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Topological Orbital Equivalence with Asymptotic  Phase 
for a Two Time-Scales Discrete-Time System* 

L. P r a l y t  

Abstract. Existence, smoothness, approximation, and attractiveness of a locally 
integral manifold are established for a two time-scales discrete-time system. This 
manifold contains all the solutions remaining in a specific compact subset. It allows 
us to define locally a triangular system which is topologically orbitally equivalent 
with asymptotic phase. It follows that (in)stability properties and existence of 
solutions of the original system, remaining after some time instant in the above- 
mentioned compact subset, can be established from the study of a reduced-order 
system. We study this reduced-order system for a weakly nonstationary case, 
applying the stroboscopic method to approximate it by a practically meaningful, 
slowly time-varying system. 

Key words. Discrete-time system, Two time-scales system, Topological equiv- 
alence, Integral manifold, Averaging. 

1. Introduction 

The objec t ive  of  this p a p e r  is to provide  a tool  for local  analysis  of  the fol lowing 
d iscre te- t ime system: 

x~+, = A(O~)X~ + B(O~).~, 
(&) 

0k = 0k-1 + ~c(xk, ok_,, k). 
F o r  e smal l  enough and  when A(O) has no e igenvalue  on  the unit  circle, this system 
exhibi ts  a two t ime-scales proper ty .  The  s tate  of  the fast subsys tem is X in R" and 
the s ta te  of  the slow subsys tem is 0 in R p. The  Uk represen ts  a (c losed- loop)  forcing 
term. 

To de te rmine  fond i t i ons  for which S, has so lu t ions  b o u n d e d  on Z o r  a semi- 
infinite t ime interval  and  when these so lu t ions  are s table ,  we cons ider  S, as a small  
p e r t u b a t i o n  of  the "frozen" system 

xk+, = A(Ok)Xk + B(Ok)uk, 
(So) 

Ok = Ok-,, 

which can  be viewed as a family of  l inear  systems indexed  by  Ok. 
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System S~ arises from the study of linear time-varying systems where the time 
variations, although small, depend on the state itself. Also, as noticed by Ljung and 
S6derstr6m [LS] for example, S~ describes most adaptive linear systems studied i n  
the literature. 

When the sequence Uk satisfies the so-called test input assumption (see rRPK]  
and [PR]), i.e., when there exists a solution of S~ on Z or on a semi-infinite time 
interval whose P-component is constant, Riedle and Kokotovic [RK1] have per- 
formed stability analysis by linearization and by invoking the Krylov-Bogoliubov- 
M itropolski averaging theory (see [H 1 ]). This theory has long been used in the case 
when Uk is a stationary stochastic process. In particular, it has been used by Ljung 
to derive the "ordinary differential equation" technique for the case when C(X, 8, k) 
decreases to zero as k tends to infinity ILl] ,  [LSI, [KC]. This tfichnique has also 
been justified for the case where C(X, O, k) is small but not decreasing [BMP], [DF].  
In the deterministic case and for the specific system S,, its use as a heuristic in the 
nondecreasing case has been considered by ~str6m [All,  [A2]. Based on a linear 
averaging technique, but incorporating total stability arguments, some relaxation 
of the test input assumption has been obtained [ABJ]. 

When uk has only 12-stationary properties (periodic, almost periodic . . . .  ), exis- 
tence of a particular Z-bounded solution has been established using nonlinear 
averaging theory [BSA] or the Poincar6 expansion method [P4], [PP]. It relies on 
the existence of a solution of a bifurcation equation. Again stability properties are 
established by linearization. 

In this paper, up to Section 4, no other assumption, besides boundedness, are 
needed on Uk. Moreover, we are interested in a complete description of all the 
bounded solutions. Such a description is easily obtained for So for any P-set where 
A(O) is noncritical with respect to Uk. For example, all the Z-bounded solutions of 
So whose P-component lies in S (subset of R p for which the eigenvalues of A(O) are 
in the open unit disk), are given by the graph of the function Me: •P x Z -~ R": 

k-1 
Mo(O, k) = ~. A(O)k-l-~B(O)ui. (1) 

i ~  - -  o o  

This graph is an integral manifold which, restricted to S for example, is normally 
attractive. A general theory is available proving the persistence of normally hyper- 
bolic invariant manifolds under small perturbations (see [F2], [H1], [HPS-I, and 
[O]). Therefore we expect the existence of a function M~ whose graph is an integral 
manifold of S~. And like M0 for So, M~ should describe (at least locally) all the 
7/-bounded solutions of S~. 

After Section 2 where we introduce our assumptions and notations, in Section 3 
we apply this general theory to establish existence and regularity of this function 
M~ and we prove that any solution (Xk+l, Ok) of S~ which remains for ever in 
B(O, x) x S lies in the graph of M~ (B(O, x) is the closed ball of center O, radius x). 

Our main result is given in Section 4. We prove that the so-called "reduction 
principle" applies with an asymptotic phase. This "principle" has been introduced 
by Pliss [P1] and generalized by Aulbach [A3], Henry [H2], and Kelley [K]. It is 
of practical importance since it shows that stability properties and existence of 
solutions of S~ remaining in B(O, x) x S after time ko can be established from the 
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reduced-order system given by the restriction of S, to the graph of M,, i.e., from the 
system SM~ obtained from the 0-equation of S, by replacing Xk by M,(Ok_~, k). We 
will see that this "principle" or more precisely the existence of a topological orbital 
equivalence is a consequence of Bowen's Shadowing Lemma (see [HPS] or Proposi- 
tion 8.19 of IS]) which is again an aspect of normal hyperbolicity. 

In Section 5 we study the system SM~ for the case where uk is weakly non- 
stationary. We apply Minorsky's stroboscopic method ideas [M]. This allows us 
to define a subset of R p where the solutions of SM~ are hyperbollically attractive 
(and therefore, the same property holds for solutions of S,). This proves in particular 
that/~str6m's heuristic approach is technically sound when restricted to this subset. 

Some of the results presented here have been established for the continuous-time 
case by Riedle and Kokotovic IRK2]. For the discrete-time case, they have been 
announced in [P3]. 

2. Assumptions and Notations 

In the following, I1"11 denotes the Euclidian norm. The case when Uk and C(X, O, k) 
are periodic in k is called the periodic case. Throughout this paper, e is positive. 

The following assumptions are used: 

A1. The sequence uk is bounded: [ludl - u for all k e 7/. 

Let S be a compact set in R p, with a nonempty interior. 

A2. If 0 lies in S, the eigenvalues of A(O) are strictly inside the unit circle: 
12{a(0)}l < 20 for all 0 ~ S, 2o < 1. 

A3. The functions A(0), B(O) are Lipschitz continuous on S with al,  ba the 
respective Lipschitz constants. 

A direct consequence of assumptions A2 and A3 is the existence of a, b, 2 such 
that (see [F3]) Iln(0)[I < b and [BA(0)i[[ < a2 i, where 20 < 2 < 1, for all 0 e S, for 
all i ~ ~. 

Let B(O, x) be the closed ball of R" with center O and radius x. 

A4. The function C is Lipschitz continuous uniformly on B(O, x) x S x 7/: 

IIC(X, 0, k)ll < c(x), 

IIC(X ~ 0 ~ k) - C(X x, 01, k)ll < ca(x)(llX ~ - gil l  + II0 ~ - 0x tl), 

where c, c a are positive nondecreasing functions whose argument is omitted when 
no confusion is possible. In the following, the function C could also depend on e. 

To study the smoothness properties of M~(O, k), we need: 

AS. The functions A, B, C are Lipschitz continuously differentiable: There exist 
linear maps aA/aO, OB/aO, aC/OX, and OC/aO such that, with (X, 0) an interior point 
of B(O, x) x S and hx, h8 two (sufficiently small) vectors in R", R p respectively, the 
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functions 6.o 6B, 6c defined as (similarly for 6,o giB) 

6c(X, O, k, hx, ho) 

dC X aC X = C ( X  + hx, O + ho, k) - C ( X  O, k) - -ff-~( , O, k)h,, - -ffff( , O, k)h o 

satisfy (similarly for 6a, tSB) 

[l~c(X, O, k, h~,, ho)[I 
lim sup = 0. 

he'O, hx 'O Iih~l[ + [Ih0[I 

Moreover, the functions aA/aO(O), 8B/aO(O), dC/aX(X, O, k), and aC/dO(X, O, k) 
are Lipschitz continuous uniformly on B(O, x) x S x Z with a2, b2, c2(x), and c2(x) 
the respective Lipschitz constants. 

Assumptions A1 and A3-A5 are smoothness conditions. Assumption A2 con- 
cerns the possibility of finding a constant 0 such that the (linear) X-subsystem is 
exponentially stable. These assumptions are very similar to conditions C1 and C2 
on p. 158 of I-LS], introduced to derive the associated differential equation tech- 
nique. One of the consequence of the results presented in this paper is to provide a 
geometric justification of the substitution of Xk+~ by Mo(Ok, k) in the 0-equation of 
S,, used to derive this associated differential equation. However, notice that for the 
time being no stationarity or decaying e is needed compared with C3-C6 used in 
the above reference. These extra assumptions are discussed in Section 5, when 
studying a reduced-order system. 

