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Abstract: We study the relationship between the following two properties: PI: The system .~ = f (x ,  y), j, = v is locally asymptoti- 
cally stabilizable; and P2: The system ~ = f (x ,  u) is locally asymptotically stabilizable; where x ~ R n, y ~ R. Dayawansa, Martin 
and Knowles have proved that these properties are equivalent if the dimension n = 1. Here, using the so called Control Lyapunov 
function approach, (a) we propose another more constructive and somewhat simpler proof of Dayawansa, Martin and Knowles's 
result; (b) we show that, in general, P1 does not imply P2 for dimensions n larger than 1; (c) we prove that P2 implies P1 if some 
extra assumptions are added like homogeneity of the system. By using the latter result recursively, we obtain a sufficient condition for 
the local asymptotic stabilizability of systems in a triangular form. 
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1. Introduction and Results 

T h e  goa l  o f  this p a p e r  is to s tudy  the  r e l a t ion  b e t w e e n  the  f o l l o w i n g  two  p rope r t i e s :  

P I :  T h e  sys tem .~ = f ( x ,  y ) ,  p -  v is loca l ly  a s y m p t o t i c a l l y  s t ab i l i zab le  (LAS) .  N a m e l y ,  the re  exis t  a 

n e i g h b o r h o o d  U o f  (0, 0) in R n × R a n d  a c o n t i n u o u s  f u n c t i o n  v :  U---, R such  tha t  v(0,  0) = 0 a n d  (0, 0) is 

an  a s y m p t o t i c a l l y  s tab le  e q u i l i b r i u m  p o i n t  o f  :~ = f ( x ,  y ) ,  ~ = v. 

P2:  T h e  sys tem .~ = f ( x ,  u)  is L A S .  

O u r  s t a r t ing  p o i n t  in this s t udy  will  be  to  p r o v i d e  a c o n s t r u c t i v e  a n d  s o m e w h a t  s i m p l e r  p r o o f  a n d  to 

gene ra l i ze  a nice  resul t  r ecen t ly  o b t a i n e d  in [5,8] by  D a y a w a n s a ,  M a r t i n  a n d  K n o w l e s  on  the  a s y m p t o t i c  

s t ab i l i za t ion  of  two  d i m e n s i o n a l  real  ana ly t i c  sys tems.  Th i s  resul t  c o n c e r n s  sys tems  which ,  m a y  be  a f t e r  a 

d i f f e o m o r p h i s m  a n d  a p r e l i m i n a r y  feedback ,  can  be  wr i t t en  as 

= f ( x ,  y ) ,  9 = v,  (1) 

w h e r e  f is a f u n c t i o n  d e f i n e d  in an  o p e n  n e i g h b o r h o o d  $2 of  (0, 0) in R 2. 

Theorem 1 ( D a y a w a n s a ,  M a r t i n  a n d  K n o w l e s  [5,8]). I f  the dimension n = 1 and  f is a real analyt ic  func t ion ,  
property  P1 is equivalent to: 
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P3. For all e > 0 there exists two points (x 0, Y0) and (x 1, Yl) in R 2 such that 

x 0 > 0 ,  x l < 0 ,  f ( x o ,  Yo)<O,  f ( x l ,  Y l ) > O ,  x o < e ,  [y01<e ,  Ixl l  < e  and lYll <e .  
(2) 

Remarks. (a) In [5,8] it is also proved that if P1 or P3 holds then v in P1 can be chosen such that 
v ~ C ° ( U \  {(0, 0)}). In fact, this is a consequence of a general result proved by Sontag in [17, Section 7] 
and saying that, for n dimensional systems, condition P1 is equivalent to the same condition with the extra 
property v ~ C°~(U\((O, 0)}). In this paper, the function v we propose is in CI (U\{ (0 ,  0)}). Note also 
that it follows from [17, Section 7] that one does not have to specify in the definition of locally 
asymptotically stabilizable if one requires uniqueness of the trajectory for a given initial data. 

(b) In [5,8] it is moreover proved that P3 implies P1 with a function v such that, for some constant C, 

Iv (x ,  y ) l < _ f ( I x l + l Y l )  V(x,  y ) e U .  (3) 

Here, instead of (3), we shall get that, for some constants ct in (0, 1] and C, 

Iv (x ,  y ) - v ( x ' , y ' ) l - < C ( [ x - x ' [  ~ + l y - y ' l )  V(x,  y )  E U ,  Y(x ' ,  y ' ) ~ U .  (4) 

This generalizes the result of Kawski [12] that two dimensional systems which are locally controllable at 
(0, 0) are stabilizable by HSlder continuous state feedback. This result is in some sense optimal since 
Dayawansa and Martin have proved in [6], that v in general cannot be smoother than HSlder continuous. 

As noticed by Dayawansa and Martin in [5,8] the implication P1 ~ P3 is obvious. Our proof of P3 ~ P1 
is divided into two lemmas. 

