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Abstract: We study the robustness of boundedness of solutions of nonlinear dynamical systems. A sutficient coordinate-free technical 
condition on the characterization of unmodelled effects is given. This characterization with some analogy with the input to state stability 
of [16] has the potential to encompass most classical uncertainties. In this context, we establish Lagrange stability results which look 
very much like a small gain theorem. We illustrate the use of these technical results in the robust stabilization problem by a class of 
interconnected systems. 
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Definitions. 
• I'l denotes the Euclidean norm. 
• A function V: R" ~ R is said to be positive-definite if V(x) is strictly positive for all nonzero x and is zero at zero. 
• A function V:Rn~ R+ is said to be proper if V(x) ~ oo as Ixl ~ oo. 
• A function ),:[~+ ~ R+ is said to be of class K if it is continuous, increasing and is zero at zero. 
• A function 7:1~+ ~ •+ is said to be of class K if it is of class K and proper. 
• A function/3: ~+ × R+ --, R+ is said to be of class KL if, for each t in R÷,/3(., t) is a function of class K and, for each s in R+, the 

function/3(s, .) is decreasing and, furthermore,/3(s, t) tends to zero as t goes to + or. 

1. Introduction 

While the theory of non l inea r  systems has greatly advanced,  the corresponding robustness  problem has 
also received the a t ten t ion  of m a n y  researchers. The word robustness generally means  that some property of 
a system stands in the face of some per turba t ions  (see [8, 18, 13, 15, 12,]). 

The purpose of this paper  is to present a new way of characterizing unmodel led  effects which are not  well 
structured. For  this, we seek to generalize s tandard  total  stability results [8-] and singular  per tu rba t ion  
results [13]. The price paid for this general izat ion is in our  character izat ion which is at first glance 
solut ion-dependent .  Nevertheless, with the help of an example, we show that, in some cases, it may be 
checked from the system equation.  

With  respect to these uns t ruc tured  uncertainties,  we consider the robustness  of Lagrange stability. It is 
worth no t ing  that  the results obta ined  in this paper  have some analogy with a small non l inear  gain theorem 
[14, Theorem 2-] (see [111 for more  details). In  contras t  to usual  approaches such as total stability theory [8-] 
and  s ingular  pe r tu rba t ion  theory [131, our  approach does not  take full account  of the structure of the 
uncertainties.  Consequent ly ,  we can only observe that the system's solut ions do not  satisfy the model  
dynamica l  equations.  In  this circumstance,  the problem is to propose bounds  on the corresponding equa t ion  
errors which are both  tractable and  meaningful .  This will be done with the help of a Lyapunov  funct ion and  
a compar i son  signal, but  then only a f unc t iona l  b o u n d  for the uncertaint ies is available. 
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In Section 2, we present the problem formulation and state our coordinate-free characterization of 
unmodelled effects. Our main results are contained in Section 3. An academic example will be given in 
Section 4 to illustrate our assumptions. In Section 5, we prove the main results. Our conclusion is in 
Section 6. 

2. Problem formulation and assumptions 

Consider the following nonautonomous ordinary differential equation to describe what we call a system: 

= F(X,  O, x~12, 
(1) 

x = H ( X ,  t), x e ~ " ,  

where 12 is an open neighborhood of the origin in R N and H is an observation map. We assume that F and 
H are C 1 from 12 x •+ to R N and to R n, respectively. 

Moreover, a system described by the differential equation 

~ =f (x ) ,  x~R n (2) 

is intended as an approximate model for the observed variable x of (1). 
Our problem is to seek sufficient conditions which ensure (globally and/or locally) that the Lagrange 

stability of (2) implies the boundedness of solutions of (1). 
In the following, we first state all the assumptions needed for the global case. Then we treat the local case. 

What these assumptions mean will be explained in Section 4 via an illustrative example. 

2.1. Global case 

The following two assumptions specify the class of systems (1) we are considering. 