To obtain this geometric insight, we consider S, as a map from I~" x R p x Z to 
R"  x R p x Z taking 

S~: ~ ~J = O + eC(X, O, k) 
k + l  

Similarly, given the function M~: S x 7 /~  R", we consider the system SM~ defined by 

Fx~l  F ~ = ~ (~)x~  + B ( ~  l 
sM,: ! o M I ~ | r = ~ + ~cIM, l~ k), oM, k) l 

L k J  L k + l  j 
The difference between S, and SM~ is that, in the 0-equation, X is replaced by M~. 
Consequently, SM,, being "lower triangular," is structurally much simpler than S,. 

To study boundedness and stability properties of these systems, we consider the 
following sets: Let | be a compact subset of S, we define B([ko, k~), @) (resp. 
BM([ko, kl), @)) as the set of sequences (Xk+l, Ok) (resp. (X~j ,  0~u)) solutions of S~ 
(resp. SM~) for k in [ko, kl) and satisfying 

Xko+l - M,(Oko, ko + l) ~ B O, ~t 

( . (ox.o)) resp. X~+I - M~(O~ o, ko + I) e B 
ct 

Ok ~ | (resp. 0ff ~ | for all k e [k 0, kl), 
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where m, a are specified later. For sequences in these sets we define the elevation 
above the manifold as (similarly for E u)  Eh§ = Xk+x -- M~(Ok, k + 1). 

In the following, we say that the graph of M, is an integral manifold of S~ locally 
on (9 if, for any (0k~) solution of 

0~+ 1 = Off + eC(M,(Off , k + 1), 0 if ,  k + I) (SM~) 

such that 0~ lies in (9 for all k in [ko, kl), the sequence (Xk+l, Ok) defined by 
Xk+, = M,(O~, k + 1), Ok = 0~, is a solution of S, on [ko, kl). Note that this implies 
that the graph of M~ is an integral manifold of SM~ locally on (9. 

Our focus in this paper concerns the properties of solutions of S, remaining in 
B(O, x) x S. To facilitate our study, we use the classical trick consisting of modifying 
the system S~ into S,, such that S~ and S~ coincide on a compact subset of B(O, x) x S. 
For a compact set (9 in R p we denote by (9 + r/, the ",/-augmented" compact set 
of (9: 

Since S has a nonempty interior we can find r/and compact sets So, $1 with nonempty 
interiors, such that So + r / c  $1 and S 1 + */c  S. We call a stopping function s: R p --+ 
[0, 1], a C-function (0 < r < oo) given by the Urysohn theorem satisfying s(O) = 1 
if and only if 0 e So, and 0 ~ $1 implies s(O) = O. 

Let s,,  s 2 denote the Lipschitz constants of s and its differential, respectively. 
We can take s~ = l/r/ if s is only Lipschitz continuous. We define the function 
C: R" x IR p x 7/--+ R p by C'(X, 0, k) = s(O)C(X, 0, k). The function C has the same 
properties as C, with, in particular,~ < c,-d~ < s~c + cx,and~2 < s2c + 2s~cl + c2. 

In this paper we always assume ~ < ~o with ~o < Min(,//c, 1/~1). In this condition, 
if ~ is defined as ~b = 0 + eta(X, 0, k), we have (i) 0 e S 1 implies ~b ~ S, (ii) ~, e S - $1 
implies 0 = ~b, and (iii) 0 e S implies the segment [0, ~k] ~ S. For C, we define the 
modified system ,~ (similarly for SM,): 

'2~: -0 ~b = O + eC(X, O, k) 1. 

k + l  J 

In ,~, we smoothly stop the 0-component of any solution trying to leave S~. Clearly, 
a solution of S, is a solution of S~ on I-k o, kt) if, for all k in [k o, kt), Ok lies in So. The 
idea of preventing the 0-vector from leaving an admissible region is also used in 
practice IE], [LS]. 

To end this section, let us mention that the nonexplicit form of S, is chosen to 
simplify the forthcoming derivations. However, this is done with no loss of gen- 
erality since the system 

~+, = A(O~)~ + ~(O~)u~, 

can also be written as 

Ok+~ = Ok + eC(Yk, Ok, k + I) 

O/\ ~_t) + (B(Ook))u~, 

Ok = 0~_~ + ~C(E_,, Ok-,, k). 
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3. Existence of a Normally Attractive Locally Integral Manifold 

Theorem 1. Under assumptions A1-A4, for any compact set SO strictly contained 
in S, there exists e* such that for any ~, 8 <_ e*, we can find constants ~, f o  f l ,  fx o, 
a function ~o(8, x), 0 _< ~o < 1, and a (possibly nonunique) function M~: S x 7 / ~  R" 
which is periodic in k in the periodic case, such that: 

(i) The graph of M~ is an integral manifold of S~ locally on SO. 
(ii) Smoothness: M~ is bounded and Lipschitz continuous uniformly on S x Z with 

bounds m and mr, respectively. Moreover, if assumption A5 holds, M~ is 
Lipschitz continuously differentiable in 0 with m 2 as a Lipschitz constant of its 
differential, i 

(iii) Approximation: let M o be the function defined in (1), then, uniformly on S O x Z, 
tlM,(O, k) - Mo(O, k)LI < ef ~ Moreover, if assumption A5 holds, Mo is con- 
tinuously differentiable in 0 and letting (M~(O, k)) be the unique Z-bounded 
solution of 

Xk+t = A(O)Xk + B(O)uk -- eA(O)~--~(O, k)C(Mo(O, k), O, k), 

we have, uniformly on S O x 7/, 

aM, _~_~(O,k) l  <efo" IIM~(0, k) - M~(O, k)ll < e2f  x, --~--(0, k) 

(iv) Attractiveness: let (Xk+ x, Ok) be a sequence of B([k o, kl), SO), with (Ek) its 
corresponding sequence of elevations above the manifold; we have for all k', k, 
ko < k' < k < kl, IIEk+xll --< ~tTo(e, X)k-k'llEv§ Moreover, if (Xk+x, Ok) is a 
solution of S, which lies in B(O, x) x So for all k in Z, then this solution lies in 
the graph of M,, namely, for all k, Xk+ 1 = M~(Ok, k + 1). 

(v) All these properties hold for SM,. 

All the constants appearing in this statement are clarified in the proof. 

Remarks. For the continuous-time case, existence of M~, approximation by M o, 
and exponential decaying of the elevation above the manifold are established in 
[RK2].  

This theorem is a technical step toward our  main result of Section 4. However,  
it gives us a first important geometric property of S,: 

Any solution of S, remaining in the compact set B(O, x) x S o lies in the graph of M~. 

The end of this section is devoted to the proof of this theorem. It is sufficient to 
establish this result for the modified system S~. One possible proof would call upon 
general theorems on persistence of normally hyperbolic integral manifolds. We 
prefer a less technical direct proof. It is an adaptation of the proof  of Theorem 5.2 
of [S] and is based on the graph transform technique. 

Consider the image by S, of the graph {(X = M~(O, k), O, k)lO ~ S, k ~ 7/}. We 
obtain a set of (Y, ~, k + 1) contained in R n x S x Z. If the graph is an integral 
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manifold, this set is contained in the graph itself, i.e., Y = M,(~b, k + 1). This means 
that the following diagram commutes: 

(0, k) ' (0 ,  k + 1) 

This also means that M, is a fixed point of the operator T, called the graph transform 
and defined as T(M) = S~ o M o (SM~ -~. Our problem is reduced to studying the 
properties of this operator. Let us first introduce an 

Adapted Metric. Given 0 in 
IIISlll0 = ~7~ I~-~lla(o)~gll, 2 
that: 

S, for any vector X in R", we define its norm IIIXIII0 by 
</~ < 1. From assumptions A2 and A3 it can be seen 

(i) l lXl l  ~ IIIXlllo ~ cel lXll ,  ~ = a ~ / ( ~  - -  2). 
(i i)  IIIa(O)XIIIo ~ ~'lllXlll0, Y = ~E1  - ( ~  - 2 ) /a /~] .  

( i i i )  IIIX[ll~, < (1 + / ~ 1 1 0  - ~bll)lllXIIIo,/~ = a l a / ( l ~  - 2). 