Lemma 1. Assume that P1 holds. There exist i~ > 0, two real analytic functions u+ and u_ in ( - 8 ,  8) which 
do not vanish at zero and four positive integers p+, q+, p_ and q_ such that: 

1. By defining the control law 

xe+/q+u+(x l/q+) i f x > O ,  
u ( x )  = (5) 

I x l P - / q - u _ ( l x l  l/q-) i f x < O ,  

we have 

x f ( x ,  u ( x ) ) < O  V x ~ ( - 6 , 8 ) \ { O } ,  (6) 

i.e. the origin is an asymptotically stable equilibrium point of the system Yc = f ( x, u ( x )). 
2. For (x, y)  in a neighborhood of (0, 0), we have 

I f (  x, Y)I <- C( I x I +  IYl '/~) (7) 

where 

{ P+ P - } q +  q -  a = m i n  1, , ~ -  . (8) 

With the function u defined in Lemma 1, we can now follow [15, Section 3]. For the desingularizing 
function q~(x, y), we take yP - u (x)  p and, for h0(x ), we take xm+l/(m + 1) where p and m are odd 
integers. This provides the control Lyapunov function 

Pyp+ 1 p ~  Xm+ l h ( x ,  y )  - u ( x ) P y  3 t- u ( x )  p+I + (9) 
m + l  
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and the control law 

y -  u(x)  . du p . . x . , f ( x ,  y ) - f ( x ,  u(x) )  
v(x ,  y)  = YP u ( x ) p f ( X ,  y)---d-~-x {x) - ( y P -  u(x )  p) - (10) y P - - u ( x )  p 

Our second lemma proves that such a control law v is well defined and studies its smoothness. 

Lemma 2. Let ~2 be an open subset of R 2 containing (0, 0) and let 3 and r be two strictly positive real 
numbers such that 

f : = ( ( x ,  y ) l l x l < r ,  l Y l < r } c g 2 n ( - 6 , 6 ) × R .  

Consider three functions f :12 ~ R, u : ( - 8 ,  3) ~ R and v: U ~ R 
ot ~ (0, 1] and fl > a, we have 

6))nc2((-6, 6)\(o}), u(O)=O, 

Id, I 
~--~x2(X) < f i x [  -2+" and IN[ ~--~-(x) <-Clu(x)  l 

1 u(x) l>_-(Ixl ( -6 ,  8), 

and 

such that, for some 

Vxe ( -6 ,  6 ) \ {0} ,  

f ~ C 2 ( ~ ) ,  f ( O , O ) = O  and ~fy(X, y)  ~C(Ixl+lyl (~/~)-1) V(x,  y )~S2 ,  

v(O, y ) =  --yP, 

duP . m Of i 
f ( x ,  u(x))-d~-x ( x ) - x  -~y~X, u(x))  

v(x ,  u(x))  = pu(x )P-  , if x *  O, 

-Uupj.._d~x_du p x m f ( x ,  y ) - - f ( x ,  U) V(X, y ) = y p  y - - ( y P - - u  p )-- yP  u p if y ~ u and x 4= O, 

where m and p are odd integers, chosen to satisfy 

a p > 2 ,  

m>__f l (p -1 )+a .  

Under these conditions, v ~ C°(U) ¢3 C I ( u \  ((0, 0))) and satisfies for some constant C~, 

Iv(x,  y ) - v ( x ' ,  y ' ) l < C l ( l x - x ' l " + l y - y ' [ )  V(x,  y ) E U ,  V(x ' ,  y ' ) ~ U .  

(11) 

constants C, 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

The implication P3 ~ P1 now follows from Lemma 1 and Lemma 2. Indeed, with u and a defined by 
Lemma 1 and with fl = max( p+/q+, p_/q_ }, one easily sees that (12), (13), (14) and (15) are satisfied. 
Moreover if one computes the time derivative of the Lyapunov function h, defined in (9), one gets 

3h Oh 
/~ = f ( x ,  y)-~-~x(X, y ) +  v ~ ( x ,  y ) =  - ( y P - u ( x ) P )  2 -  x " f ( x ,  u(x)) .  (20) 

Hence by (6), /~ < 0 in U \  {(0, 0)} which proves that (0, 0) is an asymptotically stable equilibrium point of 
(1). 

A consequence of Theorem 1 and of our construction is that, when the dimension n = 1, if .~ =f (x ,  y), 
= v is LAS and f is real analytic then this system can be locally asymptotically stabilized with an HiSlder 

09) 
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continuous feedback law. It would be interesting to know if this holds for any analytic systems in higher 
dimensions. 

Let us remark also that Lemma 1 shows that, when f is a real analytic function and the dimension 
n = 1, property P3 implies property P2. Hence another consequence of Theorem 1 is the implication: 

if ~ = f ( x ,  y ) ,  ~ = v is LAS then .~ = f ( x ,  u) is LAS. 

This is particular to the dimension n = 1. Indeed we will prove: 

Proposition 1. Let,  for  a constant C and n > 2, a function f : R" × R = R"  1 × R × R ~ R"  be defined by 

2 3 2 f ( x ,  y ) = f ( x ~ , x  2, y ) = - [ ( l x l [  + x 2 ) 3 - C Z ( y 3 - l x ,  1 2 y + x ~ )  ] x .  (21) 

For C large enough, the system 5c = f (  x ,  u) is not LAS but the system Y¢ = f ( x ,  y ), ~ = v is LAS. 

Remarks. (a) This phenomenon is purely nonlinear: if f is linear and ~ = f ( x ,  y ) ,  ~ = v is LAS, then 
Yc = f ( x ,  u) is LAS. 

(b) This proposition shows that it may be helpful to add integrators to locally asymptotically stabilize a 
system. It has been previously proved that integrators can also be useful for global stabilization (Sontag 
and Sussmann [18]) and for smoothing feedback laws (Boothby and Marino [3]). 

(c) A consequence of our proof of Proposition 1 is that for C large enough and n odd, there exists no 
function u such that, for some neighborhood W of 0, 

u ~ C ° ( W ) ,  u ( 0 ) = 0 ,  f ( x ,  u ( x ) ) 4 : 0  V x ~  W \ { 0 }  and i n d e x ( f ( . ,  u ( - ) ) ,  0) = ( - 1 )  ~. 

