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PLAYING WITH THE REGULATION ZEROS 
IN THE STABILIZATION 
OF A DOUBLE INVERTED PENDULUM 

BRIGITTE D'ANDREA-NOVEL, L. PRALY 

State-space methods are well adapted for solving stabilization problems. In the linear multi-
variable case, when the poles are placed, some degrees of freedom are left which can be used 
to place some zeros in the transfer functions from the perturbations to the outputs, called regula
tion zeros, to reject some perturbations. It is therefore interesting to use a suitable representation 
to compute the closed-loop transfer functions from the perturbations to the outputs. The Youla-
Jabr-Bongiorno parametrization of the controller turns out to be very appropriate for this task. 

We have applied this method to the stabilization of a double inverted pendulum, fixed on 
a carriage moving on an horizontal bench. We have obtained a minimal controller which stabilizes 
the system and rejects asymptotically on the position of the carriage some perturbations, for 
example: measurements noises on the angle, the slope of the bench. All the results we have 
obtained on a full-size realization, (which can be seen at the permanent exhibition of the Cite 
des Sciences et de l'lndustrie de La Villette), show that the behavior of the system closely depends 
on the choice of the regulation zeros. 

1. CLOSED-LOOP TRANSFER FUNCTIONS OF A MINIMAL SYSTEM 

The linear dynamical system that we consider is supposed to be controllable and 

observable. Using a polynomial formulation, it can be described by: 

A(s) y = Be(s) u + Bd(s) w (1) 

where y is the output p-vector, u is the input m-vector and w is a disturbance J-vector. 

ApXp, (Bc)pXm and (Bd)pXd are polynomial matrices. 

System (1) being observable, A and Bc are left-prime matrices, the following 

Bezout identities are then satisfied: 

A(s) E0(s) + Bc(s) F0(s) = I 

A(s)B1(s) = Bc(s)Al(s) 

where A. and B1 are right-prime matrices associated to the polynomial controller 
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form of the system: _; ' j - • . ; ;J..J_ .''.DLl 

A,(s) £ = u + T,(s) w 

y = B,(s) £ + T2(s) w 

with {the partial state m-vector and . •••, '• 

r1(s) = F0(s)srf(s) "•-; ; *y •'';••'• ;-'^ 
T2(S) = E0(S)B,(s) U 

This representation is well adapted to the computation of. the closed-loop transfer 
functions, the feedback law being expressed directly from the partial state £. More 
precisely, the most general linear, rational and causal control law is of the form: 

P(s) u + Q(s) y = r (5) 

where r is obtained from a set-point vector r, and can contain n derivatives, n being 
the degree of the determinant of P(s): 

r= Qr(s)r ;, (6) 

P(s), Q(s) and Qr(s) are polynomial matrices with suitable dimensions, such that 
P_1Q and P~xQr are strictly proper to ensure the strict causality of the controller, 
for piecewise continuous input functions. "-'"•-'•" 

Let us now compute the closed-loop transfer functions. To be more exhaustive, 
we consider also an error vector v on the outputs measurements, i.e.: 

.41(s)^ = » + T 1 ( s ) W • ;v 

y = B1(s)£+ T2(s)w + v 

Replacing y and u by (7) in (5) and denoting TVjl the transfer matrix from v to pi, 
we obtain: 

with 

where 

y = Tryr + Twyw + Tvyv (8) 

Try(s) - i * i . r - J 

Twy(s) = (BXT~\PF0 - QE0) + E0) Bd , " (9) 

Tvy(s) =(l-B1T~tQ) 

T(s) = PA! + QBt (10) 

is an invertible m x m polynomial matrix: the roots of its determinant 5(s)\ are 
the closed-loop poles, which are of course chosen stable. 

