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Abstract." We consider the subclass of the set of systems which admit a global normal form where only the output and not its time 
derivatives appear in the nonlinearities. We prove that, when the inverse dynamics are "input-to-state stable" (ISS) and a finite gain 
condition is satisfied, global asymptotic stability can be achieved by dynamic output feedback. 
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1. Definitions and notations 

• I'1 denotes  the Euclidian no rm and, for a vector  o) = (e)~)i~tl . . . . . .  I, we denote 
IIo)ll = sup~{x . . . . . .  ~ {Io)il}. 

• For  a real function f(x),  we denote  by f '  its first derivative df/dx. 
• A function 7 : R +  --* R÷ is said to be of  class X" if it is cont inuous,  nondecreasing ~ and satisfies 7(0) = 0. 
• A function f l :R+ x R÷ --* I~+ is said to be of class X'L~' if, for each t in R+,  fl( . ,  t) is a function of class 

o~ and, for each s in R +, the function fl(s, .) is nonincreasing and we have 

lim fl(s, t) = 0. (1) 
I ~ + o o  

• Given  a strictly convex C 1 function q~ of class X',  we denote  by dq~ its Legendre-Fenche l  t ransform,  i.e. 

f2 d~o(x) = (q~')- l(s) ds ,  (2) 

where the function (q¢)- 1 is the inverse function of the first derivative of q~. The  interest of  this definition is 
in Young 's  inequali ty [5, T h e o r e m  156], i.e. 

xy ~ ~o(Ixl) + dq,(lyl) V ( x , y ) ~ R  2. (3) 

• A function q~" R+ --* R+ is said to be of  class £ ~ "  if it is C 1, strictly convex, of  class o,'ff, has 
a Legendre -Fenche l  t ransform dq~ as defined above  and the function t~o(Ixl)/x is of  class C "  and zero at 
zero .  

Correspondence to." L. Praly, Centre Automatique et Syst6mes, l~cole des Mines de Paris, 35 rue St Honor6, 77305 Fontainebleau c6dex, 
France. 
1 Usually, one requires strictly increasing function. 
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2. Problem statement and main result 

Consider a single input u, single output y dynamical system which can be described globally in the 
following normal form: 

= h(z, x l ) ,  

x i = x i + l  +fi (z ,  x l ) + g i ( x l ) ,  i~{1 . . . . .  r -  1}, 

£¢, = u + f~(z, xa) + gr(xl), (4) 

y = x 1 ,  

where z is in R" and f~'s, Vi's and h are C ~o functions, with 

fi(0, 0) = 0, g,(0) = 0, h(0, 0) = 0. (5) 

In the following, it will be useful to denote by O(z, y) the following vector: 

q~(z, y) = (f ,  (z, y) . . . . .  f,(z, y))V. (6) 

Remarks. 
(1) Note the restriction that the f fs  and h are not allowed to depend on xl, i > 1. 
(2) The system 

= h(z, y) (7) 

corresponds to the minimal dynamics of an inverse of (4) (see [6]). 
For such a system, our problem is to design an output feedback making the origin a globally asymp- 

totically stable equilibrium point. 
Conditions under which a nonlinear system can be written in a form close to the one in (4) are discussed in 

[-2, 11]. In the case where the system is linear, if it is also minimum phase, then a (r - 1)-dimensional output 
feedback with high gain is sufficient to guarantee global asymptotic stabilization. This result has been 
extended to the nonlinear case in [9] when the functions f~'s and h are globally Lipschitz-continuous and the 
zero solution of 

= h(z, 0) (8) 

is globally exponentially stable. When this Lipschitz condition is not satisfied, one obstruction to global 
stabilization by output feedback is due to the fact that even a vanishing time function y(t) may be 
destabilizing for the system (see [19, 15, 16]): 

= h(z, y( t)) .  (9) 

To overcome this difficulty, we strengthen the global asymptotic stability of (8) into the property of being 
input to state, as defined in [17]. Namely, we assume 2 the following. 

Assumption IIS (ISS-inverse system). There exist two real functions fl, of class 3f'£P, and y, of class .~#, such 
that for any initial condition Zo and any C o time function y: [0, T) ~ R, there exists a unique solution z(t) of 

= h(z, y(t)), z(O) = Zo. (10) 

It is right maximally defined on [0, T) and satisfies, for all t in [0, T), 

[z(t)l <_ fl(lZol, t) + ,(,o_~_<,sup {[y(s)[}). (11) 

2This definition, although written differently, is strictly equivalent to the one given in [17] but restricted to C O controls. 
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An algorithm to check if a system is ISS and to obtain the corresponding functions fl and V can be found in 
[17, Proof  of Theorem 1]. 