(22) 

Hence the existence of a control law u satisfying (22) which is necessary for the system A = f ( x ,  u) to be 
LAS (see [11, Theorem 5.2.1]) is not necessary for that system to be dynamically locally asymptotically 
stabilizable. 

These considerations lead naturally to the following open question: 

Question. Let f be a real analytic map defined in a neighborhood 12 of (0, 0) in R n x R with values into 
R ' .  Assume that f(0,  0 ) =  0 and that the system ~ = f ( x ,  u) is LAS. Is the system ~ = f ( x ,  y), p = v 
LAS? 

It has been proved by Tsinias in [19, Theorem 3.c] that the answer to that question is yes if one assumes 
moreover that ~ = f ( x ,  u) is locally asymptotically stabilizable with a C ~ feedback law u ( x ) .  Our next 
proposition is an improvement of this result which, with Lemma 1, also gives a proof of P3 ~ P1 for n = 1. 

Proposition 2. Let $2 be an open subset o f  R n × R containing (0, O) and f :  ~2 --* R ~ be a C 2 map such that 

f(O, O) = O. Assume the existence o f  an open neighborhood U of  0 in R"  and o f  a continuous map u : U ~ R 
such that, for  some constant ct in (0, 1] and some constant C in (0, + ~ ) ,  we have 

u(O) = O, (23) 

u ~ C ' ( U \  (0}) ,  (24) 

O-~x(X) <_Clxl °- '  V x ~  u\(o}, (25) 

I f ( x ,  y ) [  < _ C ( I x l + l Y [  ~/") V ( x ,  y ) ~ I 2 ,  (26) 

0 is an asymptotically stable equilibrium point o f  ~ = f ( x ,  u) .  (27) 

Under these conditions, the system .~ = f ( x,  y ), p = v is LAS. 
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We prove also that for any dimension n, but for homogeneous systems and homogeneous feedback 
laws, P2 implies P1. More precisely, we prove: 

Proposition 3. Let  f =  (~) i=] , ,  : R"  × R ~ R"  be a C ] map such that 

V i E  {1 . . . . .  n } ,  V x = ( x i ) i = , . , E R ' ,  V e > O ,  V u ~ R  

r] . . .  Ern.lU (Xl,. , u) (28) x, ,  ) =  .+r, r ~" f i  " " X n ,  

for  some r i > 0 and some r E ( -  mini { rj }, + m). Assume that the system 2 = f (  x ,  u)  is globally asymptoti-  
cally stabilizable with a continuous feedback law u : R"  --+ R such that 

u(er 'x l  . . . . .  Ernxn)  = e r ' + l U ( X l  . . . . .  Xn) VX = (X~),=1. . E N ' ,  We > O. (29) 

Under these conditions, the system 2 = f ( x ,  y ), ~ = v is globally asymptotically stabilizable with a continuous 

feedback law v : R"  × R --+ R such that 

rl . V x  = ( x , ) , = l ,  . ~ n ' ,  V y  E n ,  Ve > 0 u(e x ,  . . . . .  e " x , ,  e"+ 'y )  = e ' + " + ' v ( x ,  . . . .  x , ,  y ) .  (30) 

Remark. (a) Stabilization of homogeneous systems has recently received a lot of attention - see for 
example [1,7,8,10,13]. In particular, Proposition 3 has been proved previously by Dayawansa and Martin 
in [7] for the special case n = 2, r 1 = r 2 and by Andreini, Bacciotti and Stefani in [1] for the special case 
where u can be chosen C 1. 

(b) In the definition of global asymptotic stabilizability we are using here, there is no need to precise if 
uniqueness of the solutions is required. This follows from the following lemma which is a key technical 
step in the proof of Proposition 3: 

Lemma 3. Under the assumptions o f  Proposition 3, there exist: 
• a stabilizing control law ~ : R "  --* R in C ] ( R ' \  (0}) ¢q C ° ( R  ") which satisfies 

u(ErlX 1 . . . . .  ~ r n x n )  = Ern+l~l(X 1 . . . . .  X n )  V X  = ( X , ) i = l .  n E n n, ~¢E ~_~ 0;  (31) 

• a C ] function ~': R ' ~  R which is positive definite (see [9, Def. 24.3]), radially unbounded (see  [9, 
Def .  24.5]) and satisfies 

. . . . .  = . . . . .  x . )  

where k is a real number satisfying 

k > r  i, q i ~  {1 . . . . .  n};  

such that 

~ x ( X ) f ( x ,  ~ ( x ) )  < 0  V x E n ' \ { 0 ) .  

Vx = (x , ) ,= , , °  n",  > o, (32) 

(33) 

(34) 

A consequence of Proposition 3 and of a theorem on robust stability for homogeneous systems, proved 
by Hermes in [10, Theorem 1], is: 

Corollary 1. Let  f =  (f , ) i=l , ,  : R"  × R --~ R ~ be a C ~ map such that: 

f ( 0 ,  0) = 0; 

the function fi ( x ,  u ) does not depend on ( x i + 2 . . . . .  u )  for  i ~ ( 1 . . . . .  n - 1 }, 

(35) 
(36) 
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for any i ~ {1 . . . .  , n }, there exists an odd integer pi+ l such that, with x,+ ~ = u, 

axp~3,(O):#O and ( 0 ) = 0  V / ~ { 0  ..... p , + , - 1 } .  
OXi+ 1 

Under these conditions, the system 2 = f ( x, u) is LAS. 