We find again a well known result (see [5, 7, 8]), namely: 
the open-loop zeros, (those of the open-loop transfer from u to y), are also present 
after feedback in the Try transfer; they are called the tracking zeros. Let us now pa
rametrize the controller to point out the degrees of freedom which will be used to 
place some regulation zeros, i.e. the zeros of the Twy and Tvy transfers. 
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2. AFFINE PARAMETRIZATION OF THE CONTROLLER TO PLACE 
REGULATION ZEROS WITH FIXED POLES 

In the case of a multivariable system, we have obviously: 

m + p > 2 (11) 

Let us denote by n the dimension of the system which is supposed to be minimal. 
Using the separation principle, a pair CmX„, L„Xp of gain matrices can be chosen 
to ensure complete and arbitrary pole placement, and consequently the stability 
of the 2rc-dimensional closed-loop system made of the given system compensated 
by a Luenberger observer of the entire state (see for example [4]). Some degrees 
of freedom are then left, said nd: 

nd = n(m + p — 2) (12) 

The idea is now to apply the Youla-Jabr-Bongiorno parametrization of the controller 
(see [6]) to display these degrees of freedom. 

A! and Bx introduced in (2) are right-prime matrices, consequently there exist 
polynomial matrices P0 and Q0 such that the following Bezout identity is satisfied: 

P0A, + Q0B,=I (13) 

On the other hand, using (2), the general form of the solution of (10) is: 

P - 7 P „ + ^ .. ; 

Q= TQ0 +KA 

K being a free polynomial matrix. Using this parametrization, the closed-loop 
transfer functions given by (9) can be rewritten: 

Try(s) =B,T^ 

Twy(s) - (B^PoPo - O.0P0 + T~'K(BCF0 + AE0)) + E0) Bd (15) 

Tvy(s) =1 -B,Q0 +BiT~1KA 

It is then obvious that one can use the degrees of freedom K, to place some regulation 
zeros, the poles (given by the roots of the determinant of T(s)) being unchanged. 
The next sections will be devoted to the stabilization of a double inverted pendulum, 
using the previous results. 

3. THE DOUBLE INVERTED PENDULUM, COMPUTATION 
OF THE CLOSED-LOOP TRANSFER FUNCTIONS 

We consider a mechanical system, made of a double inverted pendulum, fixed 
on a carriage moving on an horizontal bench. A motor applies a force u to the 
carriage. We measure the position x of the carriage on the bench and the angle 9t 
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that the lower stick makes with the perpendicular axis to the bench. The two sticks 
are joined by a flat spring, see Figure 1. 

Using Euler-Lagrange method, we obtain the dynamical equations of the system. 

Fig. 1. The double inverted pendulum. 

Considering the tangent linearization around the unstable vertical equilibrium, 
we deduce the following linear dynamical system: 

X = FX + Gu 

(16) 

(0\ 

Y = HX 

with 

H = 

(0 0 0 1 0 0^ 
0 0 0 0 1 0 
0 0 0 0 0 1 
O f l f t O O O 
0 c d 0 0 0 

^ O ř / 0 0 0 

1 0 0 0 0 0 
0 1 0 0 0 0 

G = (17) 

The coefficients of E and G are constants, depending on the physical parameters 
of the system. In particular, a, b, c, d, e, f depend linearly on the coefficient X of 
flexibility of the flat spring when p, q and r are independent of X (see [1]). 

(16) —(17) is minimal, except for particular values of X (see [1, 3]). We have built 
a Luenberger observer of the entire state. Consequently, the separation principle 
allows us to place independently the n poles of E — GC and the n poles of E — LH, 
where CmX„ (resp. LnXp) are the gains of the controller (resp. the observer). Then, 
in our case, the number nd of degrees of freedom is: 

nd = n(m + p - 2) = 6 . (18) 

These degrees will be used to place some regulation zeros. There are many kinds 
of perturbations on the system: measurements noises, the slope of the bench which is 
unknown, the motor's dissymetries... 
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To be complete, we consider an n-vector w of dynamical perturbations and a p-
vector v of measurements noises: 

w = (0 0 0 wt w2 w3)', v = (dx dO)' (19) 

Applying general results of Section 1, we have to compute some polynomial matrices. 
We obtain directly from (16) —(17) the polynomial observer form: 