With assumption IIS, the output feedback stabilization problem has been solved in [11, 8, 12] when (4) has 
the following special form: 

= Hz + G(xl) ,  

5ci=xi+l +gi(xx), i~{1 . . . . .  r -  1}, 

fc, = u + Fz + g,(xx), 
(12) 

y = x l ,  

where F and H are matrices of appropriate dimensions, H being strictly Hurwitz, and the 9i's and G 
are C o~ functions. When z does not appear linearly as is the case in (4), we have the following key intermediate 
result. 

Lemma 2.1. Under assumption IIS, for any strictly positive real number ~, we can find a continuous 
dynamic output feedback depending on e which makes all the solutions of (4) bounded and converging to 
a compact set F,. 

This result is not completely satisfactory. Indeed, it will appear from its proof (see (91)) that, as 
e goes to zero, coordinates depending on e go to 0. But, coordinates independent of e, like (xl . . . . .  x,), 
may go to infinity, except for xl = y which is guaranteed to go to 0. This incompleteness of the result 
is due to a singularity occurring at the equilibrium point. A sufficient condition for this singularity 
not to be an obstruction can be written in terms of a local small-gain condition. Indeed, we have the 
following theorem. 

Theorem 2.2. Suppose that I IS  assumption is satisfied. Assume also that, for some invertible proper function 
0 of class ~ and some strictly positive real numbers x, X and C, with x < 1, we have for all x e [0, X], 

Cx i fr  > 1 
?y(x) + 7=(2y(x)) < Cx ~ i fr  = 1, (13) 

where 

?y(x) = sup I~(z, Y)I, ?=(x) = sup I~(z, Y)I • (14) 
{(z,y)lO(Izl )<- lYl _<x} {(z,y)lO- l (I Y l ) -  < Izl _<x} 

Under these conditions, the origin can be made a globally asymptotically stable equilibrium point by a continu- 
ous dynamic output feedback. 

Remark. Since ~ is a C oo function, by taking 

0(Izl) = Izl, (15) 

we can guarantee that Yy and yz are at least linear locally. In this case, the first inequality in (14) can be 
reduced to 

1 
7?z(2y(x)) < x. (16) 

This condition is nothing but the small-gain condition of [10]. Also, it follows from [20], for example, that, if 
t3h/Oz(O, 0) is a strictly Hurwitz matrix, i.e. the zero dynamics (8) are locally exponentially stable, the function 
y is also linear locally. Therefore, in this case, condition (13) is satisfied. 
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3. Proofs 

To  prove Theorem 2.2 and, more precisely, to design explicitly a dynamic output  feedback solving our  
problem, we follow the same procedure as in [8, 12]: 

Step 1: we choose the following "observer":  3 

:~1 = ~2 + gx(Y) + k l ( y -  ~1), 

x2 = x3 + g2(Y) + k2(y - Xl), 
• ( 1 7 )  

x ,  = u + g , ( y )  + k , ( y  - ~ 1 ) ,  

where the gains k{s are appropriately chosen so that the observation error  

= ~ - x (18)  

satisfies 

= h(z, y), £c = A£¢ - ~(z, y), (19) 

where A is a strictly Hurwitz matrix. F rom assumption IIS, system (19) is ISS. Indeed, the matrix A being 
strictly Hurwitz,  there exist strictly positive real numbers  KI,  K2 and 2 such that, for any initial condit ion 
(Xo, Zo) and any C o time function y: [0, T ) ~  ~, there exists a unique solution (Y(t), z(t)) of (19) which is 
defined on [-0, T) and satisfies, for all t in [0, T). 