According to this corollary, the following system for example is LAS: 

)~l = f l (  Xl)  f" X p2 , 

=f,(xl . . . . .  x , )  + 

~. = L ( x ,  . . . . .  x . )  + u~,+', 

when the p~'s are odd integer numbers. 
The following sections are devoted to the proof of our various statements. 

(37) 

(38a) 
(38b) 
(38c) 

2. Proof of Lemma 1 

We prove this lemma for x > 0. The proof for x < 0 is similar. Let A be the following set: 

A = {(x,  y )  ~ f21 f ( x ,  y)  < 0 and x > 0}. (39) 

It is semianalytic and, from P3, (0, 0) is in its c losure/L Hence, by a theorem due to Whitney and Bruhat 
[20], we know there exists an analytic function ~ : ( - 1 ,  1) -+ [2, s ~ (x(s) ,  y(s))  such that 

x ( O ) = y ( O ) = O  and ( x ( s ) ,  y ( s ) ) ~ A = / = V s ~ ( O ,  1). (40) 

From (40) and since the functions f and x are analytic, one gets the existence of an integer l such that, for 
all sufficiently small strictly positive real number s, we have 

/ ( x ( s ) ,  y ( s ) )  + x ( s ) ' <  O. (41) 

Now, let ~ ~ (0, 1] be such that 

f ( t ,  0) + ~t' ~ 0 (42) 

and let g : 12 ~ N be the real analytic function defined by 

g(x ,  y ) = f ( x ,  y ) + n x ' .  (43) 

It follows from (40) and (41) that 

(0, 0) ~ {(x,  y)  ~ I2]g(x,  y)  < 0 and x > 0}. (44) 

Then, there are only two possibilities: either 

in a neighborhood of (0, 0), "x > 0"  implies " g ( x ,  y )  < 0", (45) 

or  

(0, 0) ~ {(x,  y)  ~ [ 2 [ g ( x ,  y )  = 0  and x > 0 }  =.'B. (46) 

In case (45) one can take for example u+(x) = x, p +=  1, q+= 1. In case (46), by applying Whitney and 
Bruhat Theorem [20] to the semianalytic set B, by expressing s in terms of x ~/q÷ and by substituting in y, 
we obtain the existence of two positive integer numbers p+ and q+, of a strictly positive real number 6 
and of an analytic function u+ defined in ( - 6 ,  6) such that, using (42), i.e. g(x, O) ~ O, 

g (x ,  xP+/q+u+(xl/q+)) = f ( x ,  xP+/q+u+(xI /q+))  - ~ - ~ x l : O  V X E  C 0, (~), (47) 

u+ (0) * 0. (48) 
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Equat ion  (47) gives 

f (x ,  x P + / q + u + ( x l / q + ) )  • 0 IgtX (~: (0 ,  ~ )  

Finally, using (47) and (48) in the expansion of  f in powers  of  x and y, we get 

If( x , Y)I  < C( Ixl + lYlm"xV'q+/P+}), 

for some constant  C and in a ne ighborhood of (0, 0). 

95 

(49) 

(5o) 

3. Proof  of L e m m a  2 

We denote  by  C the various constants  independent  of  (x,  y )  in U. First note: 
F r o m  (12) and (13), we have 

~x(X) <_Clxl °-1 and lu(x)l <Clx l " ;  (51) 

the funct ion (yP - uP)/(y - u) is a non-negat ive  C ~ funct ion of ( y ,  u) 

which is zero iff y = u = 0; (52) 

u(x) = 0 implies x = 0. (53) 

It follows that  v, def ined in (16), is in C1(U\ ((0, 0)}). In fact, if u is given by  L e m m a  1 then, for any  k 
we can find p and m - large enough - so that  v is in Ck(U\ ((0, 0)}). Now,  let us establish the cont inui ty  
of v at (0, 0). We shall prove  the following inequality:  

Iv(x, Y) I -< C( Ixl"+ lYl)- (54) 

It  implies the cont inui ty  of  v at (0, 0). Inequal i ty  (54) clearly holds for x = 0. Hence  we consider  the case 
x ¢ 0. F r o m  the definit ion (16) of  v and (15), we get 

Iv. <_ C{ yp-luP-l+ up-1 d-~x I f '  + 'y lp  + 'u[ p+ Ixl ''lxl+lul"/'~)-l + up-~l Y I (1 / " ) -1 )  . (55) 

Since (15) implies 

If(x, y ) [  < C(  Ix l  + l y [ ' / ~ ) ,  (56) 

with (55),  (56),  (18) and  (14),  we obtain:  

( 'YI~/~IxIP"-~ IxlmlYl(~/"'-' " 
Iv l<C Ix l"+ly lP+yp-~+lxl (p-a)~+ yp-I + (57) 

But, with Young ' s  inequali ty - see also (17), 

ly l~ /" lx lP '~- l -"<a(p-1)yP- l+ 1 Ix[ (p-l)", (58) 

(1o) (1_o) lyltl/,O-llxl,,,-,<_ aCp 2---1) yp-l+ 1 or(p---i) [Xltm-~')tP-1)°~/(°'P-1)' (59) 

inequali ty (54) follows f rom (57), (58), (59), (17) and (18). 
It remains  only to prove  (19). We are going to show that,  in the set U \ ( ( 0 )  × R), we have 

i3~x(X, y) <Clxl"-~ ]~)-~y(X, y) _ , < C. (60)  
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Inequality 
the sum v = v ~ + v  2 + v  3 with: 

Vl(X, 

V2(X, 

V3(X, 

Using (17), 

Ox _<C. 