Assumption G (Globality). H and 12 are such that 1 

H(12, O) = R ~. (3) 

Equation (3) means that we are seeking results which are global in the output space of the dynamical 
system (1). 

Assumption GEO (Global escape observability). For all initial conditions X(0) in 12, for the corresponding 
solution of (1) X:[0 ,  T) ~ 12, right maximally defined on [0, T), we have 

(X(t)  ~ 3 0  a s t  ~ T) ~ l i m s u p i H ( X ( t ) , t ) l =  + ~ ,  
t ~ T  

where d12 stands for the boundary of 12. 

Assumption GEO means that any trajectory X(t)  of (1) starting from 12 cannot go to the frontier of 
12 without its observation variable x(t)  escaping to infinity at the same time. Of course, this property implies 
that the trajectory {X(t)}t~to ' r ) is  bounded when the trajectory {H(X( t ) ,  t)}t~to, r)is bounded. Note that the 
observation of the escape is not implied by the usual observability concept. This is in the following simple 
example. 

Example 1. Consider the two-dimensional system 

~ = x  3, 3~=x. 

1 Note that our problem is meaningful only when n < N. 

(4) 
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For this system, we let X = (x, y)T and the output map H = (0, 1). Assumption G is satisfied with O = R 2. 
For each nonzero Xo and each Yo in R, the solution of (4) with the initial condition (Xo, Yo) is defined on 
[0, 1/2x 2) and has the following explicit expression: 

x(t) = Xo 1 - 2txg, x(O) = Xo, (5) 

1 ~/1 - 2tx~ 
y ( t ) =  yo + , y(O)= yo. (6) 

X 0 XO 

Thus, for every t in [0, 1/2x~), Xo may be obtained from the output measurements y(t) of (4). This shows that 
system (4) is observable. Indeed, y(t) - Yo is a continuous and increasing function of Xo. However y(t) is 
bounded on [0, 1/2x02), while x(t) did not. 

The next assumption restricts the model (2) to be Lagrange-stable but with the existence of an appropriate 
function. Precisely, we have the following assumption. 

Assumption GB (Global boundedness). There exists a positive proper C 1 function V such that for all x in •", 
we have 

-~x def= - -  W(x) <_ O. (7) 

In the case where (7) is satisfied with a positive-definite function V, V is called a weak Lyapunov function 
(see [2]). 

As mentioned above, (2) is considered as a model for the observation x of system (1). Namely, with x given 
as the measurement from (1), i.e. 

x(t) = H(X(t) ,  t), (8) 

the function f is supposed to satisfy 

OH t~H X t (X, t ) t ( X ,  t) + -ff[- ( , ) = f ( H ( X ,  t)), V(X, t)et2 x ~+.  (9) 

In practice, for the system output x to be considered as a state (of the model), it may be useful to augment the 
actual system measurement with dynamics. 

Anyway, because of approximation, uncertainties, etc. (9) is typically not satisfied. Quantifying the 
departure from the equality (9) or, in other words, characterizing the distance between the model (2) and the 
actual system (1) is our next objective. For this, we introduce a function and two sequences as follows: 

(H) There exists a positive C o real function le defined on R", with le(0) = 0, which satisfies the following 
property: 
there exist two increasing sequences of positive real numbers {ui}+=~, {vi}+=~o such that 

0 < U o < V o <  " ' "  < u i < v ~ < u i + l <  " ' ' ,  u i - -++oo (10) 

and 

W(x) >_ sup le(y), Vx, V(x)~ [ul, vl], (11) 
yEEx 

with Ex denoting the set {y ~ R": V(y) < V(x)}. 

This technical assumption is related to the fact that W dominates leon some level sets of V. It is satisfied, 
for instance, in the following two cases: 
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(1) there exists a positive C O real function ~ with Y(0) = 0, which is increasing on [Vo, + oo) ___ N+ and 
satisfies, for all xEN", 

~'(V(x)) < W(x). (12) 

Then r(x) = Y(V(x)) satisfies (11). 
(2) for all (x, y)eNz,, F(y) < W(x) if V(y) < V(x). 
Now with V, W defined in (7) and Y in (11), our assumption characterizing this distance between model 

and system can be stated as follows. 