Remark. This metric allows us to exhibit the normal hyperbolicity property. Let 
(X ~ 0 ~ k), (X 1, 01, k) be two points in B(O, x) x S x Z and let (yo, ~bo, k + 1), 
(y l ,  ~kl, k + 1) be their respective images by S~. We have the following inequalities 
(compare with (2.21) and (2.22) of I'P2]): 

lilY ~ - YlllI~,o < y(1 + e / ~ ) l l l X  ~ - Xlllloo + ct(alx + b l u ) l t ~  ~ - r 

II~ ~ - ~111 > - e ~ l l l l X  ~ - Xl l l l0o  + (1 - e ~ l ) l l 0  ~ - 01ll. 
Introducing the positive function l(x) satisfying 

y(1 + efl-~(x))l(x) 
+ ot(alx + blu) < l(x), 

1 - e~l(X)(1 + l(x)) 

we obtain the following key technical triangular system: 

Ill y o  _ Yllll# ~ _ / 1 1 r  _ ~111 _< to(z,  x)(llJX ~ - Xl111o - / 1 1 0  ~ - 0111), 

I1~ ~ - ~Xll > - e ~ l ( l l l X  ~ - XXlllo - / 1 1 0  ~ - 0111) (2)  

+ (1 - e~x(1 + l))l[0 ~ - 0Xll 
with 

_~l(x)l(x ) ) 
to(e, x) = )'(1 + efl-~(x)) 1 + e 1 -- eEl(x)(1 + l(x)) " 

The normal attractivity property appears here. In particular, to(e, x) characterizes 
the contraction property of S~ in the direction normal to the integral manifold (see 
attractiveness). The term (1 -e~1(1 + l)) -t characterizes the possible expansion along 
the manifold (see Lemma 1). From these characterizations and following [F2] or 
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[HPS] we expect the existence of an integral manifold which can be up to r times 
continuously differentiable if r is the largest integer such that 

To(e, x) 1 - eEl(x)(1 + l(x < 1. (3) 

This means that existence and smoothness of this integral manifold depend directly 
on how much more sharply S, contracts in the normal direction than expands in 
the tangent direction or else on how much faster the X-component converges to its 
"steady-state" value than the P-component is changed. 

Let M be the set of functions M: S x Z ~ R" satisfying uniformly 

)IIM(0, k)lll0 ~ m < x ,  i 

IIIM(0 ~ k) - M(O ~, k)lllo, < mall0 ~ - 0111, i = 0, 1, 

where m, ml are as specified later. In the periodic case, M(O, k) is chosen 
periodic in k. Equipped with the distance associated with the norm [MI = 
Sup0, s. k, z III M(O, k)lll0, M is a complete metric space. 

In our above definition of the graph transform, we used the inverse function 
(SM~) -~. Let us prove that this makes sense. 

Lemma 1. There exists e* such that for any e, e _< e*, M in M, and k in 7/we can 
find a unique function D(M, k): S --* ~P such that, uniformly on M • 7/ x S: 

(i) lID(M, k)(~b)ll < V. 
(ii) lID(M, k)(~b ~ - D(M, k)(~b')ll < dlll~k ~ - ~b'l[. 

(iii) IID(M ~ k)(r -- D(M ~, k)(~) l l  _ dTIM ~ - MXl . 
(iv) D(M, k)(~b) = C(M(~k - cO(M, k)(~k), k), ~b - eD(M, k)(~b), k). 

Proof. Given M, k, ~b in M x 7/ x $1, we consider the complete metric space of 
vectors D of R p such that IIDII < ~. With our assumption on e, if ~k is in $1, 
~k-  eD is in S. On D, we define an operator T(M, ~k, k) as T(M, d/, k)(D)= 
C(M(~, - eD, k), ~k - ~D, k). We have 

IIT(M o, ~o, k)(D o) _ T(M 1, ~kl, k)(D1) ii 

<~1[(1 + ml)ll~ ~  ~111 + e(1 + rex)liD ~  DXll + IM ~  M~II. 

From the Uniform Contraction Mapping Theorem [H1], the result follows with 

~1(1 + ml) 1 
dx = 1 - e~l(1 + ml ) '  d~' = 1 - e~l(1 + ml)" 

However, up to now ~k was restricted to lie in Sl. The extension to S is obtained by 
taking D(M, k)(~b) = 0 for all ~b ~ S - S 1 . Using the properties of (7, we can easily 
check that this is a valid extension satisfying (i)-(iv). �9 

This lemma proves that ~k = 0 + e C ( M ( 0 ,  k),0, k) if ,  and only if 0 = 
~k- eD(M, k)(~b) and ~b ~ S -  S 1 implies D(M, k) (~ )=  0. We also remark that 
D(M, k)(~k) is periodic in the periodic case. 

Having established that the graph transform is well defined, we study its proper- 
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ties in a slightly more general context. Let us consider a graph transform T defined 
on M by 

Y(m)(@, k + 1) = A(@)M(O, k) + B'(@, M(O, k), k), 

" 0 = ~k -- eD(M, k)(~), 

where B': S x B(O, m) x Z ~ R n satisfies uniformly: 

(i) IItB'(&, x ,  k)l]l, -< b'. 
(ii) IlIB'(~ ~ x ~ k) - B'(~ 1, 2 I, k)llb, < b~ II~ ~ - ~111 + ebb'Ill X ~ - 21111~,,, i -- O, 1. 

Lemma 2. Function T(M)  is contained in M and T is a contraction. 

Proof. (a) Funct ion T(M)  is in M: 

(i) With our adapted metric, we have 

Ill T(M)(~, k + 1)Jl[~ ~ y(1 + eflF)]IJM(O, k)llJe + b'. 

Hence m should satisfy, with e sufficiently small, y(1 + effF)m + b' <_ m. 
(ii) Using the properties of M, D, for ~b ~ ~1 in S, we have 

Ill T(M)(~ ~ k + 1) - T(M)(~k ~, k + 1)lll~, 

< [(7 + ebb')(1 + efl-~)ml(1 + edl) + etalm + b~]ll$ ~ - ~111, 

i = 0 ,  1. 

Hence rn 1 should satisfy, with e sufficiently small, 

(1 + edl)(7 + ebb')(1 + efl-~)m 1 + ~alm + b~ < m 1. 

(iii) Funct ion T(M)  is periodic in k in the periodic case. 

(b) The graph transform T is a contraction: Let M ~ M I be two elements of M, 
we have 

IIIT(M~ k + 1) - T(M1)($ ,  k + 1)111r 

< (7 + ebb)(1 + efl-~)lllM~ ~ k) - MI(01, k)lll0o 

< (7 + eb~')(l + efl-~)[IM ~ - MXl + emxllD(M ~ k)(O) - D ( M  1, k)(~b)ll] 

< (7 + ebb')(1 + eflg)(1 + emld '~) lM ~ - Mll .  

Since 7 < i, taking,the supremum on S x Z gives the result for e sufficiently small. 

To prove existence of M~(0, k), we apply this lemma with B'(d/, X ,  k) = B(~b)u k. It 
follows that the graph transform has a fixed point in M if 

7(1 + eff~(m))m + buo: < m < x, 

rn  I 
y(1 + efl-d(m)) + ~t(blU + alrn ) < ml ,  

1 -- eFl(m)(1 + ml) 

( cl(m)mt ) 
~ o (e ,m )=y( l+e f l~ (m) )  l + e  l _ e ~ 1 ( m ) ( l + m l )  < 1 .  

In particular, this confirms condit ion (3) of the previous Remark. 
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We have proved the existence ofa Lipschitz continuous function M,: S • Z --* •" 
whose graph is an integral manifold of S~ locally on So and which is periodic in the 
periodic case. We now establish that, under assumption A5, M~ is Lipschitz con- 
tinuously differentiable in 0. Assuming for the time being that this property holds 
and denoting by L~(O, k) what the differential of M~(O, k) should be, formal deriva- 
tions show that L,(O, k) satisfies 

L,(~b, k + 1) = A(O)L,(O, k) + B'(~k, L,(O, k), k), 

~, = o + ~ (M, (O ,  k), O, k), 

where, with | denoting the tensor product, 

B'(d/, Y, k) = -eA(d/) YV(_.(Y, O, k)(I + eVl~(V, 0i k))-' 

~A aB 
+ --~(~b) | M,(O, k) + -~(~k) | uk, 

od od 
Vt~(Y, 0, k) = -~- (M,(0, k), O, k) + -~(M,(O, k), 0, k)Y. 

Hence L, should be the fixed point of the following operator: 

T(L)(~b, k + 1) = A($)L(O, k) + B'(~b, L(O, k), k), 

0 = d/-- cO(M,, k)(~b). 

Let us prove that this operator has a fixed point. From its definition and assumption 
A5, B' satisfies the assumptions of Lemma 2 with, in particular, 

~ i ( 1  + mr) 
IIIXIllo <- ral =~ IIIB'(&,X,k)III~, < e~(1 + efl~)ml l - ~ c l - ~  + m,) + ot(a~m + b~u). 

Noting that ml plays the role of m and m 2 (the Lipschitz constant of L,) the role of 
m~, Lemma 2 applies if 

~(1 + efl'6(m)) ml + ~(alm + bl u) < ml, 
1 - e ~ l ( m ) ( 1  + ml) 

efl~(m)) 1 (~ + ebb)m2 
- ecl(m)(1 + ml) + aatml + b~ <_ m 2, (1 + 

' ( m2~l(m) ) < 1 .  
Zx(e, m) = (1 + efl-d(m))(~ + ebb) 1 + e 1 - e~l(m)il + ml) 

Note that the condition z~ < 1 guarantees not only existence but also Lipschitz 
continuity of L, (compare with (3)). 