On the other hand, we have 
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(19) is a consequence of (60). Therefore, let (x, y) be a point in U\({0} x R). We write v as 

p Z - ~  )u(x~; -~du Y)=' yp_  i f ( x '  Y ' dx(X) '  

y) = - y P + u ( x )  p, 

y) = __xmf(X, y)--U(x, u(x)) 
y P - u ( x )  p 

(62) and (51), we have 

± ]  
ue-1 I l l  dx 2 j yp-1  + igp-I 

~vl < C [  !u[_ p-2 i f [  du 2 d.  + + 
Ox - [ yp-l + up-~ ~ dx 

Therefore, using (13), (51) and (56), we get 

Ov~ ( [xlP°-Zlyl ~/" ) 
<C [ x l  '~ 5+ . . . . . . . . .  

y p - I  + ixl(P 1),~ " 

Using (58) and (64), we obtain 

~-x _<cI . 

Similar computations give 

0V3 Ox <- Clxl'~-~ 

From (62), (65) and (66), we get 

O~£x <- Clxl=-~ 

It remains to prove that 10v/Oy I < C. Clearly, 

0v 2 
_ C .  

[0Yl 

A straightforward computation leads to 

Ov I ( ]uLP_ -2 d_~xU u p-~ O_yf du ) 
Oy <C [YIP ,+ [ulP_ , I f l  + yp-1 + up-1 -~x " 

Hence, using (13), (15), (51) and (56) we obtain 

Ova ( , y l ' / ° lx l~p- l -~+ly ,¢ ' /~)  11x1~-1 ) 
ay _<C 1 +  lYlP_l+lxl,,<p_~> . 

(61a) 

(61b) 

(61c) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 
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By Young ' s  inequality, we have 

(1_o) (o, 1) 
[ y [ t l / a ) - I I x I ' ~ P - I  <-- a(p'-----l) y p - l  + ~ ( P  Z i )  [x[atp-l) 

With (58), (59) and (70), this leads to 

-0-~- _< C. 

The  p roof  of  

Ov 3 _<c  

is similar and is omit ted.  Inequal i ty  [Ov/Oy [ < C follows f rom (68), (72) and (73). 
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(7a)  

(72) 

(73) 

4. P r o o f  of  P r o p o s i t i o n  1 

Let us first p rove  that  if C is large enough, the system 2 = f ( x ,  u) is not LAS. Assume  this is not  the 
case. Then  there exist a ne ighborhood U of 0 in R ~ and a cont inuous m a p  u : U ~ R such that  0 is an 
asymptot ica l ly  stable equi l ibr ium point  of  2 = f (x ,  u(x)). With (21), it follows that, in a ne ighborhood  of 
0, J xJ 5 _ C2(u(x)3 _ j x 1 j 2u(x)  + x~)2 cannot  be 0 except  at 0. Hence  this expression has a cons tan t  sign 
which, for stability, has to be positive. Hence,  there exists 3 > 0 such that  

1 
J x J 2 = J x l I E ' q - X 2 ~ 8  2 ~ [U(Xl, X2)3--JxIJ2U(Xl, XE)"I-X321~_~--~(JxIJE-{-X2) 3/2. (74) 

Fix Y~ E R "-~ with J21 [ = 1 and,  for 1, ~ (0, ~ /v~- ) ,  define the funct ion v : [ - 1, 1] ---, R by 

v(s)  = u-'u(u2~, us). (75) 

F r o m  (74) and  (75), we get 

1 23/2 . (76) I v 3 ( s )  - v ( s )  - s31 _< (1 + s2) 3/2 <_ -d 

Also, if u is continuous,  v is continuous.  But there is no cont inuous  funct ion y(x)  whose graph is close to 
the locus in R 2 of the zeros of  y3 _ y  + x 3 = 0. Hence,  if C is large enough there exists no cont inuous  m a p  
v : [ - 1, 1] ---, R which satisfies (76). 

Let  us now prove  that  

2 = f ( x ,  y),  .9 = v (77) 

is LAS - in fact globally asymptot ica l ly  stabilizable. Let V: N "-1 × N × N ~ N be the funct ion def ined by 

V(x~, x2, y )  = ¼y4 _ l lx  I 12y2 + x32y + ¼M( Ix1 [4 + x 4) (78) 

where M is large enough so that  V is posit ive definite and radially unbounded  in R " -  1 × g~ x R. For  
system (77), we have 

I ) = - [ x  l [ 2 [ x l 6 ( M l x l l E - y  2 ) - x ~ l x l 6 ( M x 2 + 3 x 2 y ) + v ( y  3 -  I x ~ 1 2 y + x ~ )  (79) 

where 

/~= U -I'- C 2 ( y  3 -  [x  I 12y + x3) (  ix2 [ 2 ( M  Ix,  [ 2 _ y 2 )  + x2( Mx~ + 3 x 2 y ) ) .  (80) 
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Note 

y3__ ix, 12y+x~=O ~ IYl <2V'lx, 12+x~ - (81) 

Hence, for M large enough, V is a control Lyapunov function, i.e. (see [16, Section 1]) 

3 = 0  ~ l ) < 0 o r  Ixal = x 2 = y = O .  (82) y3 _ i x~ l ay + x2 

Moreover the 'small control property' (in the sense of [16, Section 2]) follows by homogeneity. The fact 
that 2 =f(x, y), ))= v is LAS and, in fact, globally asymptotically stabilizable follows from Artstein's 
theorem on nonlinear stabilization [2] (see also [16]). 