Assumption GUEC (Global unmodelled effects characterization). There exist two positive real numbers #1, ]22 
such that, for any initial condition X(0)~O with corresponding solution of (1) X:  [0, T) ~ f2 right maximally 
defined on [0, T), there exists a positive real number D satisfying for all t6[0, T), 

~(x(t))[~(t)  - f (x( t ) )]  < I~1 W(x(t)) + #2 sup Y(x(s)) + D, (13) 
O<_s<_t 

where x(t) = H(X(t), t). 

We refer to r(t) = supo _< s_<t Y(x(s)) as the comparison signal. 
First of all, we note that two important features of this characterization: 
(1) Invariance by diffeomorphism: equation (13) is model-coordinate-independent. Precisely, for any global 

diffeomorphism q~, (13) is satisfied with the new model state variable Z = ~0(x). 
(2) Invariance under convex transformation: in the case when F(x) < ct(V(x)) < W(x) for a function ~ of 

class K~,  for any C 1 convex positive-definite function ¢, assumption GUEC is satisfied with the new 
Lyapunov function qJ (V). 

Remark 1. Equation (13) may be checked on-line if 2 is measurable. If 5c is not measurable, in place of (13), we 
need the following integral version, V0 < s < t < T: 

V(x(t)) - V(x(s)) - ~x (x(z))f(x(z))dr 

<#l~W(x(r ) )d ' c+l~2  ~" sup F(x (Y) )dz+D( t - s ) .  (14) 
ds Js 0<~'<.~ 

This allows us to overleap the measure of X. 
On the left-hand side of (13), 2(t) can be replaced by OH(F)/Ox + OH/& and x(t) by H. So indeed (13) 

quantifies the error in (9). But, willing to bound this error only in terms of the model state x(t) 
(= H(X(t), t) = system measurement) and nevertheless willing to allow unmodelled dynamics, we are led 
to introduce the comparison signal r. The reason is that this signal memorizes in some sense the past values 
of the model state and, by the way, allows us to capture some dynamics. Introduction of r is the key 
difference from previous work (see, for example, I-3, 4, 7]). It can be seen as the L °° norm of an 'operator' 
but with a very specific input ~" related to the 'stability margin' of the model and an even more specific 
output (multiplication by t? V/Ox). If r were not present, it would be sufficient as usual to check (4) only 
point, by point in the extended state space (X, t). However, due to the presence of r, dynamically defined 
in (7), (4) becomes an assumption to be satisfied solution by solution. However, by using the properties of the 
systems under consideration, it may be possible to check this assumption without the explicit knowledge of 
the solutions. 

2.2 Local case 

We have considered the global (in the model space) aspect. To look at the local case, we make the following 
assumptions in place of assumptions G, GEO, GB and GUEC. 
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First assumption G is replaced by 

H(0, 0) = 0 (15) 

and there exist two open sets t2o c t2~ c t2, two compact sets ~ c R", with a nonempty interior, and 
F ~ t21, all containing their respective origin, and three positive real numbers #1,/~2, D such that the 
following assumptions hold. 

Assumption LEO (Local escape observability). For any initial condition X(0) in t2o, the corresponding right 
maximal solution of (1) X:[0,  T) ~ t21 satisfies 

qto6[0, T): X(to) q~F ~ 3t1~[0, to): H(X(tx), t l)¢~f ' .  

Assumption LAS (Local asymptotic stability). There exists a positive-definite, proper, C ~ function V such 
that 

V def 
t~x (x)f(x)  -- W(x) <_ -- 0t(V(x)), Vxeo,  (16) 

where 0~ is a function of class K and o an open neighborhood of 0 ~ " .  