To complete our proof let us show that the candidate L~ is indeed the differential 
of M,, i.e., for any 0 interior point of S we have, uniformly in k, 

IIM~(0 + h, k) - M~(O, k) - L~(O, k)hll 
lim sup = 0. 

n-.o Ilhll " 

To prove this equality, we consider ~b an interior point of S and h a (sufficiently 
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small) vector in R p and we introduce the following notations (see assumption A5): 

0 = ~b - eD(M~, k)(~), 

, h = -h + e[D(M,, k)(~b) - D(M,, k)(~ + h)], 

6u(O, k, h) = M,(O + h, k) - M,(O, k) - L,(O, k)h, 

6c(0, k, h) = 6c(M,(O, k), O, k, M~(O + h) - M,(O, k), h), 

A(0, k) = lira sup IIl~M(0, k, h)lll0 
~ o  Ilhll 

Note that 0 is also an interior point of S. From assumption A5 and since M~ is 
Lipschitz continuous, we have 

II~c(0, k, h)ll 
lim sup = 0. 

h~o Ilhll 

Let us find a recurrence satisfied by 6 M. The definition of M~ yields 

6u(d/, k + 1,-h) = A(~b + -h)bu(O, k, h) + A(d/ + -h)L,(O, k)h - L,(~k, k + 1)h 

+ (A(~ + -h) - A(d/))M,(O, k) + (B(~b + -h) - B(d/))Uk. 

We also have 

aC 
-h = [I + eVC(L,(O, k), O, k)]h + e -~(M, (O,  k), O, k)tSu(O, k, h) 

+ e6c(O, k, h), 

L,(~,, k + 1) = A(d/)L,(O, k)[I + eVC(L~(O, k), O, k)] -1 

OA OB 
+ - ~  (~k) | M.(O, k) + ~-~ (~b) | u k. 

This yields 

6u(~b, k + 1, h) 

= a(~, + -h)6u(O, k, h) + 6a(~k, k, -h)M,(O, k) + 6n(~b, k, -h)Uk 

+ (A(~k + -h) - A(d/))L,(O, k)h - eA(d/)L,(O, k) 

x (I + eVC(Me(O' k)' O' k))-l [ t3~ ] ~-~(M~(0, k), O, k)6u(O, k, h) + ~c(O,k, h) . 

Noticing that IIhll/(l + edx)<-Ilhll-< (I + eFl(1 + mx))llhll , taking the Ill'Ill-norm, 
dividing by Ilhll, and taking the lim sup for h going to zero, we obtain 

1 ( m,F~ )A(0, k). 
zx(~,, k + 1) 1 +~a~ _<r(1 +~#e) 1 +~1 - ~-di  ~- m~) 

On the other hand, for any interior point 0 of S, the properties of M~, L~ give, for 
all k, A(0, k) _ 2m 1 . Given k and 0, an interior point of S, we construct a sequence 
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(0i), j ~ N, as 0i+ 1 = 0 s - sD(M,, k - j - l)(0i), 0 o = 0. By induction, 0jis an interior 
point of S and, from the previous inequality, we have A(O, k)<-ci(~, m)JA(Oj, k--j)<_ 
�9 c1(~, m)Qml with 

mlFl(m) ~ 1 
zl(e, m) = ?(1 + eflF(m)) 1 + e 1 - eFl(m)(1 + ml),] 1 ' eFl(m)(1 + mli  

1 
= -co(e, m) 1 -- eFl(m)(1 + ml)" 

Our relation holds for all positive j, and, as expected from the previous Remark, 
we have established that L, is the differential of M, if -c~ (e, m) < 1. 

i 
Approximation. We have the existence of M,, the solution of 

M,(~b, k + 1) = A(~k)M,(~b -- eD(M~, k)(~k), k) + B(~k)uk. 

Getting a solution of this system for each if, would be equivalent to getting all the 
solutions of S-, bounded on Z. However, we notice that this equation can be rewritten 
as  

M~(~k, k + l) = A(~b)M~(,/J, k) + B(d/)u~ 

+ A(~k) [M,(~b - sO(Me, k)(d/), k) -- M,(~b, k)]. 

This is a linear system with a nonlinear forcing term which disappears for e = 0. 
Using the Poincar6 method of expansion with respect to a small parameter, we can 
obtain a family of approximations: 

"0"-order approximation: taking e = 0 gives 

Mo(~b, k + 1) = A(dl)Mo(~b, k) + B(~b)u k. 

This is the solution of So. 

" l"-order  approximation: retaining the first-order term in s gives 

MI(~, k + 1) = A(~)MI(~ ,  k) + B(tl,,)uk -- eA(~,)Lo(~,, k )d(Mo(~,  k), g/, k), 

again a linear system. 

The quality of these approximations can be characterized as follows: 

(i) We notice that M0 belongs to the set M, hence the graph transform properties 
imply 

IMo - T(Mo)I 
IMo - M~I -< 

1 - -co(e, m) 
But 

HIMo(~,, k + 1) - T(Mo)(~,  k + 1)]ll~, _< y]l]Mo(~b - eD(Mo, k)(~b), k) - Mo(g/, k)HI,. 

It follows that 

yml~ = sfo. * 
IMo - M~I - e i -- "Co(S, m) 
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Similarly, for the gradient matrix, we get 

and 

ILo - L,I < 
I L o -  T(Lo)I 
1 - ~i(e,  m) 

Lo(~b, k + 1) - T(Lo)(J/, k + 1) 

= A(~)[Lo(O, k) - Lo(O, k)(l + eVg~(Lo(O, k), O, k)) -~] 

OA 
+ -~.,(~k) | (Mo(~, k) - M,(O, k)) u p  

with 0 = ~b - eD(Mo, k)(J/). Hcncc 

mlcl(1 + ml)(1 + efl~)~ 
y em2c + e-. 1 - eCl(1 + ml) ] + aalml(eml-c + e f~  

ILo - Lsl _< = e f  ~  
I - -  z~(e,  m) 

(ii) The function M~, defined in (iii) of Theorem 1, is given by a noncritical linear 
system with bounded input. Hence, it is uniquely defined and bounded. Denoting 
A(~, k) = M,(#, k) - M~(~,, k), we have 

A(@, k + 1) = A(~) [A(~b, k) + Ms(O, k) - Ms(~b, k) + eLo(~b, k)C(Mo(O, k), ~b, k)], 

0 = d~ - eD(Us, k)(O). 

We know that the segment [0, ~b] is contained in S. The Mean Value Theorem gives 
for some ~, 0 <_ ~ _< 1, 

M~(O, k) - Ms(g~, k) = - e L s ( ~  + ~(0 - J/), k)C(Ms(O, k), O, k). 

Hence, using the properties of L,, L o - Ls, M o - Ms, D, we got 

IIIMs(0, k) - Ms(O, k) + eLo(d/, k)C(Mo(O, k), J/, k)lllr 
g2m2~c2 + e2f ~ + emlcl(e(1 + ml)'c + ef~ 

This yields 

IM~ - M,I -< e2~ "m2~2 + f O p  + m1~,(~(1 + rn,) + f o )  = e2f 1. 
1 - - y  

Attractiveness. Let (X, 0, k) be an element of B(O, x) x So x Z, for x > m, and let 
(Y, ~,, k + 1) be its image by S~. Paying attention to the fact that we have X only in 
B(O, x) and not in B(O, m), we can however proceed, as in Lemma 1, to get 

lID(Ms, k)(0) - C(X, O, k)ll _< dT(x)lllX - Ms(O, k)lllo, 

~l(x) 
d?(x) = 

1 - -  e~l (X)(1  + mr)" 

Then, as in Lemma 2, we obtain Ill r - M~(@, k + i)lll~ -< %(e, x)[lIX - M,(O, k)lllo. 
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Applying this inequality to a sequence (Xk+l, Ok) of B([ko, kl), So), we obtain for all 
k ,k ' ,k  o _< k' _< k < k 1, 

IlXk+l - M , ( O , ,  k + 1)ll < Zo(S, x ) k - k ' ~ l l X k , + l  - -  M,(Ok,, k' + 1)ll. 

Moreover, i fXk+l ,  Ok lies in B(O, x) x SO for all k, then this inequality holds for all 
k', k' < k. This implies Xk+~ = M,(Ok, k + 1). 

This completes the proof of Theorem 1. 

In the following we are interested in characterizing the set B([k o, ~) ,  So). The 
attractiveness property implies that this set is a subset of l| ~ x R p) from which 
it inherits a complete metric space property. We also see that, the corresponding 
sequences of elevation above the manifold have a natural exponentially weighted 
supremum norm: 

IEI -- Sup {pk~ p < 1. 
k ~ k o  

For p = Zo(S, x), we know that the map from B([k o, ~) ,  So) to R ~, giving (X, O) ~--~ E 
is bounded with this norm. We even have 

L e m m a  3. Under assumptions A1-A5, there exists  s* such that for  any e, s < s*, 
we can f ind  p < 1 such that the above map is Lipschitz continuous. 

A key technical lemma to prove this statement is the following consequence of 
Hadamard's lemma I'AE]: 

L e m m a  4. Let  f be a Lipschitz continuously differentiable function f :  C c R n ~ R ~, 
with f l ,  f2 as Lipschitz constants. I f  the segments ['x ~ x ~ + 3~ Ix 1, x 1 + 31"] are 
contained in C, then 

iif(x o + ~o) _ f ( x  o) + f (x  1) _ f ( x  x + 31)11 

_< (f~ + ~.f211~~ ~ - ~111 + f=ll~~ IIx ~ - xXll. 