! 

f2 I~(t)l ~< K1 exp ( -  2t)l~ol + K2 exp ( -  2(t - s) )l rI)(z(s), y(s))l ds,  (20) 

Iz(t)l < ~(lzol, t) + ~ (  sup (21) 

On the other  hand, we have 

I¢'(z, Y)I < 7r(lYl) + ~,(Izl), (22) 

where the functions 7r and Vz are defined in (14)• These functions being nondecreasing, by using (22) with [17, 
equat ion (12)], (20) becomes 

/ ) I~( t ) l< /~ .  , t  + - j ~ - ( ~ , , + 7 .  o2~,) sup {ly(s)l} , (23) 
\ O < s < t  

where/3x, defined as follows, is of class o.UL~: 

~ (  ( : : )  , s ) = e x p ( - - 2 s ) [ K ~  ( : : ) + ~ - ~ y , ( 2 , ( ( : : ) , 0 ) ) ]  

f: ((()0) + Kz exp (-- 2(s -- r))~, 2fl xo dr .  (24) 
ZO 

3 We consider here a full-order observer. This will lead to an r-dimensional output feedback. But exactly the same procedure could be 
applied with a reduced-order observer leading to an (r - 1)-dimensional output feedback as in [9, 12]. 
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Note that the ~ and z subsystems driven by y being time-invariant, inequalities (21) and (23) hold also for any 
initial condition at any starting time, i.e. 

Iz(t)l <_fl([z(s)l,(t-s))+z(s)Jl y (  sup {[y(z)[}) } 
\ ' -< '~ '  Vse [0, t ] .  (25) 

( ( ; c ( s ) ) , ( t - s ) ) + ( ~ - ~ ( y r + y z O 2 y ) ) (  {[y(z,I}) 

Step 2: We design a state feedback for the "observer" (17) or, more precisely, for 

= ;c2 + 9~(y) + 6~(5¢, z, y), 

~2 = ~3 + 92(y) + 62(Y, z, y), (26) 

x, = u + 9r(Y) + 6,(~, z, y), 

where the 6{s are given by 

6~(Y ,z ,y )=x2-Yc2+f l ( z ,y ) ,  6~(,2, z , y ) = k i ( y - Y q ) ,  2<i<_r .  (27) 

If the f{s were zero, according to [18] it would be sufficient to design u to make (26) with input 6{s ISS. But 
when the f ' s  are not zero, a more specific result is needed. For this, we remark on the existence of a positive 
real number K 3 such that, for all i in { 1 . . . . .  r}, 

[6~(Y, z, y)[ __ K31x [ + Yr([Y[) + y~(Iz[). 

Then it follows from (25) that, for all i in { 1 . . . . .  r}, we have 

'6'(5c(t)'z(t)' y(t))l < fl~( ( : l : l )  ' ( t -  s)) + Vn( sup {lY(V)l} 

where fl~ of class )t2L~' and y~ of class o~¢f are defined as follows: 

(28) 

fl6(s,t)=K3flx(S,t)+Tz(2fl(s,t)), V~(s) = I1 + - ~ l ( T r  + ~zO2~)(s ) . (30) 

Inequality (29) can be viewed as showing the existence of a "nonlinear L~-gain '' for the operator 
y ~ (6~)~t~ . . . . . .  ~. This motivates our interest for the following lemma about the stability of composite 
systems which is in the spirit of the small-gain theorem [10] (see [7] for a more general statement). 

Lemma 3.1. Consider the following composite system: 

( = 0~(~, m ,  co = 0~(~, ~ ,  
(31) 

2 = 03(co, z) ,  ~ = 0 , ( z ) ,  

where ~ is in ~":, Z is in R "~, 01,02 and 04 are C 1 functions, with 04(0) = O, and 0 3 is a C o function. Assume the 
following: 

(1) For the l-subsystem with input mand output co, there exist functions fl~ and f12 of class ~[r~, y: and 72 of 
class ~ such that, for any initial condition ~(0) and any C o time function m: [0, T) -~ ~,2, there exists a unique 
solution• It is defined on [0, T) and satisfies, for all t ~ [0, T), 

I((t) i~-~fll( i((s)l ,( t--S)) "~ ~?I(x.s<.c<_tsuP {[~('~)]}) ) 
¥se  [0, t].  (32) 

ll   )ll sup 
X.s<~<_t 

Vs~ [0, t] ,  (29) 
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(2) For the X-subsystem with input co and output m, there exist a positive-definite proper C 1 function 0 and 
a convex function ~b o f  class Jr" such that 

dO 
- - ( Z ) I / / 3 ( c o ,  Z) ~--- -- (~J(Z) hI- ~( I Ico l I )  v(co, x) (33) dZ 

and, for some positive real number rl, 

~b(2T2(I~'4(Z)I)) < O(z) + r/ V Z. (34) 

Under these conditions, system (31) has well-defined solutions for any initial conditions. They are bounded and 
converge to a compact set F, and, in particular, we have 

lim sup O(z(t)) < r/. (35) 
l~+cO 

Moreover, i f  rl = 0 in (34) then F, is reduced to the origin. 