In contrast with the global case, we assume here that Vand Ware positive-definite. This allows us to define 
A x ,  a strictly positive real number such that 

V(x) <_ A~r =~ xe~F. (17) 

Assumption LUEC (Local unmodelled effects 
X: [0, T) ~ 01 satisfies, for all te[O, T), 

O-~ (x(t))[Yc(t) - f ( x ( t ) ) ]  <_ Pl W(x(t)) + 1~2 

where x(t) = H(X(t),  t) and lC(x) = ~(V(x)). 

characterization). Any right maximal solution of (1) 

sup ~'(x(s)) + D, (18) 
O<_s~t  

3. Main results 

We are now in a position to state two main results. 

Proposition I (Global boundedness). Let assumptions G, GEO and GB hold. If, for some function 1"satisfying 
assumption H, assumption GUEC holds with I~1, ~12 satisfying 

1 - -  ~ 1  - ]-/2 > 0 ,  (19) 

then any solution X(t)  of(l)  with initial condition X(O)6f2, whose corresponding real number D in assumption 
GU EC satisfies 

D < (1 - gl - P2) lim inf W(x), (20) 
Ixl--. +oo 

is well defined on [0, + oo), unique and bounded. Moreover, if there exists a function ~ of class K such that 

r(x) <_ ~(V(x)) <_ W(x), Vx~a", 

then for any solution, satisfying for all to >- O, 

max O, (x(t)) [2(0 - f ( x ( t ) ) ]  - #1 W(x(t)) - #2 

(21) 

as t -- to tends to infinity, we have V(x(t)) tends to 0 as t tends to + oo. 

sup {~'(x(s))} } ~ 0 (22) 
tO<sS; t  
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We remark that the dependence of D on the solution and therefore on the initial conditions causes 
a difficulty for global analysis. However, when W is proper, there is no constraint on the initial condition 
X(0) or more precisely on H(X(O), 0). The technical assumption (22) invoking uniformity with respect to to 
means the existence of a positive time function D(t, to), with D(t, to) ~ 0 as t - to ~ + vo, such that [13] is 
verified with the zero initial instant replaced by any initial instant to and D by D(t, to). Note also that, from 
assumption GUEC, pz/(1 - ~1) can be seen as the L ~ gain of the 'operator' 'unmodelled effects' ~ Y,, 
since as discussed above these unmodelled effects are captured by r. In this case, (19) rewritten as 
(1/(1 - #I))PE < 1 is nothing but the small gain condition [6]. 

Proposition 2 (Local boundedness). Let assumptions (15), LEO and LAS hold with 

O ~ H((21,  ~ + )  W ,X ~r. (23) 

I f  for some positive real numbers I~1, #2, D satisfyin9 

1 
D < ct(A,), (24) 

1 - # ,  - / ~ 2  

assumption LUEC holds, then there exists an open neiohborhood ~2 C7. QO of the origin such that any solution of 
(1), with X(O)eQ2 is well defined on [0, + ~ ) ,  unique and in F. Moreover, for any such solution, satisfyino for 
all to > O, 

max{O, ~ ( x ( t ) ) [ 2 ( t ) - f ( x ( t ) ) ]  - i~l W ( X ( t ) ) -  #2 sup {F(x(s))} } ~ (25) 

as t -- to tends to infinity, we have x(t) tends to 0 as t tends to + ~ .  

4. An illustrative example  

In this section, we illustrate assumptions GEO, GB and GUEC as well as their interest in the global 
stabilization problem via a class of interconnected systems. 