5. Proof of Proposition 2 

By a generalization due to Kurzweil [14] of a classical Lyapunov's theorem we may assume that for 
some 6 > 0 such that 

( - 8 , 6 ) ' c U  and ( - 8 , 6 ) ' + ' c 1 2 ,  (83) 

there exists V: (-6, 6)" --* [0, + ~) ,  a positive definite function, such that 

~V 
V~ C~(( - &  8)")  and -ff-~x (X)f(x, u(x)) <O Vxe  ( -6 ,  6)"\  {O}. (84) 

Let F be the closed set of R" × R defined by 

F= {(x, u(x ) ) l x~  [ -½6 ,  ½6]"} (85) 

and let d : R  "+~ ~ [ 0 ,  ~ )  be the distance to F, i.e. 

d(x, y ) =  min {V'lY-xl2+ l u ( x ) - y l 2 } .  (86) 
2 ~ [ -  8 / 2 , 8 / 2 ] "  t 

By a theorem due to Calderon and Zygmund [4], there exists a continuous map A : R "+1 ~ [0, + oe) such 
that, for some positive constant C, 

1 -~d(x, y )<A(x ,  y) <Cd(x, y)  V(x, y ) ~ I R " × N t ,  (87) 

aA(x, ) <_ C V(x, y ) ¢ R " × R \ F .  (88) A~C~(R'+1\F)  and ~aA(x, y),-~y y 

Let now q~: N" × N ---, N be a function defined by: 

, ( x ,  y ) =  ( A(x, y) if y > u(x), (89) 
-Z l (x ,  y)  if y < u(x). 

Proceeding as in [15, Section 3], with ~ as 'desingularizing' function, we define, in the set Q:= 
(_ ½& I . + 1  ~ 8 )  , 

V 

• (x, y)  = f ~ ) q , ( x ,  s) ds and h(x, y) = rb(x, y) + V(x). (90) 

From [15, Lemma 1], h is positive definite in the set Q, 

3--f =~' 8-7 =Y.(x)Ox(X' s) ds and h ~ C ( Q ) .  (91) 
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We have 

8V 
/~ = ~v + ( ~-~- + -O--~-x ) f . (92) 

and, in Q, "(h = 0" implies "y = u(x)". Hence ,  by (84), (91) and (92), we have 

/~<0 V(x, y)=~(O,O). (93) 

It follows that h is a control Lyapunov function. So, to prove that .~ = f (x ,  y), )~ = v is LAS it is 
sufficient to check the small control property holds (see [2,16]), i.e.: 

For all e > 0, there exists ~/< ½~ such that: 

( x ,  y )  4= (0,  0) and ( x ,  y )  ~ ( - 7 ,  T/) n + l  ::~ 3U  E ( - - e ,  8) such that /~ < 0. (94)  

Since "q)(x, y )  = 0, (x ,  y )  ~ Q \  ((0,  0)} and v = 0" imply "/~ < 0", we  will a s sume  in the following that 
q,(x, y) 4= 0 and (x, y) ~ Q. We denote by C various constants independent of (x, y). Let us choose the 
following expression for v (see [15, Section 3]): 

v=  - ( 0 + A ,  +A2) (95) 

where 

8V t ~f(x, y ) - f ( x ,  u) 04)(x" y ) f ( x ,  y) and A 2 ~ x t X ,  (96) A,(x, y)= ~ (p(x, y) = ~-(~,, y) 

From (84), such an expression for v yields 

/~ < 0. (97) 

Let us show that this v is also a good candidate for meeting (94). With (87) and (89), we  note  that 

l d (  x, Y) < I@( x, Y) I < Cd(x, y) < C I y -  u(x) ]. (98) 

and (25) and (23) yield 

[u(x)  I -< Clxl ~ (99) 

Hence, from (96) and (97), we have 

I~,(x, y)  l-< C ( I x l ° +  lyl) -  (100) 

We will check that A i, i = 1, 2, satisfy the same inequality,  i.e. 

IA~( x, Y ) I - < C ( I x l " +  lYl) and IA2( x, Y) I - < C ( I x I " +  lYl). (101) 

The small control property (94) follows from (95), (97), (100) and (101). Now, we verify (101) for A 1. Let 
in [ -  ½6, ½6]" be such that 

d(x, y)  = ( l Y - x l 2 +  lu (x)  - e l 2 )  1/2. 

From (26), (88), (89), (91), (96) and (98), we get 

l y - u ( x )  l 
IA~(x, y) l<_C(lxl+lYl ~/") x _ Y i + l y _ u ( ~ ) l  

and 

u(x)l ) IA,(x, y ) l  <-C(Ixl+lyl 1 +  I . 

(102) 

(103) 

(104) 
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From (25), we get 

t u ( x )  - u (Y )  [ < C min{ l u (x )  I + I u ( x ' )  I, 
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Ix - x ' l  
,,max x,S-[~-_ ~ / .  

Then, by comparing 

Ix-x'l  
l u ( x )  - ~ ( x ' )  i _< c 

I x l l - ~ +  Ix ' l  1-~" 

It follows from (104) and (106) that 

tA~(x,  Y ) I - < C ( I x I " + I Y l  w ~ ) + C l y l  ]/~ 

• If [ y - u ( 2 )  l >½1Yl we get: 

I A~(x, Y) I < 

Since the definition 

l u (2)  - Y l  < 

we finally obtain 

IA~(x, Y ) I - < C ( I x I " + I Y l ) -  

• If l Y -  u(2) I < ½1Yl then we have 

lYl -< 21u(2)  1 -< CI21 ~. 

Using (106), (107) and (112) we get again (111). 