In the following, the role of the (-subsystem will be played by (19) with (£, z) standing for ( and y for nr, 
whereas the role of the Z-subsystem will be played by (26) with the vector of the ~ s  standing for co. Having 
already established (2) with (25) and (29), this lemma indicates that the state feedback for (26) should be 
designed so that the "nonlinear gain" ~b of the operator co ~ Z (see 33) be "small enough" to satisfy (34). We 
shall come back to this point after proving this lemma. 

Proof of Lemma 3.1. We first remark that O being positive-definite and proper, there exists an invertible 
proper function ~, of class J f  such that [14, Theorem 7.13] 

~.(l~l) -< O(Z). (36) 

Moreover, @4 being a C 1 function with ~4(0) = O, there exists a function Y3 of class ~ such that 

1¢/4(x)1-< 73(]z1) vx .  (37) 

Then, the system (31) having a continuous right-hand side, for each initial condition, there exist (may be 
nonunique) solutions right maximally defined on [0, T), for some strictly positive real number T. Along each 
solution, we have from (33), for all t in [0, T), 

(3 _< - o(x( t ) )  + ~([Ico(t)ll). (38) 

But the function ~b being convex, the function ~b(2~,z) being nondecreasing and the function ~%(X(t)) being C o 
on [0, T), (32) and (34) yield, for 0 < s < t < T, 

s<_~<_t 

_< ½<P(2fl2(l((s)l, (t - s))) + ½ sup {qS(2y2(l~'4(z(z))l))} (40) 
s < t < _ t  

< ½qS(2/~2(l((s)l, (t - s))) + ½ sup {O(Z(~))} + ½~/. (41) 
s < t < _ t  

Therefore, we have for 0 _< s _< t < T, 

< -- O(z(t)) + ½ sup {O(z(z))} + ½ q~(2fl2(l((s)l, (t - s))) + ½r/. (42) 
S<_t<_t 

From this inequality, boundedness of O and consequently of Z and ( can be proved by invoking the 
small-gain theorem [10]. Here is a more specific proof. 

By letting 

Vo = max{O(z(0)), q5(2/32(1((0)1, 0)) + t/}, (43) 
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we get with Gronwal l  inequality 

O(x( t ) )  - Vo < ½ sup {O(z(s)) - Vo}. (44) 
O<_s<_t 

It follows readily that  O(X) is bounded  by Vo on [0, T). But, with (36) and (32), this yields 

I(((t), Z(t))TI < /~x(l((0)l, t) + (Id + 71 oT3)(Tv-l(Vo)) Vt~[0,  T) ,  (45) 

with Id denot ing the identity function. This implies with a contradict ion argument  that  T = + ~ and that  
the corresponding solution is defined and bounded  on [0, + oo). And, in particular, we have 

clef 
IC(t)l < Co = fll(IC(0)l, 0) + 71o73 o~v-l(/.)o) Vtt=[ "0, + (Z)). (46) 

Let us now prove that 

lim sup O(z(t))  < t/. (47) 
l ~  "4-00 

For  this, with Vo defined above, let us define to = 0. If Vo __- r/, we augment  it so that Vo > r/. Then, by 
induction, we assume the existence of a positive real number  v. and a time instant t. such that 

v. > r/, O(z(t))_< v. Vt > t . .  (48) 

In this condition, (42) yields, for all t larger than t., 

_< -- O(z(t)) + ½ vn + ½ t~(2fl2(l((t.)l, (t -- t.))) + i t / .  (49) 

But, the function f12 being of class o,~A a and the function ~b of class 4f,  there exists a time instant s, >_ t.  such 
that  

c ~ ( 2 f l 2 ( l C ( t . ) l , ( t  - t.))) < ½(v. - q) Vt _> s. .  (50) 

This implies that  

< - O ( z ( t ) ) + a v . + ¼ q  V t > s . .  (51) 

Therefore,  let 

t .+ l  = s. + log2 ,  v.+l  = ~v. + ~r/. (52) 

We have established that  

v.+l  > r/, O(x(t))_< v.+l Vt > t .+ l .  (53) 

Proper ty  (47) follows since the sequence v. converges to q. 
We have established, for each positive integer number  n, 

I(((t), Z(t))TI _< fll(lC(t.)l,  (t - t.)) + (Id + 71 o73)(7~-l(v.)) Vt _> t . .  (54) 