Consider the nonlinear systems 

= f ( x )  + to(x, y), (26) 

= O(Y, x), 

where xeR" ' ,  y eR"2 , f  9 and o9 are smooth mappings. We assume that: 
(A1) The subsystem 3~ = 9(Y, x) is input-to-state-stable (ISS) with x as input in the sense that there exist 

a function fl of class K L  and a function 7 of class K such that, for each initial condition y(0), and for each 
continuous input x: [0, T) + R, the solution y(t) exists for all te[0,  T) and satisfies 

ly(t)l-</~(ly(O)l, t) + 7(,,o_<s_<,sup Ix(s)l) ,  Vt~[O, T). (27) 

(A2) There exist a smooth function V: R"' ~ R+, and three functions al ,  Gt2, a3 of class Koo such that, for 
each xeR" ' ,  

• l ( [X[)  "< V(x) <_ ~2( ]x I )  (28) 

and 

~-~(x) f (x)  = - W(x) < - ct3(V(x)). (29) 
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(A3) The coupling term co(x, y) is restricted as follows: there exist three positive real functions 71,72, Y3 
and three positive real numbers el, e2, e3 such that 73 is nondecreasing and 

73 o 2y(s) _< 0~3 ° 0~l(S), VS > 0, (30) 

Ico(x,y) < ~l(Ixl) + 72(1Y1), V(x,Y)ER "1+"2, (31) 

~ ( x )  71(]xl) < /~1 W(X), ~ ~nl, (32) VX 

~-(X) 72(1Y[) < 82 W(x)  -a t- e3ya(lyl), V(x, y)eB "~+"2, (33) 

where 7 in (30) is given by (A1). 
Note that the ISS definition in (A1) is equivalent to that introduced by Sontag 1,16, 17], but restricted to 

continuous controls. Also, (30) is nothing but a small nonlinear gain condition (see l-11]). 
In (26), we identify N = nl + n2, n = nl and 

X = (x, y)r, H = (I . . . . . .  0 . . . .  :), Q = R "' +"2. 

Assumption G is clearly satisfied. By considering the system 

= f ( x )  

as design model for (26), we have the following lemma. 

(34) 

Lemma 1. I f  assumptions (A1), (A2) and (A3) hold, then assumptions GEO, GB, and GUEC are satisfied. 

Proof. First remark that assumptions GEO and GB follow directly from assumptions (A1) and (A2), 
respectively. Let (x(t), y(t)) be a solution of (26) right maximally defined on the time interval 1,0, T). In view of 
assumptions (A1)-(A3), we obtain, for all tel0,  T) (using [16, eq. (12)]): 

c ~  (x(t)) co(x(t), y(t)) < (81 "4- 13 2) W(x( t ) )  "31- /~3 ~3 (1 y ( t ) [ )  

(35) 
--< (el + e2) W ( x ( t ) )  -F g3ot3(sUpo <_s~t V(x(s)) )  -F 8373(2fl(  I y(0) l ,  t)). 

This implies assumption G U E C  for system (26) with/zl = el + e2 and/~2 = ca. [] 

The following result is a direct application of Lemma 1 and Proposition 1. 

Proposition 3. Let assumptions (A1), (A2) and (A3) hold with 

el "~ 82 + ~'3 < 1. 

Then all the solutions (x(t), y(t)) of(26) are well defined on 1,0, + oo ), unique and bounded. Moreover, we have 

lim (Ix(t)l + [y(t)l) = 0. 
t~ +o0 

Note that by (35) and time invariance, (22) is satisfied. In particular, we deduce a positive time function 
D(t, to) (see remarks after Proposition 1) as 

D(t, to) = ea73(2fl(ly(to)], t - to)). 

Remark 2. Proposition 3 may be seen as a slight generalization of the well-known result on the global 
asymptotic stability of cascaded systems, i.e. (26) with co = 0 (see, for instance, Sontag 1-17]). Indeed, 
assumption (A3) is automatically satisfied with 
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Remark 3. The interest of studying homogeneous systems has been pointed out in, for example, [1, 2, 5-1. We 
observe that assumptions (A1), (A2) and (A3) hold for a class of perturbed homogeneous systems provided 
that 

(1) f a n d  g are two homogeneous vector fields of degree 2 > 1, 
(2) The zero solutions of 2 =f(x)  and f = #(y, 0) are globally asymptotically stable, 
(3) Ito(x,y)l _< ellxl ~ + e2lyl ~, for two real numbers el > 0, t3 2 ~ 0. Note that to may include non- 

homogeneous nonlinearities such as to(x, y) = xy  ~- ~ sin(x2). 