A(s) = fds2 -(ad + b(s2 - c)) fds2 -(ad + b(s2 - c))\ 

\ o «iM ) 

with 

Bc(s) = fpd - bq\ ( 

V <W) / 

Bd(s) = (d -b 0 
\0 (s2 f) d 

a i ( s ) _ _ ^ + ( s 2 _ / ) ( s 2 _ c ) 

a2(s) = rd + (s2 - f) q 

A(s) and Bc(s) being left-prime, the polynomial controller form is obtained by solving 
(2), which gives: 

At(s) = a(s) — ds2 oc1(s) 

R fjx _ (Px(s) = (Pd - bq) «i(») + (ad + b(s2 - c)) a2(s)\ (22) 
A ) ~ V PB - ^ 2 «aW j 

and 
í-pS2 + J 3 ^qí/j + Í/3Í/4 + pt i 4 s 2 \ 

, ddi ddid2 E0(s) = I 
-a2(s) q2ci1 + (rď — fq) d4 + qd4s 

ddx dd^d2 

Ojfs) 

FÁ>) = I ddl 

(rd + qc — qs2) d1 — d4 a^s) 

(23) 

ddxd2 

where the constants dt have the following expressions: 

d\ — p(fc — ed) + q(be — af) + r(ad — be) 

d2 = q(rc — eq) + r(rd — fq) (24) 

d3 - (rb - pf) + (aq - pc) 

d<n. = r(pd — bq) + q(pc — aq) 
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The most general controller is of the form: 

p(s) u + qx(s) yx + q0(s)y2 = r = qr(s) r (25) 

where r is a set-point vector and qx, qe and qr have a strictly less degree than the 
degree of p(s). As we are interested by the real values x and 9X of the system, using (9) 

and: 
yx = x + dx 

y2 = x+ d 
(26) 

if we denote y the vector I J, we obtain the different closed-loop transfer functions: 

y - BxT~lr + (BXT~X(PF0 - QE0) + E0) Bdw - BxT~xQv (27) 

which gives more precisely: 

i /px(sy 
TrAs) " T(s)\Ms\ 

T („\ _ _ i _ f~qx(s) Px(s) ~qe(s) Px(s)\ /?8s 
vA) " T(s){~qx(s) Ms) ~q6(s) fa(s)) W 

T M - A_(hx(s) tx2(s) tX3(s)\ 
wA) " T(s){t2l(s) t22(s) t23(s)) 

where the polynomials t(7(s) have the following form: 

hi(s) = P(s) hx(s) + q0(s) h2(s) 

ti2(s) = p(s) h3(s) - q0(s) h4(s) 

tu(s) = p{s) h5(s) - qe(s) d(pd - bq) (29) 

t2i(s) = ~qx(s)h2(s) 

t22(s) = p(s) ds2(s2 -f) + qx(s) h4(s) 

t23(s) = p(s) d2s2 + qx(s) d(pd - bq) 

with the polynomials h^s) given by: 

hx(s) = d ccx(s) 

h2(s) = d cc2(s) 

h3(s) = d(eb + a(s2 - / ) ) (30) 

ht(s) = d(rb + p(s2 - / ) ) 

h5(s) = d(ad + b(s2 - c)) 

If we compute the Smith-McMillan forms of the above closed-loop transfers, we 
deduce (see [1]) that the zeros of p(s) are also present in TWy(s) and Tvy(s). The only 
tracking zeros that can appear after feedback are those of the possible precompensator 
qr(s). Let us now parametrize the controller as explained in Section 2. 
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4. AFFINE PARAMETRIZATION OF THE CONTROLLER 

The closed-loop poles, given by the roots of T(s), being placed, we have to find 
p(s), qx(s), qe(s) satisfying: 

p(s) a(s) + qx(s) fix(s) + q9(s) 09(s) - T(s) (31) 

Let p0, qxo and q9o be a particular solution, then we have: 

*(Po - P) = PxUx - qxo) + Mqo - qe0) (32) 