Proof  o f  L e m m a  3. Let (X ~ 0 ~ k), (X 1, 0 I, k) be two points in B(O, x) x So x 7: 
and (yo, ~bo, k), (y1, ~kl, k) be the respective images by S v For i =  0, 1, we 
define 

E i = X ~ - M,(O i, k), F t = y i  _ M~(~bi, k), G i = X i - M~(O i + A s, k), 

A' = ~l/t - 0 t - sD(M,,  k)(~b') = s [ C ( X  t, 0', k) - C(M,(O' + A t, k), O' + A t, k)]. 

We have IIA~ < scx(llG~ + IIA~ and IIG~ < IIE~ + mlllA~ which implies 

C 1 1 - sct 
IIA~ - s c x ( l  + m r )  IIE~ IIG~ 1 scl(l +rex) llE~ 

On the other hand, by definition, F ~ - F 1 = A(~b~ ~ - G 1) + ~A($ ~ - A(~bt))G 1. 
But, noticing that, for i = 0, 1, the segments I X  ~, M,(O i + A t, k)'l and [0 ~, 0 l + Ai] are 
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c o n t a i n e d  in B(O, x) and  Sx, respectively,  we app ly  L e m m a  4 to  M,  and  C to obta in  

Ilia ~ - Gallic~ _< IIIE ~ - EXlllr + (m~ + �89176 ~ - Aall 

,, + m211A~ II0 ~ - 01 II, 

IIA o - Alll < ~['(C 1 .-~ �89176 + IIG~ ~ - Gall + IIA ~ - AIlI) 

+ c2(llA~ + IIa~ ~ - Xall + II0 ~ - 0111)'1. 

It  fo l lows tha t  

1-1 - ~ ( c l  + �89176 + IIG~ + ml + �89176 ~  GalII,o 

< [1 - e(c 1 -I-�89176 + IIG~ ~ - EXlll~,o 

+ 1-(1 - ecx)m211A~ + ec2ma(llA~ + [IG~ II0 ~ - 01 II 

+ ec2(llA~ + IIG~ + �89176 ~ - Sai l .  

This  implies  exis tence of  a cons t an t  qo such that  

IIIF ~ - Falll~o _< PlllE ~ - E~IIIoo + qollE~ ~ - XXll + II0 ~ - 0111) 

with 

~(1 +ef lc)[ l  - t ( c  1 -t- (lc2(1 --eCl(1 + ma))) IIE~ 

P = 1 - s ( c  1 +(�89 - s c x ( 1  +ml))) l lE~ +m~ +e�89 -SCl (1  + mx))llE~ 

N o w  we apply  these inequali t ies  to  two sequences  (X~247176  (XI+1, 01) of  
B([ko ,  ~ ) ,  So): we have  

IIE~ < (x - m)z~ -k~ ItlE~ - EXko+l IIIo~o ~ < allX~ -- Xako+l II + m, II0~ -- 01011, 

hence  

I[IE~ - E~+llllog <- PlllE ~ - E2t l loo + qo(x -- m)To~-u~ ~ - X l  II + II0 ~ - 01 [I), 

which  yields 

0 __ p k-k~ ( T'O ~ U 0 ItEm+ 1 E~+x[ I < 1 + ] q S  P(llXk+x - X ~ + a [ I  + II0 ~ -0111)  
p -- SO, / k>k 0 

with q = Max(a ,  ml,  qo(X -- m)). �9 

4. Topological Orbital Equivalence with Asymptotic Phase 

In  this sec t ion  we establ ish the exis tence of  a h o m e o m o r p h i s m  be tween  subsets of  
B([ko ,  ~ ) ,  So) and  Bta([ko,  ~ ) ,  So). F o r  such a s t rong  p r o p e r t y  to  hold ,  so lut ions  
of  S~ mus t  be very  close to so lu t ions  of  SM, .  As a c o n s e q u e n c e  of  a t t ract iveness ,  we 
k n o w  tha t  for  any  sequence  (Xk+l, Ok) (resp. ( X ~ I ,  0kM)) of  B( [ko ,  ~ ) ,  So) (resp. 
(BM([ko, ~ ) ,  So)) we have  for  all k, k > ko, 

pk~ Ok, k + 1) -- SM~(Xk, Ok-l, k)[I _< e(1 + (a lx  + b lu) )c la(x  - m), 

p = ~o(~, x), 
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and 

p~o-kll(X~+ 1, 0~, k + 1) - S,(Sk M, OkU-1, k)ll < e(1 + (aax + bxu))clct(x - m), 

p -- ~(1 + eflc). 

This means that (Xk+l, Ok) (resp. (X~+~, 0~)) is an e-pseudo solution of SM~ (resp. 
S,) in the neighborhood of a normally attractive integral manifold. Invoking the 
Shadowing Lemma (Proposition 8.19 of [S]) we may expect the existence of a 
unique solution (37~,  0if) (resp. ()~+~, 0k)) of SM~ (resp. S~) e-close to the  cor- 
responding e-pseudo solution for the exponentially weighted supremum norm. This 
allows us to define a map O(ko) (resp. OM(ko) ) as q~(ko)(X, 0)k = ()7~1,/~ff) (resp. 
q~M(ko)(Xt'f, 0M)~ = (Xk+x, 0k))- Clearly, from the e-closeness property, this map 
is a very good candidate for the homecmorphism we are lookin~ for. 

To obtain the Shadowing Lemma in our context, we have to shrink the set So 
again: let S~, St be compact sets with nonempty interior such that S~ + rl c S'~, 
S'1 + ~ c So. 

Theorem 2. Under assumptions AI-A4,  for any compact set S'~ strictly contained 
in S, there exists e* such that for any e, e < e*, we can find g~, ffs, gx, tr, 0 < tr < 1, 
and, for any k o, maps 

(I)(ko): B([ko, co), St) -} BM([ko, c~), So) and 

(I)M(ko): BU(['ko, oo), S~)-} B([ko, c~), So) 

such that (similarly for (1)M): 

(i) For any sequence (Xk+l, Ok) in B(Eko, oo), S~), its image ()~M1, 0k M) by (l)(ko) 
satisfies for all k, k >_ k o, 

Xko+ 1 - - M  ( y k o - k  __ = Xgo+l, IlXk+x s  < eg~(llE~o+~ll), 

cr~~ - 0~11 -< eg~ II), 

where g~, go are positive nondecreasing functions of the norm of  the elevation 
above the manifold at time k o. 

(ii) c~(ko)(X, 0)~ = ~(k'o)(X, O)k, ko < k'o < k. 
(iii) I f  assumption A5 holds, then O(ko) is Lipschitz continuous in the following 

stron# sense: for all k, k > ko, 

_ II + 11o ~ - II 

< IIX~ II + II0~ II + a k - k %  Sup (llX~ II + 110~ II). 
r:>ko 

Moreover, ~(ko) (resp. OU(ko) ) is injective and the restriction of  @M(ko) o 
~(ko) (resp. r o ~ ( k o )  ) to B([k o, oo), Sb) (resp. BU([ko, co), S~)) is the 
identity map. 

Remarks. For  the continuous time case, Riedle and Kokotovic,[RK2-1 have shown 
that if there exists a uniformly stable solution (0if) of SM~, remaining in St after 
time ko, then B(lko, oo), So) is not  empty and has a nonempty interior. 
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Since we have only ak~ 0~ll ~ ~ we have to take 8k in S~ (resp. S~) to 
guarantee that 0ff is in S~ (resp. So). 

Since we have an exponentially decaying distance between (X~+~, 0~) and 
( ) ? ~ ,  0ku), ~(ko) ~s an asymptotic phase. 

We have established B(rk o, o0), S~) c ~U(ko)(BU(l'ko, o0), S~)). This means that 
any solution (Xk+:, 0k) of S~ which remains in B(O, x) x S~ on a semi-infinite time 
interval (i.e., belongs to B([ko, oo), S~) for some ko) can be approximated with an 
exponentially decaying distance by a solution of SM, satisfying the same property. 
Moreover, these two sequences have the same X-values Xko+~ at time k o and 
their 0-values at this time are at an e-distance, the magnitude of this distance 
increasing with the norm of the elevation above the manifold at time ko. These two 
solutions have the same type of Lyapunov stability in each of the following cases: 
stability, uniform stability, asymptotic stability, uniform asymptotic stability, and 
instability. Unformity follows from (ii) and the independence of a, g=, gO, g~ in ko. 
Asymptotic or exponential property results from the a k-~o term in (iii). (In)sta- 
bility is a consequence of the continuity property (iii) as shown in the following 
lemma: 

Lemma 5. I f  the sequence (Xk+ i, Ok) (resp. (X~I ,  OM)) in the interior (in the 
loo(R ~ x R p) sense) of  B([k o, oo), S~) (resp. BU(rko, oo), S~)) is a stable solution 
of  S, (resp. SM~), its image by ~(ko) (resp. ~U(ko) ) is a stable solution of  SAIl, 
(resp. S,). 