Indeed, according to [8, Theorem 57.4], there exists a homogeneous Lyapunov function V1 (y) of degree v~ 
for the homogeneous system ~ = g(y, 0) such that for c~ > 0, c2 > 0 and c3 > 0, 

clly[  ~ <_ Vl(y) _< czlyl  ~ (36) 

and 

@ (y)g(y,  O) < - Csl Yy. (37) 

Observe that 
(P1) OV1/~?y(y) is homogeneous of degree vl - 1. 

In fact, since V~(y) is homogeneous of degree vl,  we have 

V~(cy) = c ~1V~(y), Vce~. 

Then, by differentiating with respect to y, we get 

~V---2~ (cy) = c ~1 - 1 ~V___2 (y). 
~y ~y 

Also, since g is homogeneous of degree 2, we observe that 
(P2) (g(y, x ) -  g(y, 0))/Ix] is homogeneous  of degree 2 -  1. 
With these two properties at hand, since ~ V~ (y)/,~y is bounded on the unit sphere { y{I Y l = 1}, there exists 

a strictly positive real number dl such that 

8V1 ~ y l  
t ~ - ( y ) = l y l  v'-~ ( y / l y l ) < d l { y l  ~'-x, VM. (38) 

On the other hand, since (9(Y, x) - g(y, 0))/I  x l  is bounded on the sphere { (x, y) II x I ~ -  x + l y l~ -  a = 1 }, there 
exists a strictly positive real number dE such that 

g(y /p ,  x /p)  - 9(Y/P, O) 
< d2, Vx, y, (39) 

Ix/pl  

where p:= ([xl ~-1 + lylX-l) "~x-~) if2 > 1 and p:= 1 if2 = 1. 
Thus, (37)-(39) give 

c~V1 ~?V 1 cnV1 
8y (Y)g(Y, x) = ~ (Y)g(Y, O) + ~ (y) [O(Y, x) - g(y, 0)] 

-< - caly[ ~l+x-~ + d l d z l x l ( J x l  ~-1 + [ylX-1)lyl ~'-1 (40) 

By Young's inequality [10],  (40) implies the existence of c4 > 0 and c5 > 0 such that 

~V1 
~--~-(y)g(y, x) <_ - l y l ~ ' - l ( c ,  l y l  ~ - c s I x l ~ ) .  (41) 
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From the algorithm to check if a system is ISS, proposed in 1,16, Proof of Theorem 1], with (36) and (41), we 
can find a function fl of class K L  and a strictly positive real number k such that 

[y(t) l ~ fl(ly(0)[, t) + k sup { I x(s)l}, (42) 
[O,t] 

i.e. assumption (A1) holds with y(s) = ks. 
To check assumption (A2), we remark that there exists a homogeneous Lyapunov function V(x) of degree 

v for the homogeneous system ~ = f (x )  such that for a positive real number c. 

~V 
~--~ (x) f (x) < - c[ x l ~ + ~- 1 (43) 

Thus, there exist three positive real numbers l~ (i = 1, 2, 3) such that assumption (A2) holds with 

~ x ( f x l ) = I x l x l  v, ~2 ( Ix l )=121x l  ~, 

Finally, assumption (A3) is verified with 

k l ( v -  1) 
E1 = k1•1, ~2 c ( v + 2 - -  1) e2' e 3 =  

~3(v) = 13 vt~+ x- 1)/~ (44) 

kl 2(2k) v+,t- 1 

(v + 2 - 1)/3/~ ~+x-1)/v e2, 

yl (S) := elS "t, y2(S) := e2 sx, y3(S) := 131~+'~-l)/V(2k)l-V-Xs v+a-l, 

where k~ > 0 depends only on V. 
For want of space, no example has been given to illustrate the assumptions LEO, LAS and LUEC in the 

local case. The reader could find examples in 1-11]. 