I x - x ' l  with ¼( Ixl + Ix ' l )  and by using (99), we can establish 

lu(x)-u(~)l 
I x - ~ l ÷ l y - u ( ~ ) l  " 

f ( I x l " ÷  l Yl '/~) + f l u ( x )  - u ( 2 )  I 

f ( I x l " ÷  lYl ' / " )  ÷ f ( l u ( x ) - y l  + l u ( ~ ) - y l ) .  

of Y implies 

l u ( x ) - Y l  < C ( [ x l  ~ + l y l )  

This proves (101) for A 1. Inequality (101) for A 2 can be obtained with the same method since 

l y - u ( x )  l 
A2(x ,  Y ) l < - f l x l  i x _ 2 1 + l y _ u ( 2 ) l  . 

(lO5) 

(106) 

(107) 

(lO8) 

(lO9) 

(110) 

(111) 

(112) 

(113) 

6. Proof of Proposition 3 

Postponing the proof of Lemma 3 to the end of this section, we use its conclusions. With (33), let Z be 
the following ' sphere' in R" × R : 

Z =  (x, y ) ~ R ' × R  I ~ I X i l k / r ' + l Y l k / " + ' = l  . (114) 
i=1  

This set Z is a C ] submanifold of R "÷a and the map (x, y ) ~ y - ~ ( x ) ,  from Z to R, is in 
C1(X\  {(0, 1), (0, - 1)}). Now, pick 8 in (0, 1) and let 0 : R ~ R be a C a function such that 

dO 
s O ( s ) > O  Y s E R \ { 0 } ,  d s ( S ) = 0  Y s ~ ( - o o , 8 ] U [ 8 ,  +oo).  (115) 

We define a desingularizing function ¢ as follows. First, we define a function ¢z : Z ~ R by 

0z (x ,  y )  = 0 (y  - ~(x) ) .  (116) 
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It is in C1(~).  Then, we extend it as a C ~ function q): R " ×  R --* R by letting q)(0)= 0 and 

i, [ xl x.  Y ) (117) 
CO(x, . . . . .  x . ,  y )  = p ~ , : ~ 7  7 . . . . .  # . ,  p . . . .  , 

for some real number  / > k. We have 

(#(ErIXl . . . . .  ~ r n x n ,  ~ . . . .  y )  = etq)(x, . . . . .  x.,, y )  (118) 

and 

,l/k 

P =  ( ~ ' x i ' k / r ' +  . y ' k / r " + l ) i = l  ' 

~ ( x ,  y )  = 0 ,=* y = ~ ( x ) .  (119) 

Now, as in [15, Section 3], we define the functions 

Y 
• (x ,  y )  = ~(x)q~(x, s) ds and h(x,  y )  = ~ ( x ,  y ) ~ +  V ( x )  ~ (120) 

where a and fl are positive real numbers  such that 

a > 1 ,  / 3 > 1  and ka=/3( l+r .+l)=:3 ,>r ,  V i ~ { 1  . . . . .  n + l } .  (121) 

The function h is positive definite, radially unbounded  and in CI(R"  x R). We note that: 

rb(e"x, . . . . .  e"x.,  Er"+'y) = e t+"+ '~ (X ,  . . . . .  X., y ) ,  (122) 

t+,._ ~--. ~ " x ° ,  y ) ,  (123) ~X i ", EnX n , = . . , 

h(E"x 1 . . . . .  er"x., er"+'y) = eVh(xl . . . . .  x . ,  y).  (124) 

Moreover,  along the solutions of  2 i = f / ( x ]  . . . . .  x . ,  y) ,  )> = v, we have: 

= --~-x f + / 3 ~ $ - ' , 0 .  (125) 

Since we have 

/3~(x, y)~-]q~(x, y ) = O  = y = f i ( x )  and ~-Tx (x ,  y ) = 0 ,  (126) 

with (34), we obtain 

/3qT)(x, y ) t~- lq , (x ,  y )  = 0 and (x ,  y )  4= (0, 0) = /~ < 0. (127) 

This means that h is a control Lyapunov  function. It follows from Artstein 's  theorem [2] (see also [16]) 
that  there exists a funct ion # : R"  X R --, R such that, by  using v = v ~ in (125), we obtain  

< 0 V(x ,  y )  ~ (0, 0). (128) 

Moreover  this funct ion # can be chosen at least cont inuous when restricted to the set ~.  Denot ing  ffs this 
restriction, we define a cont inuous control  law v : R"  × R --+ R by c(0) = 0 and 

, P"+ .... O:e(-~q • ,x,, y ) ~ ,xilJ,/~, k/~.+, (129) v(x  1 . . . .  x . ,  y ) =  ta ' "" p " '  p . . . .  ' P =  + l Yl • 
i = l  

We have 

l)(~.rlXl . . . . .  ~rnxn, ~.rn+ly) = ~'rWrn=lo(X 1 . . . . .  Xn, y).  (130) 
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And,  by homogeneity,  (128) is again satisfied. This proves that (0, 0) is a globally asymptotical ly stable 
equilibrium point of  A = f ( x ,  y),  )~ = v. 