Proof. As above let ()7~1,/~ff) denote the image of (Xk+l, Ok) by ~(ko). Let 
(X~ 0 ~ be the stable solution of S, in the interior of B(rk o, co), S~). Stability 
implies existence of an open neighborhood V(X~ 000) in R" x R p on which the 
injective map associating a solution of S, to its value at time ko is continuous. 
Composing by ~(ko), we obtain a continuous injective map: 

V: V(X~ 0~ - ,  Bi([ko, oo), S~), 

(x o+1, 
Restricting �9 to time k = k o, we have a continuous injective map: 

%o: v(X~ ~176 a" x ---, R" x 

, O o) 

It follows from Brouwer's Domain Invariance Theorem (Theorem 3.3.2 of I-L2]) 
that this application is a homeomorphism from the open set V(X~ 0~176 into its 
open image ~r176 1 , -uo 0~o ). We conclude that the following map is continuous and 
is defined on a nonempty open subset of R* • RP: 

v o _,  W"([ko, oo), s l ) .  

This is nothing but the map associating the solution (37ff+1,/~) of SM, to its value 
(Y?~+~, 0~) at time k o. Since this can be done for any k~, k~ > k o, we have proved 
stability of (37~ ~ OkMO). �9 
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From this lemma, instability is obtained by contradiction. 
Noticing that if (X~+I, 0k u) belongs to BM([ko, o0), So), then this solution of SM~ 

and (Ok M) as a solution of SM~ have the same type of Lyapunov stability or instability, 
we have established the main result of this paper: 

Main result. Under assumptions A1-A5, for each x, x >_ m, there exists e* such 
that for any e, ~ < e*, the systems S, and SMe, when restricted to B(O, x) x So, are 
topologically orbitally equivalent with asymptotic phase. More precisely, for any 
k o, each solution (Xk+l, Ok) of S, such that Ok ~ S'o for all k, k >_ k o, and IIXko§ - 
M~(Oko, ko + 1)11 <- (x - m)/~, can be obtained from a solution (0~) of SM~ satisfying 
Ok ~ ~ S'~ for all k, k >_ ko, and Xk+t -- M~(Ok M, k + 1) and O~ - Ok decay exponen- 
tially. Moreover, (Ok M) and (Xk+~, Ok) have the same type of Lyapunov stability or 
instability. 

Proof  o f  Theorem 2. We study an auxiliary system defined as follows. Let (~k) be 
a sequence whose elements lie in S~ and satisfy, uniformly on N, the set of posi- 
tive integers, II~k§ -~kll---ec.  We consider the following auxiliary system on 
R n • RP: 

axk§ = A ( ~  + aOk)aXk + n"(aok, k), 

ao~ = aok_, + ~c"(axk, aok_~, k), 

ax,~ n(o,X-~ m), 
(as) 

where B", C" are defined and Lipschitz continuous on B(O, ~/)x N and 
B(O, x - m) x B(O, r/) x N, respectively, with b'~', c'~ as respective Lipschitz con- 
stants and such that, uniformly on N, B"(0, k) = 0, IIC"(0, 0, k)]l < c~xlp k-a, p < 1. 
For two sequences (~k0), (#~) satisfying, uniformly on N, ID ~ - ~ k  II <--v we are 
interested in the relation between the solutions of the corresponding auxiliary 
systems aS ~ aS t, assuming that 

IIn"~ ~ k) - B"X(O0 x, k)ll _< b~[Max{ Ilg0~ Ila0 x II }v + lla0 ~ - 00 t IIl, 

II C"~ ~ O0 ~ k) - C"X(OX a , dO t, k)ll 

_< c[ [ (Max{ II0S~ + Ila0~ IIOX x II + Ila0Xll } + Pk-1)V 
+ II0g ~  aSXll + Ila0 ~  a0111-1. 

As for describing the e-pseudo solution property, we use an exponentially weighted 
suprernum norm to study this system: 

]OXI = Sup (a-kllaX~+xll), la01 = Sup (a-klla0~ll), p < o < 1. 
k>O k~O 

The following lemma states the existence of a unique solution of aS which is 
bounded for this norm. 

L e m m a  6. Under the above assumptions and assumptions A2 a~d A3, there exists 
e* such that for any ~, 8 <<_ t*, we can find constants 0 s, gl, a such that for any initial 
aX-condition OX 1 in B(O, (x - m)/~): 



Topological Orbital Equivalence for a Two Time-Scales Discrete-Time System 243 

(i) The system dS has a unique bounded solution satifyin9 

IOSl _< x~ = Max(~lldXx II, ~d~), 1001 _< c'~(xx + x'~) <_ ft.. 

(ii) I f  (dX~ 00~ (OX~+x, O0~) are these solutions for the systems OS ~ OS 1, 
respectively, we have IdX ~ - dXll  + Id0 ~ - d0xl < 01( l lOX ~ - dX~l l  + v). 
The a, d ~, and 91 are specified in the proof. 

Let us explain the interest of this lemma for proving Theorem 2: 
If (Xk+l, Ok) is a sequence of B([ko, oo), S~), we define its auxiliary system dS by 

choosing 

~k = Ok+ko, dX1 = O, 

B'(dO, k) = (A((~ k + dO) - (a(~k)))Xk+ko + (B(~b k + 00) -- B((~k))Uk+ko , 

C"(dX, dO, k) = C(M~(~k_ 1 q'dO, k + ko), (kk_ 1 +dO, k + ko)- -C(Xk+ko , (~k-1, k + ko). 

Using the properties of the elevation above the manifold and Lemma 4, we can 
check that B", C" satisfy our assumptions with 

b~' = alx  + blu, 

b ~ = M a x  x a x +  rl + u  bl + - ~ q  ,a2x+b2u ,  a I , 

c'~ = c1(1 + mx), 

,, {( c 2 = M a x  c 1 + ~ - ( x - m ) + r / ( l + m l )  m l+--~--r/ , 

(c ,  + - ~ ( x - - m ) +  r/(1 + m l ) ) m 2 + c 2 ( 1  + m l )  , 

(c  1 + ~ ( x - - m ) + r / ( 1  + m l ) ) q ( 1  + p ~ ~  o ) + C 2 ( x - - m , )  , 

where r/is the "distance" between the imbeded compact sets, q and p are given by 
Lemma 3, x I = ~IIE~o+lll and v = SUpk>ko(llS~247 -- S~+xll + II0 ~ -- 0~ II)- Then 
if (dXk+l, OOk) is the particular solution of 0S given by Lemma 6, we define 
O(ko)(X, O) k = (X~k+l+ko "-~ OXk+l, Ok+ko + OOk)o From the properties of(c~Xk+x, OOk), 
it follows that ~(ko) satisfies (i)-(iii) of Theorem 2. 

Similarly, if (XkU+I, 0~ t) is a sequence of BM([ko, ~) ,  S'1), we define OS by 

~ = 0g~  o, ax~  = x g + l  - M, (0~ ,  ko + 1), 

B"(OO, k) = (a(qkk + dO) - A((~k))M~(q~k_l, k + ko) 

+ (B(~b~ + a0) - B((~k))Uk+ko, 

C"(OX, 00, k) = C(M~(~k_ ~, k + ko) + OX, ~_~ + 00, k + ko) 

- C(M,(qkk-1, k + ko), qk~,-a, k + ko). 
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Again our assumptions are satisfied with 

b'~' = a~m + b:u, 

, ,  } b = = M a  m a,+--~-rl  + u  b ~ + ~ r l  , a 2 m + b a u + a ~ m i  , 

~s 

C 1 -~- CI~ 

c ~ = M a x { ( c x + ~ ( x - - m + ~ i ) ) , c 2 ( 1  + mx)}, 

and 
p = 0, v = Sup I I0~  ~ - 0~*11, x ,  = 0, 

k>ko 

With (~Xk+t, ~Ok) the corresponding solution of ~S, we define 

~U(ko ) (XU , OU)k = (M,(OkU+ko, k + 1 + ko) + t~Xk+ ~, OUk+ko + t~Ok). 

Then OU(ko) satisfies (i)-(iii) of Theorem 2. Note that, in this case, we have 

~(a~x + b~u) a~c'~ 
gX(e) = a - y(1 + eflc) 1 -- a -- ec'[ e" 

This is obtained by studying the sequence (.~+~ - XkU+~), knowing that (for e larger 
than e~ x) 

t t  

CI o~etTk-ko. s = xM~o+l, IIO~ - O~ll -< ~1 - ~ - ~c~" 

Proof  of  Lemma 6. (i) Let D be the set of sequences (C~Ok) in R p such that, for all 
positive k, we have la0[ _ ea ~ ~ ~/. Here, D is a complete metric space for the 
distance associated with the norm [a0l. 

For any sequence (aOk) in D, we consider the sequence (~Xk) uniquely defined as 
the solution ofaXk+l = A(~k)aXk + B"(aOk, k) with aX 1 as the initial condition and 
~k = ~k "Jr- ~0 k. Since ~k is in S, we have 

I[laXk+llll& < ~(I +/~1[~ - ~k-~ll)lllaXdl&_, + ~b~'ll~OdI. 

It follows that laXI < x~ = Max(~llaX~ll, ea x) if e, a, 0 ~ O x satisfy ?(1 + fl(ec + 
e~~ + a)))~ x + ctb~'O~ _< aa ~. Also for two sequences (aO~ (~Ok 1) in D, we 
have 

IllaX~ - aX~+xlll& < ~(1 +/~ll~ ~ - ~~ II)lIlaX~ - aX~lll&_, 

+ ~ ( a l x i ~  k-~ + bDIlaO ~ - aO~ II. 

