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On Periodic Solutions of Adaptive Systems in 
the Presence of Periodic Forcing Terms* 

J.-B. Pomet , t  J.-M. Coron, t  and L. Pralyt  

Abstract. We consider a discrete-time system consisting of a linear plant and a 
periodically forced feedback controller whose parameters are slowly adapted. 
Using degree theory, we give sufficient conditions for the existence of periodic 
solutions. Using linearization methods, we give sufficient conditions for their 
(in)stability provided the adaptation is slow enough. We then study when the 
degree theoretic conditions for the existence are satisfied by d-steps-ahead adaptive 
controllers in the presence of unmodeled dynamics and a persistently exciting 
periodic reference output. 

Key words. Adaptive control. Unmodeled dynamics, Averaging analysis, Periodic 
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Introduction 

It is well known that adaptive linear control performs satisfactorily when no 
undermodeling is involved, i.e., when the order of the plant to be controlled, or an 
upper bound of it, is known, and the controller takes it into account, or, more 
generally, under the "exact matching assumption," i.e., when one value of the 
parameter  somehow perfectly represents the plant to be controlled (see [GS-] or 
part of [ABJ*] for a study of this "ideal" case). One of the present problems in 
adaptive control is characterizing asymptotic performance in the more general 
and practical case of imperfect modeling when no "matching assumption" is 
satisfied (e.g., when the order of the plant is allowed to be higher than that of 
the con troller). Here performance refers to the behavior of asymptotic solutions and 
the stability of these solutions. 

J 

It is reasonable to study the performance under stationary, quasi-period, or 
periodic extraneous inputs, there being nothing meaningful to say when nonsta- 
tionary inputs are involved. In addition, we only deal here, as does most of the 
literature, with slow adaptation [BMP] ,  [PR'I, [RK],  FRPK]. In Section 1.1 we show 
the link between small extraneous inputs and slow adaptation; this often legitimizes 
the slow adaptation assumption. 
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If the closed-loop system were linear, the performance could be studied as follows: 
in the case when no eigenvalue is on the unit circle, there would be one stationary 
(or quasi-periodic, or periodic) solution, and its (global exponential) stability would- 
be characterized by the location of the eigenvalues; this would describe the behavior 
of all the solutions. The closed-loop system, in the adaptive case, is nonlinear. Trying 
nevertheless to do something similar means (1) find a stationary (or quasi-periodic, 
or periodic) solution, and (2) get information about the behavior of the other 
solutions. This can be done, at least in a neighborhood of the particular solution 
found above, by means of studying its (exponential) stability. 

Averaging analysis has been applied for this problem; see [BFS], [ABJ*], or 
[BMP]. Assuming the existence of an isolated (and even hyperbolic) equilibrium 
point for a certain averaged differential equation, an answer to ~e  first point above 
is obtained, i.e., the existence of a quasi-periodic solution whose exponential 
stability/instability is studied via the properties of the equilibrium point. The 
trouble is that the assumption about the existence of an equilibrium point for the 
"averaged differential equation" is very difficult to check even in the case of 
periodic inputs. 

In [RPK] ,  or in [ABJ*], the same results are obtained under a less restrictive 
assumption; what is assumed is just the existence of a so-called "tuned" solution, 
which is something weaker tha an equilibrium point for the averaged differential 
equation. Under some other assumptions, it turns out to be an approximation of a 
quasi-periodic (or periodic if the inputs are assumed to be periodic) solution, and 
the sequel follows. Again the problem is that the existence of this "tuned solution" 
is not automatic. 

In IRK] a value of this tuned solution is proposed: defining it as minimizing a 
cost function works quite well if the minimum is small enough. 

In [PR] it is shown that the fixed point of the averaged differential equation 
exists, if the inputs are chosen in a proper class of inputs, the so-called "test-inputs." 

In this paper we take a first step towards checking, on known adaptive 
controllers with unmodeled dynamics, the existence and stability of this stationary 
solution in the case of periodic small extraneous inputs: we give (in Section 1) 
sufficient conditions for the existence and stability/instability of a periodic solution 
of the closed-loop system, and (in Section 2) we check the sufficient conditions for 
the existence on a wide class of known direct adaptive controllers. This second point 
is new compared with previous literature: the point in our paper is that we establish 
the existence of the stationary solution itself, i.e., the existence of an equilibrium 
point for the averaged differential equation according to the averaging technique 
terminology. 