(16) —(17) being controllable and observable, Ai(s) and Bi(s) given by (22) are right-
prime, consequently ax(s) and a2(s) are prime, and /3X(0) being not zero, we deduce 
that Px and /3„ given by (22) are also prime. Then there exist unique polynomials rx 

and r9 satisfying: 

rjx + rep9 = - a 

d e g ( r , ) £ 3 (33) 

deg(r,) = 3 

In fact, Px, fi9, a having no term in s', i odd, (33) implies that the degree of rx and r9 

is less or equal to 2. More precisely, denoting by a1 the coefficient of sl in a poly
nomial a(s), we can show that (see [1]): 

rx(s) = r2s2 

r6(s) = r°e + r2s2 (34) 

deg (rx) = deg (r9) = 2 

Multiplying (33) by (p — p0) we obtain: 

x(Po ~ P) = rjx(p - p0) + rep9(p - p0) (35) 

(32) and (35) can be viewed as Bezout equations of which (qx — qxo) and (q9 — q9o) 
on one hand, and rx(p — p0) and r9(p — p0) on the other hand, are solutions. 
Therefore there exist polynomials k and / such that: 

P = Po + I 

qx = qxo + K + kfi9 (36) 

qe = qe0 + lr9 - kflx 

To obtain a particular solution we can apply the division algorithm: 

T=«p0 + r0 

deg (r0) < deg (a) = 6 

We have then to solve: 

r0 = Pxqxo + Moo (38) 
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The unique solution satisfies: 

deg ( q j s ) ) < deg (&(*)) = 4 

deg(q9o(s))<dQg(Px(s)) = 4 

Then using (34), (36), (37) and (39) and denoting by n the degree of T(s), we have: 

deg (qx) = deg (qe) = Max (deg (/) + 2, deg (k) + 4, 3) 

deg (p) = Max (deg (p0), deg (/)) = Max (n - 6, deg (/)) 

But, / and k must satisfy the strict causality constraint of the controller, which can 
be written: 

deg(p)> deg(qx) 

deg (p) > deg (qe) 

If / and k are chosen independent, we obtain from (40) and (41) the following ine
qualities: 

n = 10 

deg (/) = n - 9 (42) 

deg(k) = n - 11 

To solve (31) it is then sufficient to place 10 poles. This is quite natural since there are 
2 outputs and 1 input. Consequently, we could place only 10 poles: 6 for the controller 
and 4 for the observer. Let us now examine how many degrees of freedom are left 
if n poles are placed. Using (42) we deduce the following proposition: 

Proposition 1. If n poles are placed for system (16) —(17), n being greater or 
equal to 10, then 2n — 18 degrees of freedom are left. 

Proof. (42) implies that: 

nd = deg max (/) + 1 + deg max (k) + 1 = 2n — 18 (43) 

• • • : ' . ' . * • • " D 

In our application we have placed 12 poles, using the classical observer-regulator 
synthesis and 6 degrees of freedom have been left, as it was expected in (18). Let 
us now use these degrees of freedom to place some regulation zeros. 

5. REGULATION ZEROS PLACEMENT WITH FIXED POLES 

5.1. Asymptotic rejection of constant perturbations 

Using (28) —(29), for the static gains to be zero from the wh i = 1, ... 3, to the 
position x of the carriage, it is sufficient that: 

p(0) = 0 
(44) 

9.(0) = 0 V 
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In this case, the static gain from dO to A- is also zero but that from dx to x is equal 
to — 1 which means that a bias on the measure of x cannot be rejected on x. If qx(0) 
would be zero, all the static gains from the w,- to 0X would be zero. But from (31) 
and (44) we have: 

T(0) = qx(0) px(0) , /? x (0)*0 (45) 

qx(0) must be not zero to guarantee the stability of the closed-loop system. On the 
other hand, the fact that (le(0) is zero implies that the static gains from dx and dd 
to 0l are zero. It means that with no dynamic perturbation, the only equilibrium 
position of the pendulum is the vertical one, corresponding to 9t = 0. Let us now 
summarize the conditions of Asymptotic Rejection of Constant Perturbations, 
denoted ARCP: 

p(0) =0 

qe(0) = 0 (46) 

qx(0) * 0 

Using the general parametrization (36) these ARCP conditions are equivalent 
to choose: 

/° = 

k° = 

-í>o° 
(47) 

Й 
We can check afterwards that qxo(0) is not zero. Two degrees of freedom have been 
use to realize ARCP conditions. Taking the four remaining degrees of freedom 
to zero (namely k1, I1, I2, I3), we have observed that every measurement bias on 9X 

or every motor's dissymetry was asymptotically rejected on x (see Fig. 2), as well as 
an unknown constant slope of the bench (see Fig. 3). 