5. Proof of the main results 

Since the proofs of Propositions 1 and 2 are similar, we will only give a sketch of the proof of 
Proposition 2 while the proof of Proposition 1 is complete. 

Proof of Proposition 1. Since the function F is of class C t, for each initial condition X(0)EO, there exists 
a unique solution of( l)  X:  [0, T) --* 12 right maximally defined on 1,0, T) and C ~. Then let x(t) = H(X( t ) ,  t) 
be its output and consider the time function V(x(t)). 

By assumptions GB, G U E C  and (H), the time derivative of V along this solution satisfies 

V(x(t)) < - (1 - ill) W(x(t))  + P2 sup )~(x(s)) + D, Vt ~ 1,0, T). (45) 
O<s<t 

Let the positive real number V* be defined by 

{ { D }}  (46) V * = m a x  V(x(0)),sup V ( x ) l x ~ f f ~ " a n d W ( X ) < l _ # ~ _ #  2 . 

From (20), V* is well defined. With +~o {vi}i=o the sequence given in (H), let i be the smallest integer such that 
V* < v~ and let us define a set S by 

S = {xER" I V(x) < max{ V*, u,} }. (47) 

Note that u~ depends on x(0) and cannot be infinite. Since V is proper and x(O)ES, S is compact and 
nonempty. We claim that x ( t ) eS  for all t~1,0, T). 

If it is false, there exists an e~(0, v~-  max{ V*, u~}) such that the set 

{t~[O, T) I V(x(t)) >_ max{ V*, u~} + e} 
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is nonempty .  Then, let 

t3 = inf {t~[0, T)[ V(x( t ) )  >_ max { V*, ui} + e}. (48) 

By continuity,  we have 

V(x( t3))  = sup V(x(s ) )e[u i ,  vi i .  (49) 
0_~s_~t  3 

Note  that  by (11) and (49) we have 

sup r ( x ( s ) )  - W(x ( t3 ) )  <_ O. (50) 
O<_s<t3 

Let 6 be defined by 

D 
= . (51) 26 W(x ( t3 ) )  1 - 121 - 122 

Since x(t3) is not  in S, 6 is strictly positive. Then if we choose t/~(0, 6(1 - 121 - 122)/122), continuity of Y(x( t ) )  
and W(x( t ) )  implies the existence of two time instants tl < t3 < t2 in [0, T) such that  for all t z [ t l ,  t2], 

D 
sup Y(x(s) )  - W(x ( t ) )  <_ tl, W(x ( t ) )  > + 6. (52) 

o ~ s < _ t  1 -- [A1 --122 

Thus, for all t ~ [ t l ,  t2],  we have 

V(x( t ) )  < - (1 - 121) W(x( t ) )  + #2 W(x ( t ) )  + 122r/+ D < 0. (53) 

This implies V(X( t l ) )  > V(x( t3)  ) which contradicts  (49). Therefore,  x ( t ) e S  for all t¢[0,  T). 
Assumpt ion  G E O  implies that  X ( t )  is bounded  on [0, T) and does not  go to c3f2 as t --} T. F r o m  the 

theorem on cont inuat ion  of solutions of  differential equat ions (see [9]), this implies that  T = + oo. 
Now,  we consider the case where (21) and (22) hold. Then,  instead of (45), we have 

V(x( t ) )  < - (1 - 121)W(x(t))  + 122 sup o~(V(x(s))) + O(t, to), (54) 
to<s<_t 

with 0 < D(t, to) < D and D(t, to) ~ 0 as t - to ~ + ~ .  We wish to show that  V(x( t ) )  --, 0 as t ~ + oo. Let 
To = 0. Since f rom above  x ( t ) z S  and V is continuous,  there exists a VoZR+ such that  

~(V(x( t ) ) )  < ct(Vo), Vt~[To,  +oo) .  (55) 