6.1. Proof of Lemma 3 

Lemma 3 is a consequence of  [9, pp. 278-284] and - the proof  of - a theorem due to Hermes [10, 
Theorem 1]. Let ~ '  be the following ' sphere '  in R": 

~ ' =  x ~ R ' ]  ~ Ix i lk / r '=l  . (131) 
i = 1  

It is a C 1 compact  submanifold of R ~ and we may approach arbitrarily close the cont inuous funct ion u 
restricted to 2J' by a function in C~(2J'), i.e. for any strictly positive real number  ~, we can find a C 1 
function ~ : ,~' ~ R such that: 

l u ( x )  - ~ z ( x )  I -< 7/ Vx ~ Z ' .  (132) 

We may extend fi~ as a function fi : R" ---, R by letting 2(0) = 0 and 

~ ( x , , . .  x . ) = ,  :~10 "~  . . . . .  0"-:' o =  Ix, t k/', . (133) 
i = 1  

This function is in C ( N " \ ( 0 } ) n  C°(N ~) and satisfies 

~l(Er~Xl . . . . .  er"Xn)=er~+l~l(X1 . . . . .  Xn) Ve>O (134) 

and, with (29), 

r.+l/k 

On the other hand, as in the proof  of Proposit ion 2, f rom [14], we know the existence of  a ne ighborhood 
U of  0 in N" and of  a function V: U ~  [0, + ~ )  which is positive definite, in C~(U) and satisfies: 

aV x "x, b-yx( ) f (  u ( x ) ) < 0  V x ~ U \ { 0 } .  (136) 

May be after multiplying this function V by a constant,  we may assume 

{ x ~ n " l V ( x  ) <1) c U .  (137) 

Then, let ¢/" be the following set: 

z¢ r= ( x ~ n " l  V(x)  = l }. (138) 

The set ze" being compact ,  f rom (136), we may find ~/> 0 so that the associated function ~ satisfies (135) 
and 

3V ( x ) f ( x ,  ~(x))  <0 V x ~  ~f . (139) 
~x 

From here, to prove that 0 is a globally asymptotically stable equilibrium point  of  ~ =f(x ,  h(x)) we note 
that by homogeneity,  it is sufficient to prove a local asymptot ic  stability. And  this follows f rom - the proof  
of - [10, Theorem 1]. 
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It  remains  to prove  the existence of P. This follows f rom [9, Theorems  57.1, 57.2 and  57.4 and extension 
on pp. 283-284] (see also [21, Theorem 36]) appl ied to the homogeneous  C ~ system (n ) 

= ~] I x, I k/" f (x ,  Ft(x)). (140) 
i = l  

7. Proof of Corollary 1 

Let  (6 ) ,= ,  . . . . . .  +, be defined recursively as follows: 

r 1 = 1, r, = r~_l/p~. (141) 

The  p , ' s  being odd integer numbers ,  we have r~_ 1 > ri. But also p~ = 1 implies r, = r,_ 1- We denote  by  k~ 
the number  of  consecutive pj ' s  which are equal to 1 with j < i, namely,  k~ satisfies 

ri-k,  > ri+ l - k ,  = ri+ l - k ,  = . . . .  ri_ i = r i. (142) 

Then  let, by denot ing x , + l  = u, 

OP'+'f' 
a , + , -  3xD+i,(0),  bi. j =  (0)  V j ~  { i + l - k  i . . . . .  i } .  (143) 

F r o m  Taylor  expansion,  there exist a cons tant  C and a ne ighborhood  of (0, 0) in 81" × 8t such that:  

i [ i - k ,  i 

(x , , . . . ,  x, ,  u) - <.,+,~,+,~ "P . . . .  E b,.jxj _<ct  E I x j l +  E f, 
j = i +  l - k  i j = 0  j = i +  l - k  i 

Ix j l  2+ Ix,+, I l+p'+') 
(144) 

for all i ~ ( 1 . . . . .  n }. N o w  we define new funct ions f, : 81 n × 8t --> 81 by  

i 

f i ( x ,  u)  = ai+lXiP~+l ' + E b i , jx j .  (145) 
j = i + l - - k ~  

These functions are homogeneous ,  namely  we have 

v i ~  {1 . . . . .  n } ,  Vx=(x,),:,..~81", w _ > o ,  v . ~ 8 1  

f / (Er lx1  . . . . .  £rnXn, E . . . .  /d) = e',~(x 1 . . . . .  x . ,  u ) .  ( 1 4 6 )  

Since the Pi'S are odd, it follows, f rom Proposi t ion 3, L e m m a  3 and by  induct ion on n, that  there exists a 
feedback law u: 81n __+ 81 in C1(81"\{0})  ¢~ C°(81 ") such that  

0 is a globally asymptot ica l ly  stable equi l ibr ium point  of .~i = f , ( x ,  u ( x ) ) ,  (147) 

u( e"x 1 . . . . .  e " x . )  = e"+ 'u (  x,  . . . . .  x . ) .  (148) 

Then,  by denot ing 

g , ( x ) = f i ( x ,  u ( x ) )  and ~ ( x ) = ~ ( x ,  u ( x ) )  V i ~  { 1 , . . . , n } ,  (149) 

we have for all i in {1 . . . . .  n }, with (146) and (148), 

~ (  e"x, . . . . .  e " x . )  = e"~(  x, . . . . .  x . ) ,  (150) 
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a n d ,  w i t h  (144)  a n d  (148),  

l im  --1 [ g i ( e r ~ x ,  . . . . .  e r ° x , )  - ~ ( e r ' x ,  . . . .  . er"X,)]  = 0 ,  ( 1 5 1 )  
e ---~ 0 + ~r, 

u n i f o r m l y  in  { x ~  R°I Ixl _< 1}. Now, i t  f o l l ows  f r o m  (147),  (150)  a n d  (151)  a n d  - t he  p r o o f  of  - [10, 

T h e o r e m  1] t h a t  0 is a n  a s y m p t o t i c a l l y  s t a b l e  e q u i l i b r i u m  p o i n t  of  ~ = f ( x ,  u) .  
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