But / /1  being of class ,~g'Z,e, with (46), we have 

flx(IC(t.)l, (t - t.)) < fll(~o, t.) Vt _> 2t . .  (55) 

Therefore,  we have finally, for each positive integer number  n, 

[(((t), Z(t))rl < flx((o, t .) + (Id + 71 oT3)(Y~-l(v.)) Vt > 2t . ,  (56) 

where the sequence fl~ (Co, t.) converges to 0 since the sequence t. goes to infinity. 
The conclusion of the lemma follows by defining the compact  set F, as the closed ball centered at the origin 

with radius p(r/), where the function p of class scg is given by 

p ( q )  = (Id + 710  73)O Y~- 1(/']) • [ ]  (57) 
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As mentioned above our proofs of Lemma 2.1 and Theorem 2.2 will be complete if we can design a control 
law for the system (26) so that (33) and (34) are satisfied. To achieve this objective, we note that the system (26) 
is in feedback form, a form which has received a lot of attention (see [3] and the references therein for the 
unperturbed case and [4, 13] for the perturbed case). We follow here a mixture with some extension of the 
ideas contained in these studies. Indeed, our interpretation of the results we are aware of is that they are 
based on the following two elementary technical lemmas. 

Lemma 3.2 (adding a perturbation). Assume that for  the system 

= f ( x )  + A + 9u,  (58) 

there exist  a C t control law w and a C t+ 1 funct ion  V, such that w(O) = O, LoV(O) = 04 and, for  any solution x(t)  

with u = w(x), we have 

I) < - V(x) + ct (59) 

for  some time funct ion  ~. Consider the system 

= f ( x )  + A + O(u + 6). (60) 

Then, for  any funct ion ~p o f  class 5 F ~  t, the control law 

e~o(lLoV(x)l) 
~(x )  = w(x) (61) 

L o V(x) 

is C t, ~(0) = 0 and, alon9 the solutions o f  (61) with u = ~, we 9et 

(/< - V ( x )  + ~ + q~(161). (62) 

Proof. Let us compute the time derivative of V along the solutions of (60) with 

u = v + w(x) .  (63) 

We get, with obvious omitted arguments, 

(/<_ - -  V + ~t + L o V ( v  + 6) .  (64) 

But with (3), we get 

E tJL.vl)) 
toV(v + 6) <_ toV v + toV  / + ~,0(16l). (65) 

The result follows readily. [] 

Lemma 3.3 (adding one integrator). Assume that fo r  the system 

£c = f ( x )  + A + 9u,  (66) 

with f(O) = O, there exist  a C t+ 1 control law w and a C ~+ 1 funct ion  V such that w(O) = O, LoV(O ) = 0 and, for  
any solution x(t)  with u = w(x), we have 

( / <  -- V(x) + et. (67) 

Then, fo r  the system 

£c = f ( x )  + A + gy ,  
(68) 

f~ = h(x, y) + u,  

4 Lg V denotes as usual (~ V~ Ox) g. 
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with h(O, O) = 0 and for  any function q9 o f  class 5 P ~  l, the control law 

~W 
#(x ,  y) = -- ½(y -- w(x)) -- L o V(x) + ~x ( x ) ( f ( x )  + gy) - 

is C l, ~(0, O) = O, the function s 

U(x, y) = V(x) + ½ (y - w(x)) 2 

is C ~+ ~ and we have along the solutions o f  (68), with u = if, 

(; < - U(x, y) + ~ + ~0(IAI). 

t q ~ ( l y - w ( x ) l ~ x x ( X ) )  

y - w ( x )  

Note that one degree of smoothness may be lost while going from w and V to ~. 

Proof. Let us compute the time derivative of U along the solution of (68). With (67) and 

Ow 
u = v -- ½(y - w(x)) - LoV(x) + ~x  ( f ( x )  + gY) - h(x, y), 

we get 

(s < _ - u  + ~ + ( y - w )  V - ~ x ~  . 

But with (3), we get 

( y - - w )  v - - ~ x A  < ( y - - w )  + 

The result follows readily. [] 

/ 
f c P l l Y -  wl 

2 
y - w  

27 

- h ( x ,  y )  (69) 

(70) 

(71) 

(72) 

(73) 

+ q~(iAI). (74) 

The main point of these lemmas is that, when going from system (58) to system (61) or from system (66) to 
system (68), one can find control laws so that the effect of the uncertainties is only to increment ~ by "q~ 
(uncertainties)" (see (62) and (71)). 

