,t, ¥(s,-,t) is a nondecreasing function. Similarly, since, for any fixed m, ¥, (-)
decreases to 0 as t — 0o, the same holds, for fixed s,d, for ¥(s,d,-). Finally, if the
pair (e, 6) satisfies (171), we have

(306)  {le(to)l <6, [lolle, <€}
= {le®)] < P(z(to)l, [[v]les,t = to) + r(l[vlle,) VE >t}

Now, for any class-K, function a, we can find a class-K, function a; such that
(307) dpoa; < a.
Then, for each ¢t > 0, we have
(308) P(s,d,t) < P(ar(d), d, t) +d(s,a7 ' (s),1).

This follows from considering the two cases, s < a;(d) and d < a7t (s), and by using
the monotonicity properties of ¢. But from the definition of 4, it is clear that

(309) P(a1(d), d,t) < p(e1(d)) < a(d).
(s

Finally, the term ¥ (s, aj (s),t) can be bounded by a class-K L function ((s,t) as in
the proof of [23, Prop. 2.1.5]. Combining these manipulations, we have (172). 0
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