Since D(t, 0) tends to 0, for some p in (0, 1 - 121 - 122), there exists a To, l > 0 such that  

D(t,O) < p~(Vo),  Vt >_ To, 1. (56) 

Thus,  f rom (21), (54) and (55), we obta in  

V(x( t ) )  < - (1 - 121)~(V(x(t)))  + 122,(Vo) + pa(Vo),  Vt~ETo, x, +oo) .  (57) 

As in [16, P roo f  of Theorem 1], this implies the existence of T1 > To, 1 such that  

~(V(x( t ) ) )  <_ #2 + P ~(Vo), Vt _> T1. (58) 
1 -121 

Since ~ is a function of class K, by letting 

122 + P ~(Vo), (59) 
0t(V1) = 1 -- 121 

we have established 

¢t(V(x(t)))  < ct(V1), V t ~ [ T t ,  + oo). (60) 
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Then pursuing the same reasoning on the interval [T1, + ~ )  instead of [To, + ~ ) ,  we get that there exist 
two numbers T2 > To,2 > T1 such that 

D(t, T1) < pa(V1), Vt >_ To.2 (61) 

and 

]12 "~-P ~(V(x(t))) < a(V1), Vt > T2. (62) 
1 - # t  

Thus, we have 

(]12 q- P~ 2 
~(V(x(t))) < \1------~1} ct(Vo), Vt _> T2. (63) 

Continuing this procedure, we find a nondecreasing sequence of positive real numbers T, such that 

(P2 + P~" a(Vo), Vt > T,. (64) a(V(x(t))) <_ \ 1 - ]11 } 

Since a is of class K and by (64), we conclude that V(x(t)) tends to zero as t --* + ~ .  [] 

Proof  of  Proposition 2. Thanks to assumption (15), we define an open neighborhood of the origin 02 by 

02 = {XeRNI V(H(X, 0)) < A~r} n t2 o c O1. (65) 

F being C 1, for any X(0)~O2, there exists a unique solution X: [0 ,  T ) ~ f 2 1  right maximally defined on 
[0, T). Let x(t) = H(X(t), t) be its output. With (23), it is a C 12 time function which takes values in o. Then, 
by assumptions LAS and LUEC, along this solution, the time derivative of V satisfies 

V(x(t)) <_ -- (1 - ]11) W(x(t)) + ]12 sup Y(x(s)) + D, Vt~[0, T). (66) 
O<s<t 

Since F(x) = ~(V(x)) < W(x) and c¢ is increasing, it is not difficult to verify that (11) is satisfied by this ~ with 
Uo = 0 and Vo = SUpx~o V(x). Then consider the set S as defined in (47). Note that, since X(0)eO2, 
V(x(O)) < A~r. Also clearly, (16) and (24) imply that for all x satisfying 

D 
W(x) <_ <_ ~(A~), 

1 - -  ] 1 1  - -  ]12 

we have 

V(x) < A~. 

It follows that S is contained in ~ff which is contained in o. Therefore, by repeating the same arguments as 
after equation (47), we can prove that x(t)e:,~g for all te[0,  T). Finally, assumption LEO implies that 
X(t) belongs to the compact subset F of Q1 for all te l0 ,  T). The theorem on continuation of 
solutions of differential equations implies that T = + ~ .  Since V is positive-definite, the last assertion of 
Proposition 2 follows as in the proof of Proposition 1. [] 

6. Conclusion 

This paper is intended to give some technical results for establishing the robustness of Lagrange stability 
with respect to unmodelled effects which are created by perturbations with no specific structure. A sufficient 
condition is our so-called unmodelled effects characterization. It has some analogy with the input to state 
stability (see [16]). This characterization has the potential to encompass many usual but more structured 
uncertainties (see [11]). We showed that global asymptotic stability of homogeneous systems considered in 
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[1, 2, 5] holds in the face of some regular perturbations. Finally, we note that Propositions 1 and 2 have some 
analogy with a small gain theorem (see [14]). 
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