We are now ready to solve our design problem for system (26) by following the technique of induction on 
adding integrators. Precisely, we apply Lemmas 3.2 and 3.3 recursively while adding integrators. 

Let q~ be a function of class £P~- '-a ,  V~(y) a proper positive-definite C" function and Uo a 
C ' -1  function such that Uo(0) = 0 and 

V](y)uo(y)  ~ - VI(y). (75) 

These three functions will be specified later. 
We consider the system 

= ul l  + gI(Y).  (76) 

With (5), the control law 

u l l ( y  ) = u o ( y ) - g l ( y  ) (77) 

More generally, one can take U(x, y) = hl(V(x)) -4- h2(y - w(x)), where hi and h 2 a r e  any smooth, positive, increasing and proper 
functions with h 2 quadratic on a neighborhood of O. 



28 L. Praly, Z.-P. Jiang / Stabilization by output feedback for systems with ISS inverse dynamics 

is C r-  1, u11(0) = 0 and along, the solutions of (76), we have 

V1 -< - 1/1. (78) 

Next  we consider the system 

.~ = U12 "~ gl(Y) + 61(Y , z ,y ) .  (79) 

The assumptions of Lemma 3.2 are satisfied with 

l = r - -  1, V = V1 ,  0~ = 0 .  ( 8 0 )  

Therefore, (61) gives us appropria te  C r- 1 control  law Ulz(y) and Lyapunov  function V1 for the system (79) in 
the sense that the assumptions of Lemma 3.3 are satisfied with 

A = 61, l = r - 2, V =  V1, ~ = q~(161[), u12(0) = 0, V'I(0) = 0. (81) 

We can now consider the system 

~; = Yc2 + gl(y)  + f l ( x , z ,  y), ~2 = g2(y) + u21. (82) 

By applying Lemma 3.3, we get an appropria te  C r-2 control  law u21(y, ~2) and C r-1 Lyapunov  function 
V2 for system (83) in the sense that the assumptions of Lemma 3.2 are satisfied with 

6 = 6 2 ,  l = r - - 2 ,  V2(y ,~c2)=V1(Y)+½(~2- -u12(y ) )  2, ~=2~o(1611), u z l ( 0 , 0 ) = 0 .  (83) 

Cont inuing this procedure,  we finally get a C o control  UrZ and a C 1 function 

l r - 1  

V,(y, ~z . . . . .  ~,) = VI(y) + ~ ,~=1- (~i+1 - U,z(y, ~2 . . . . .  £i))2, (84) 

where each of the u~z's is C ~-~ and is zero at zero. Moreover ,  along the solutions of (26), with the 
per turbat ions 6~'s generated by (19) and satisfying (29), and 

u = ur2(y, Yc2 . . . .  , it,), (85) 

we have 

. . . . .  ~ r ( t ) ) + ( 2 r - l ) q ~ (  sup {16/t}/.  (86) Vr(y(t), Y¢2(t) 
\ ie{1 . . . . .  r} ! 

On the other  hand, we know that the function II1 is proper  and positive-definite. It follows that the function 
V,(y, xz . . . . .  Yc,) is a positive-definite proper function. 

Then, let us check now if we can apply Lemma 3.1 with the ~-subsystem given by (19) and the ;~- 
subsystem given by (26) with u = u,z. From (86), assumption (33) is sastisfied with V~ playing the role of O, 
(6i)i~/1 . . . . . .  ~ the role of co and 

~b(s) = (2r - 1)~o(s). (87) 

We have already mentioned that (2) holds from (25) and (29) with, in particular, 

72(s) = [1  +Kz-).K~3](,r+Tzo2?)(s ) . (88) 

It remains to check condit ion (35). To  meet this condition, we adjust our three functions q~, V~ and Uo. We 
have the following technical lemma (see the appendix). 

Lemma 3.4. For any function ~z of  class ~ and any strictly positive real number q, there exist a function ~o of  
class L ~  ~- 1, a proper positive-definite C" function II1 (y) and a C ' -1  function Uo such that Uo(0) = 0 and, for 
all y ~ R, we have 

-- V'l(y)uo(y) >- VI(y) >_ (2r -- 1)¢p(Z?2(lyl)) - ~/. (89) 
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Moreover if, for some strictly positive real numbers s:, x and C, with s: < 1, we have, for all x ~ [ 0 , X ] ,  

Cx if r > 1 
72(X) ~--- C X  K i f r  = 1 ,  

(9O) 

then the same result is satisfied with rl = O. 