This implies [t~X ~ - dXll < d~'laO ~ - a01[ if 

~,(1 + /~ (~c  + ea~ + a)))a~' + ~ ( a ~ x ~ u  k + b~'a) _< aa~'. 

Let us now define an operator T on D by T(aO)k = ~Ok+ ~ -- eC"(~Xk+~, ~Ok, k + 1). 
Clearly, from the above inequalities (~X~+~, ~Ok), defined this ~ay, is the solution 
mentioned in the lemma if and only if (t?O~) is a unique fixed point of T in D. 
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(a) The operator T(aO) is in D. We have 

IIT(O0)~,II < 100la ~+x + ec~(10Xl + 1001 + xl)cr k 

< ak~(aO ~ + c~.(x~ + e.d ~ + Xx) ) 

which means that e, x~, 0 ~ a should satisfy p < a < 1 and a0 ~ + c"t(x I + x'~ + 
~0 ~ _~ 0 ~ 

(b) The operator T is a contraction (uniformly in 0X 1): 

I[T(OO~ - T(001)dl < ak+ll00~ - 00xl + nc~(1 + O~)aklo0 ~ - 0011 

< ak(a + ecT(1 + 0~'))100 ~ - 0011. 

Therefore the first part of our lemma holds if 

cO~ < 7, p < a < 1, x~ = Max(alldX111, ~Ox), 

ab';O ~ < [a - 7(1 + efl(c + 0~ + a)))]0 x, 

a(alx~  + bTa) < [a - 7(1 + efl(c + d~ + a)))]0~, 

c~(xl  + x i )  <_ (I - a - ecT)a ~ 

0 < l - a - e c 7 ( 1  +0~'). 

(ii) Proceeding as for (i), we obtain 

IllOg~ - OX~+x II1~o 

< ~,(I + e/~(c + 0%~-1(1 + a)))lllOg ~ - 0g~lll~l,,_, 

+ o t [ a l x ' l a k - l ( v  + aklOO ~ -- 0011) + b~(eOeakv + aklO0 ~ _ O0xl)-I. 

It follows that 10X ~ - dXII < cxllOX ~ - 0X~II + 0~v + g~lO0 ~ - 0011 with 

r(1 + e/3(c + oOak-1(1 + a)))g'~ + ot(alx'  1 + ed~ < ag~, 

?(1 + e.[3(c + d~ + o')))gl 0 + ot(alx'tcr k + b l a  ) < ag~, 

Now since (00~ (00~) are fixed points of the operator  T defined in (i), we have 

1100 ~ - 00211 

< ak[alO0 ~ -- 0011 + ec'~((x~ + ed ~ + 1)v + IdX ~ -- OXl l  + 100 ~ -- 0011)]. 

Our conclusion follows with 

a(axX'l + eb~d~ < [a - r(1 + efl(c + de(1 + a)))]• 

o~(axx'~ + b la )  < [a - ~(1 + ~fl(c + 0~ + a)))la~, 

( ) (  . c2(1 + 01)'~ c ~ ( l + g ~ ) ( x i + ~ O  ~  < 1 - ~  1 - - a  ]gx .  �9 
Max a ,g~  + ~  1 - a  - 

To complete the proof of Theorem 2, we have to study the relation between 
and cM. Let (X~+t, 04) be a sequence in B(I-ko, oo), $6). F rom part (i) of the theorem, 
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its image (~M 1 , 0k ~) by r in BU([ko, oo), St). Similarly, the image (~k+l, 0k) 
by r o f ( ) ~ ,  0k M) lies in B([k o, oo), So). Moreover, we have 2ko+a = )~ko+~ = 
Xko+l. By uniqueness, r  o r is the identity map if 0~ = 0~o. From (i), w e  
have [lOk - 0k[[ < ak-*~ e and [10~ - 0k[[ -< ak-k~ s. Hence [[Ok -- Okl[ < 2ak-k~ s. 
But since (Xk+x, Ok) and (Xk+l, Ok) are in B(O, x) x So for all k, k > ko, we apply 
inequalities (2) iteratively to get for all k, k > k0, 

lU/~+x - -~§ - t l l O ~  - 0~[I -< - V o ( . ,  x)~-~~ - 0~oll, 

Therefore. for all k. k > k o, 
i 

II0ko - 0~.oll <- 2"0 0 1 - ,ca(1 + l)) " 

Hence our result holds if0 < 1 - a - ,c1(1 + 1). Proofs of(I)(ko) o OU (ko) = In and 
injectivity properties follow the same lines. �9 

5. Study of the Reduced-Order System SM~ 

With Theorem 2, we have established that stability and existence of solutions of S t 
remaining in B(O, x) x S~ after time ko can be obtained from similar properties of 
solutions of SM ~ Therefore, we can concentrate our attention on this system. It is 
a nonlinear nonautonomous system and many approaches can be used to study 
stability and existence of bounded solutions. 

In the/2-stat ionary (stochastic process) case, averaging theory, leading to the 
associated differential equation technique, turns out to be a very appropriate tool 
to deal with the difficulty due to time dependence. This has been demonstrated by 
Ljung in the C(X, O, k)-vanishing case ILl] ,  [LS], [KC] and by Anderson et al. 
[ABJ] and Benveniste et al. [BMP] in the nonvanishing case. Noticing that, a s ,  is 
made smaller, S M  ~ becomes closer to a first-order approximation of an ordinary 
differential equation, our result allows us to decompose the associated differential 
equation technique into three steps: 

(i) Application of the topological orbital equivalence to replace St by SM,. 
(ii) Application of the averaging theory to SM ~ 

(iii) Approximation of a difference equation by a differential equation. 

In the nonstationary case, one possibility to simplify the time dependence is 
to extend to the discrete-time ease the stroboscopic method ideas according to 
Minorsky [M] (see also IF1]): if uk and C(X, O, k) have a "slowly varying period" 
p(K), then by flash illumination at times t(K), t(K) + p(K), t(K) + p(K) + p(K + 1), 
... we see a weakly nonstationary advance map, i.e., the solutions of SM ~ observed 
on the time interval It(K), t(K) + p(K)) are very similar to the solutions observed 
on the time interval It(K) + p(K), t(K) + p(K) + p(K + 1)). T~e idea is then to 
approximate this advance map. Let (p(K)) be a sequence of bounded positive 
integers, p(K)<_ p. Given ko, we define flash illumination times after ko by 
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t(K + 1) = t(K) + p(K), t(O) = k o. The advance map SM~r from t(K) to t(K + 1) of 
SM~, written as 

M M eC~(0,~K), K 1) (SM~,) Ot(r,+1) = O,(r) + + 

is obtained from 

k-1 
~. C(M~(O f, i + l), Of, i +-I), oM = Ot~X) + e 

i=t(K) 

To approximate SM~, we introduce the system SM~: 

~,+1 = ~ + eC~(~K, K + l) 

with 

t(K) + 1 <_k <t(K + 1). 

(SMg,) 

t(K+1)-1 

Co~(~k, K + 1) = ~.. C(Mo(~b, i + 1), ~,, i + 1). 
i=t(K) 

Under assumptions A1-A5, Co ~ is Lipschitz continuously differentiable on S • N 
with c~', c~ the respective Lipschitz constants: c~' <pcl(1 + ml) and c~ < 
p(c2(1 + rnl) 2 + clraz). 

System SMgr is simpler than SM~ In particular, for adaptive systems, the 
C-function is given by the controller designer and is typically the product of a gain 
vector times an adaptation error. In this case, Co ~ and aC~o/~b are correlations on 
the time interval [t(K), t(K + 1)) of components of Mo or OMo/dO. And, from their 
definitions, Mo and aMo/dO can be obtained by implementation of sensitivity filters 
and observation of the feedback system using a constant parameter vector 0, i.e., in 
a classical linear feedback context. This latter aspect makes the assumptions on Co z 
interpretable in terms of signals properties. 

Although simpler, SMgr is very helpful for understanding the behavior of solu- 
tions of SM~. This is possible since SM~ is an e2-approximation of SMUt. Indeed, 
from Theorem 1, under assumptions A1-A5, we have, uniformly on So x N, 

K) - C~(~b, K)II -< eVo, ~~ (~b, K) - aC~ K) IICo~(O, 

where Vo, v 1 can be obtained by induction on p as 

p - 1  
v o <_ pclf  ~ + c~c',. -~ , 

v I _< P(C2(1 +mx)f  ~ + c l f  ~ + c~cP~21 + ((1 + ecl(1 +ml))  v-1 -- 1)c1(I +ml).  

Again invoking hyperbolicity properties, namely conservation of stable and un- 
stable manifolds of hyperbolic solutions under small perturbations (see [HI]  and 
[S]), we may expect that, to any hyperbolic solution of SMg,, there corresponds 
an e-dose solution of SM ~ with the same hyperbolicity property. 

However, a difficulty remaining in the study of stability of solutions of SMg, is 
the time variations. They have two causes: the time variations of the system itself 
and the motion of the solutions studied. 
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To take care of the system time variations, we consider the case where, uniformly 
on So x t~, Ii(aco~/a~)(~0, K)  - (OC~/a~)(r K + 1)11 is "small." This assumption 
concerns essentially the k-dependence of C(X, O, k) and Uk. In particular, it is trivially 
satisfied in the periodic case by choosing p(K) constant, equal to the period. It holds 
also in the almost-periodic case, i.e., if there exists a Lipschitz continuously differen- 
tiable function t~o~(r such that, for any e, we can find p for which we have, uniformly 
o n S x  t~, 

ac~ aC~ (,) 
IIC~(r K) - Q(r -< 8~o,  --~--(r K) - ~ V -< ~x. 