Fig. 2. Polynomial controller with ARCP. Fig. 3. Polynomial controller with ARCP. 
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5.2. Asymptotic rejection of ramp perturbations 

We are able to reject on x, a constant slope y of the bench. But this slope y can be 
introduced as a ramp by the public with a button driving a pneumatic jack. Due 
to the form (19) of the dynamical perturbation vector vv, this ramp perturbation 
can be written: 

Wi = 
дУ 

Using (28) and denoting by Fyx(s) the transfer from y to x we obtain: 

FyÁs) 
___) _ ______ + ««(s) h2(s) 

(48) 

(49) 
T(s) T(s) 

h±(s) and h2(s) given by (29) and (30). If the ARCP conditions are supposed to be 
satisfied, p(0) and qe(0) are zero and we deduce: 

. n ( 0 ) = 0 = Fyx(0) 

To reject asymptotically the ramp gyjs2 we have to satisfy moreover: 

r r o x ^ i ( o ) T ( o ) - t i i ( o ) r ( o ) = 

y-V > r2(o) 

ttl(0) being zero, we have then to solve: 

t[1(o) = o = P'(o)h1(o) + q'e(o)h2(o) 

A solution can be obtained by taking: 

P'(°) - q'e(0) = 0 

(50) 

(51) 

(52) 

(53) 

Fig, 4. Polynomial controller with ARCP and ramp rejection. 
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Noticing that fil and r] are zero, (53) implies the following choice for I1 and k1: 

il = - P I 

ki = <rfo - PlrS (54) 

/£ 
Taking the two remaining degrees of freedom I2 and /3 to zero, we have implemented 
this controller k° and 1° given by (47) and Z1 and k1 by (54). We observe (see Fig. 4) 
that the ramp has no influence on x, but the behavior around the equilibrium position 
is worse than in Figure 3. 

5.3. Rejection of frequencies 

The oscillations of the carriage and the pendulum are amplified if the sliding friction 
of the carriage on the bench is not well compensated. The sliding friction/ can be 
viewed as an additive perturbation to u. After some computations, we obtain the 
different transfers from/to x and 01: 

p(s) n^s) 
*>>) 

FтЛ°) 

T(s) 

p(s) n2(s) 

T(s) 

(55) 

where the polynomials nt(s) and n2(s) depend on the physical system (see [1, 2]). 

Consequently, if we want to cancel a frequency co due to/, it is sufficient to choose: 

p(ico) = 0 (56) 

If ARCP conditions are satisfied, (56) implies: 
/i _ / W = A = 

(57) 2 , 4 2 

Po + PW 

•pl + PW 

-PW 

Fig. 5. Polynomial controller with ARCP and frequency rejection. 
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A solution which minimizes for example (I1)2 + (I3)2 is the following: 

A 

(58) 

We have implemented this controller as follows: 
— we have measured the frequency a> in Figure 2, 
— we have chosen 1°, k° to realize ARCP conditions and I1,12,13 given by (57) —(58), 

k1 being zero. 
The frequency a> has disappeared as shown in Figure 5, but a new frequency has 

appeared, which is a multiple of co. Morrover, the behavior around the equilibrium 
is quite satisfying, the oscillations of x and 91 being of very small amplitude. 

6. CONCLUSION 

To conclude, one can say that the polynomial approach allowed us quite easily 
to parametrize a controller with some degrees of freedom, used to place some regula
tion zeros with fixed poles. All the results obtained on the real system point out the 
importance of a suitable choice of the regulation zeros. 

(Received November 20, 1990.) 
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