Consequent ly ,  by choosing r/strictly positive if (13) does not hold or zero if not, assumpt ion  (34) of  L e m m a  
3.1 is satisfied f rom (87)-(89) with Y2 given in (88) and $4(X) = Y. L e m m a  2.1 and Theo rem 2.2 follow from the 
conclusion of L e m m a  3.1 and, in part icular,  we have 

lira sup Vr(y(t), ~2(t) . . . . .  ~r(t)) < q. (91) 
t~+oO 

4. Example 

Consider  the system 

~ =  --Z3 +Xt,  

fC 1 = X 2 "[- ZX 1, 

f¢2 = U ,  

y = x l .  

Fol lowing 1-17, P roo f  of  Theorem 1], we can see that  the system 

~ =  - - z 3 + y  

is ISS with 

/ 4S2 
f l ( s , t )=  4 + 7 s 2 t  ' y ( s ) = 2 s  1/3. 

Also, by choosing O(x) = x 2 in (15), we get, for x ~  ~ + ,  

yy(X) = X 3/2 , ~z(X) = X 3 . 

It  follows, for x ~ R + that  

(92) 

(93) 

(94) 

(95) 

yy(x) + ~,=(2y(x)) = x 3/2 + 64x. (96) 

We conclude that  the assumpt ions  of  Theorem 2.2 are satisfied. Therefore,  there exists a cont inuous  dynamic  
output  feedback which makes  the origin a globally stable equil ibrium point. 

Then,  let us exhibit this dynamic  ou tpu t  feedback. Fol lowing our  design, we first consider the following 
observer:  

:~1 + ~2 + 3(y - .x1), ~2 = u + 2(y -- ~1). (97) 

In this case the error  system is 

~1 = - 3~1 + ~2 - zy,  x2 = - 2~1. (98) 

We have 

~1 = X2 -- X2 "4- zy,  62 = 2(y -- Xl) (99) 

and (29) is satisfied with 

K2 = 7, 2 = 1, K3 = 2. (100) 



30 

It follows that by choosing 

qg(x) = ½x 2 , VI(y)  = 1 3 5 0 y 2 ( x f ~  + 64) 2 , uo(y) - 

inequality (89) of Lemma 3.4 is sastisfied with ~ = 0 and 

l~o(x)  = ½x 2 . 

Then, by applying Lemmas 3.2 and 3.3 successively, we get 

u11(Y) - Y ( x / ~  + 64) 
3 x / / ~  + 128' 

u12(y) = u ~ ( y )  - 6 7 5 y ( x / ~  + 6 4 ) ( 3 x f ~  + 128), 

u21(y, ~2) = - ½(~2 - u~2(y)) - 6 7 5 y ( x / ~  + 6 4 ) ( 3 x f ~  + 128) 

+ U'12(Y)'~2 - -  ½ ( X 2  - -  Ul2(y))U'12(Y) 2 , 

U22(Y, "X2) = U21(Y'  9£2) - -  ½(3~2 - -  U l 2 ( Y ) ) '  

Therefore, a globally stabilizing dynamic output feedback is 

:~1 = x2 + 3 ( y -  Xl), :~2 = u + 2 ( y -  x l ) ,  u = u22(Y, 5c2). 
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Y ( x f ~  + 64) 

+ 128' 
(101) 

(lO2) 

(lO3) 

(104) 

5. Concluding remarks 

We have established that a subclass 6 of the set of systems which admit a global normal form (4) and whose 
inverse dynamics are ISS can be stabilized by dynamic output feedback. 

This result has been obtained by noting that it was already potentially contained in l-8, 12-1, where systems 
in the form (12) are considered. The main point was to realize that what is effectively used in [8, 12-1 about the 
z-subsystem in (12) is the fact that it is BIBO system with y as input. Then, for the system (4), the natural 
extension is the property, for its z-subsystem, to be ISS. 

The instrumental result which allowed us to do this extension is Lemma 3.1. It concerns the stability of 
composite systems with conditions fi la small-gain theorem. Since it was very helpful here, we decided to 
devote the companion paper [7] to generalize it. 