In this case, we replace Co~(~b, K) by ~o~(~b) in the definition of SMg x. 
To take care of the motion of the solutions, we consider thdse evolving in a set 

where C~(~b, K) is "small" uniformly in K. This condition is trivially satisfied i fSMg,  
has a fixed point, i.e., if there exits ~b* such that, for all K, CoZ(r *, K) = 0. This 
equation is precisely the bifurcation equation obtained by averaging theory [BSA], 
[RK2] or critical systems theory [PP]. Existence of solutions for this equation has 
been studied for model reference adaptive systems with a fixed-point argument 
(Section 4.5 of [R]) or applying degree theory [PCP]. 

From this discussion, we introduce the following definition: 

Definition. Given strictly positive constants (, e, we define the set P((, e) as 

A6.1: - ~ - ( ~ ,  K) - /~ + l) 

P((, e) = - ~b e S~ + 8c~11Co~(r K)II < 8w < e( 2 for all K, 

i A6.2: Max Re 2i < - ~  for allK, 
,or,.,1 ( o0 J / -  

where Re(.) and 2i{. } denote the real part and the ith eigenvalue, respectively. 

Remark. In the adaptive linear systems context, the inequality A6.2, involved in 
the definition of P((, 8), is related to the so-called "signal dependent positivity 
condition." In the test input assumption case (see the Introduction), it can be 
interpreted as the positivity of an operator restricted to act on specific signals (see 
[ABJ], [RK1], and [RPK]). 

Theorem 3. Under assumptions A1-A5, there exists 8" such that if we can f ind ( 
and ~, 0 < 8 < e*, for which P((, 8) contains a solution (~r) of SMgx, then SM~ has 
an exponentially stable solution remaining in S~ after time k o and e-close to (~br) at 
times t(K), i.e.,for all K, II0t~ ) - ~'rl[ -< 86 with Vo/( < 6. 

The constant 6, appearing in this statement, is clarified in the proof. 

Remarks. This stroboscopic method approach extends, in mo~e general situations, 
the local averaging technique proposed by Kosut et al. [KAM] (see also [ABJ]) for 
studying SMeo after linearization under a relaxed test input assumption. 
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With Theorems 2 and 3, we have established the following result: 

For e sufficiently small, if SMgr has a solution remaining in a set P((,  e), then S, has 
exponentially stable,solutions remaining in B(O, x) x So after time k o. 

In other  words, this proves that, as far as stability is concerned, the heuristic 
technique proposed by ~ s t r r m  [A1],  [A2] is theoretically sound when restricted 
to the set P((,  e). 

Finally, (~bx) is an e2-approximation of  a solution of  SM~, if Co ~ is replaced by C~, 
an E2-approximation of Co z defined with M1, the e2-approximation of Ms. 

As a key step to proving Theorem 3, we establish the following result: 

Lemma 7. Let F(K 1, Ko) be the transition matrix of 

( ) a,,+, = I + , - ~ - ( r  K + 1) a,,  

with (~br), the solution in P((,  e) given by Theorem 3. For any ~', 0 < ~' < ( -  
e(c~)2/2, there exists v (independent of ~br) such that for any K o, K1, 0 <_ K o < K, ,  

1 + ev' 
IIF(K1, Ko)[I < 1 - e(" (1 - e(") r l -r~ 

with ~" = ~' - [(1 + ev)(1 - c( ')w] '/2 and v' = v(1 - ~(') - (", where w is obtained 
from A6.1. 

Proof. Given K 1, the transit ion matrix satisfies for any N, K o < N < K1, 

F(N + 1, Ko) = I + .-~--(0K,-1, KI) F(N,/%) 

Foc~o , .  TJ ' '  ~1 + e[--~-t~N, N + I) -- K,) F(N, Ko). 

To derive the property of F(K,, Ko), we use the following three inequalities: 

(i) From assumption A6.2 in the definition of the set P(r ~), we have, uniformly 
on P(r e) x #d, 

OCo ~ I + ~ - ~ - ( r  K) _< 1 + ~c~, 

_< 1 - - e ( + e  2 (c~)2 
2 

Then  it follows from Theorem 5 of  [F3]  that  for any ~', 0 < ~' < ~ - 
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e(c~)2/2, there exists v (v > cg) such that, uniformly on P(~, 5) x IN, 

I .+  e - '~ - . r ,  K) < (1 + ~v)(1 - ~(')~ for all i ~ N. 

(ii) From assumption A6.1 and the fact that (OK) is a solution of SM~ we 
obtain 

l ac~ oc~ 
T~-(O~, N + l) - -~-(O.,, tr I 

K , - ,  aC~o ,,,, aC~ 
-< ~ -~ ,~ 'K -~ ,  K) - -z:z-.,. (OK, K + 1) 

K=N+I o ~  
i 

<_ ~w(K,  -- N -- 1). 

(iii) Let uk be a sequence of positive real numbers satisfying, for any k, k > 1, 
uk < a ) ) u  o + b ~ , i ~  ~.k-l-i( k - 1 - i)ui, a > O, b > O, 2 > O, then we can 
check by induction that 

2a + ~ (2 + x/ /~)  k-' + (2 -- x / ~ )  k-1 u o. 
uk < 2 

Now use the variation of constants formula; take the Euclidian norm and use the 
two first inequalities to obtain 

IlF(g z, go)ll < (1 + ev)(1 -- e~,)K,-Xo 
KI- I  

+ e2W(1 + gO) E (1 - e ( ' ) x ' - z - n ( K 1  - 1 - N) I IF(N,  Ko)ll. 
N=Ko 

The result follows from the third inequality �9 

Proof of Theorem 3. (a) Existence: The idea is to find a solution (0,~x)) of SM~K 
satisfying I 1 0 , ~ )  - 0KII < ~6. This will solve our problem, since the corresponding 
solution (0if) of SMO~ satisfies, for all k, t (K)  - p/2 < k < t (K)  + p/2, 

In particular, knowing that 0K lies in S~, 0k u lies in S~ if 6 and e satisfy 6 <_ r//e - 
c(p/2). Hence, let Ax be defined recursively by 

Ao = 0, 

Ax§ I+~-~-(0K, K+I) A K 

+ ~ C~(OK + AK, I~ + 1) -- C~(r K + 1) -- -gd-(0K, K + 1)AK 

then (0K + AK) is a solution of SM~ We remark that for any A such that  the 
segment [OK, OK + A] is contained in So, application of the Mean Value Theorem 
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yields for some ~, 0 < ~ < 1, 

c~(~,,, + A, r,  + 1) - c~(~,,,, g + 1) - -~,~ (~,,, I,: + 1)a) 
- - " F  

aC~o ,,,, oc~  ]) 
<tOo+ -~- ,~- r  + ~ A , K +  1 ) - - ~ - ( ~ ' r , K +  IIAII <~Vo+CNIIAII 2 

Now apply the variation of constants formula and Lemma 7. Then 

1 
IIAK+xll ~ e 1 

Hence, we have established 
(Ok M) of SM~ remaining in S~ 

1 +  

1 -  

(b) Exponential stability: 
in S O , we have, uniformly in 

II0~ ~ - 0~Xll ___ (1 + ee l  

8C,, (1 - -  ~(")K-N(~v 0 + C~[IANll 2) 
- -  N = 0  

IIAKII -< e~ and, therefore, the existence of a solution 
after time k0, if (', 6 satisfy 

ev' v o + ec~r52 < rl p 
~(,, (,, _ ,~ < _ - - c ~ .  

For any two solutions (0kM0), (Ok M1) of SM~ remaining 
K, 

(1 + mx))PllO,~r~ - O,~r~ II, t(K) <_ k <_ T(K + 1). 

Hence exponential stability of the solution (Ok M) obtained in part (a) follows from 
exponential stability of (O,~r)), the solution of SM~ But, from Lyapunov's theorem, 
for this property to hold it is sufficient that the origin be an exponentially stable 
solution of the following linear system: 

AK+ 1 = I + e--~(OttK), K + 1) At. 

From part (a), we know 

OCZ M aC~ 1) -~-(Oi(r,, K + 1) - -~-(~k K, K + < ev, + ec~ 6. 

Therefore, with Lemma 7 and Lemma B.5 on p. 118 of [A4], our property holds if 

1 + ev' 
1 -- el" + e2 1 - -  e(" (vl + c~c5) < 1. 

In conclusion, our theorem holds ife and 6 satisfy, for v given by Theorem 5 of [F3], 
2 

(c~)2 (" = ( '  - [(1 + ev)(1 - e(')w] 1/2, v' = v(1 - e(') - (", 0 < ( ' < ~ - ~  2 ' 

w <  
(1 +ev)(1 - e ( ' ) '  

l + ev' vo + eC~3 2 < 
1 e(" (" -~5<-r l  P 

1 -  ~(" + ~ 2 1 +  8v' 
1 - e~" (vl + c~6) < 1. 
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