However, this extension asks for a knowledge of the function y characterizing the property of being ISS. In 
the linear context of [8, 12], this function can easily be derived from the data of the system. For our more 
nonlinear context, we know only the algorithm proposed in 1-17, proof of Theorem 1]. It is not very practical. 
So, for the time being, our result is more an existence result than a practical result. Another problem we have 
raised, but not solved, in this paper is the small-gain condition close to the equilibrium. The consequence is 
that only the asymptotic smallness of the output is always guaranteed. 

Here we have concentrated our attention on the stabilization problem for a system already written in 
appropriate coordinates. The next step is to find a coordinate-free condition guaranteeing that the assump- 
tions of Theorem 2.2 are satisfied. This has been done in [8, 12] for the special form (12). 

6 See our first remark after (6). 
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Appendix 

A.1. Proof of  Lemma 3.4 

The result of this lemma is very intuitive. We provide here a proof for the sake of completeness. It has no 
practical interest. It is based on the following lemma established by Jean-Michel Coron. 

Lemma A.1. Let k : [0, + oo) ~ R be a continuous function such that, for some strictly positive real number Z, 
we have, for all x~ [0, Z], 

k(x) < O. (105) 

Under this condition, there exists a proper strictly increasing C °~ function W: [0, + oo)~  [0, + oo) and 
a strictly positive real number It satisfying." 

(i) W(x) = ½x 2 Vx ~ r0, It] ,  

(ii) W(x) > k(x) Vx > 0, (106) 

(iii) W'(x) > 0 '¢x > O. 

Proof. For any i in 7/, let Sel be the following open set: 

5Pi = {x~ll~[2 i-1 < x < 2i+x}. (107) 

We have 

U 6~, = (0, + oo). (108) 
i E 7  

Then let {~i}i~z be the partition of unity subordinate to this open covering [1, Theorem V.4.4]. Let also the 
real numbers ci's be defined by 

c, = sup { { k ( x ) l x E ~ , } U { O } } .  ' (109) 

Then if't, defined by 

fit(x) = Y, c:ti(x), (110) 

is a C ® function satisfying 

(i) ff't (x) -- 0 Vx~ [0, It1], 
(111) 

(ii) ff't (x) _> k(x) Vx >_ O, : 

with Itt some strictly positive real number. With the same procedure but with k replaced by - ff"~, we get 
a second function W2. Then the conclusion of the lemma follows by taking 

W(x) = ½x ~ + g'~(sIds + ff't(x). [] (112) 
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With this result, the first point  of L e m m a  3.4 is obta ined by choosing 

q,(x) = ½x ~, 

V,(y) 
uo(y) = Vi(y)" 

and 

vl(y)= v l ( - y ) =  W(y) Vy_>0, 

where W is the function given by l emma A.1 with 

k(x) = (2r - 1)go(2y2(x)) - n. 

No te  that  if, for some positive real numbers  C and ;~ > 0, we have 

2y2(X)_< C x  Vx~[0, Z], 

then, with ~p as defined in (113), we get 

C 2 
¢p(2y2(x)) < - ~ - x  2 V x ~ [ O , z ] .  

In this case, we define Uo as in (114), but with V1 given by 

VI(y)= V , ( -  y) = W(y) + ( 2 r -  1)C2y 2 Vy_>0,  

where now W is obta ined  from 

k(x) = (2r - 1)~o(2~2(x)) - (2r - 1)C2x 2 . 

Similarly, when r = 1, if, for some positive real numbers  C, Z > 0 and x < 1, we have 

2)~2(X )_< C x  K Vx6[0,  Z], 

then we choose tp as 

K 
~o(x) = ~ Ixl" +'/~, 

with v some strictly positive real number .  In this case, we get 

l + v  
:~0(x)  = Ixl <x +~'/" +v-~' .  

l + v - x  

So, clearly ~,Nlxl)/x is continuous,  i.e. ~o is of class &v~-o. Moreover ,  we get 

K,C(1 + v)/r 
~0(2~'2(X))_<-- IX[ ~+~ Vxe[O,x ]. 

l+v 

In this case, we define again Uo by (115), with V1 given by 

V~(y)= V l ( - y ) =  W(y) + C"+'/"lyl ~+~ ¥y > O, 

where now W is obta ined f rom 

k(x) = ~o(272(x)) - C "  +v)/~lxla+~. 

(113) 

(114) 

(115) 

(116) 

(117) 

(118) 

(119) 

(12o) 

(121) 

(122) 

(123) 

(124) 

(125) 

(126) 
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