The method used here consists of considering the initial condition of a periodic 
solution with period K as a fixed point of the K-advance map (see (29), Definition 
3) and studying this map in the case of slow adaptation as a perturbation of the 
case where the parameters are not adapted; the implicit function theorem may be 
used, but it needs assumptions which are not checkable in the example presented 
in Section 2. This motivates the use of topological continuation methods (degree 
theory). 
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1. A General Adaptive Control System 

1.1. Problem Statement 

In this section we deal with the following discrete-time closed-loop system: 

~x(t + 1) = A(8(t))x(t) + B(8(t))v(t), v(t) E R ~, x(t) ~ R n, 8(0 ~ R e, 
(S,) [8(t + 1) 8(0 -t- eC(x(t + 1), 8(0, e, t), 

(1) 

where f~ is an open subset of R e, A(') is a C2-map from [2 to Mn.n(~), B(') is a 
C2-map from [2 to Mn.q(R), C(-, ",-, t) being a C2-map uniformly in t, from 
R n • [2 • R to R e, and C(x, 8, e, .) is K-periodic; (v(t)) is a given K-periodic sequence 
in ~q, and n, p, q, and K are fixed integers. 

System (1) represents an adaptive controller in feedback with a linear time- 
invariant plant, where v is the reference output (to be tracked) and 8 is the generalized 
parameter estimate. For example, if a least-squares algorithm with forgetting factor 
is used, the form (1) is obtained by incorporating the columns of the covariance 
matrix in the 8-vector. If an indirect pole placement were used, the function A(8) 
would incorporate the operation of solving the linear system given by the Bezout 
identity (see, e.g., Section 1.3 of [BMP]). In (1), x contains the state of the plant and 
of the controller. 

As explained in the introduction, we assume here that v is periodic with period 
K and our aim is to find a K-periodic solution (x, 8) of (S~) and study its stability. 
For this, we also require C to be K-periodic. 

Note that the set [2 is not usually assumed to be all ll~ p because some values of 
the parameters are singular for the control problem; for example, they may model 
uncontrollable systems, e.g., the Bezout equation may no longer be solved (indirect 
pole placement). 

Let us explain the use of the rather simple form (1) and the slow adaptation 
assumption. It turns out that most adaptive controllers in feedback with a linear 
time-invariant system with arbitrary finite order and extraneous additive disturbance 
may be represented by the more general equation 

Y(t + 1) = A(8(t))Y(t) + B(8(t))r(t), 
(2) 

8(t + I) = 8(t) + C(Y(t), 8(0, w(t), 2(t)), 

where the adaptation is not necessarily slow and the adaptation law varies in a class 
indexed by 2. Now, slow adaptation may be forced by forcing C to be small, or it 
may come from the smallness of the extraneous input w as shown by the following 
computation. In most cases, the C function satisfies (at least locally) 

C(x/~x, 8, v/eev, 2) = eC(x, 0, v, e2) for all e > O. (3) 

Consequently, if the forcing term w satisfies [1 w(t)[J < x/~, the transformation x/~x = 
Y, x/~v = w leads to 

x(t + 1) = A(8(t))x(t) + B(8(t))v(t), 

8(t + 1) = 8(0 + eC(x(t), 8(0, v(t), e2(t)). 
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The smaller e (i.e., the forcing term) is, the slower 0 is adapted. In fact, property (3) 
means that a small forcing term results in (locally) slow adaptation. In addition, we 
denote the dependence of C on v and 2 by an explicit time dependence and just write 
C(x, O, e, t). This completely accounts for the form of(l). 

1.2. Existence of  Periodic Solutions 

Theorems 1 and 2 give two different sets of sufficient hypotheses for (S,) to have 
K-periodic solutions for small values of ~. In both theorems the important hypothesis 
is about the zeros of the "determining field" E. 

Definition 1. The map E, called the Determining Field, is defined, for any 0 in f2 
such that no Kth root of unity is an eigenvalue of A(0), by 

K - I  

E(O) = ~ C(x(t), O, O, t), (4) 
t = 0  

where (x(t), O) is the only K-periodic solution of (So). 
An easy computation yields 

E(O) = ~ C [I - A(O)"] -x ~ A(O)t-J-XB(O)v(j), 0,0, t . (5) 
t=O j=O 

Here E is defined on the open subset of f2 where A(O) K - I is nonsingular. It is a 
vector field on this open set and acts as the averaged field (0 = E(O) is the averaged 
ordinary differential equation) in averaging theory. 

We now state a much more technical definition. There may be initial conditions 
such that 0 gets out of f2 before K steps, which would cause problems since A, B, 
and C are only defined for 0 in f2; this motivates: 

Definition 2. We call U, the open subset of R" x R p consisting of all the (x, 0) such 
that if (x(0), 0(0)) = (x, 0), then the corresponding solution (x(t), O(t)) of (S,) is such 
that O(t) remains in f2 for all t in [0, K]. 

Note that if (x, 0) is the initial condition of K-periodic solution, it must be in U,. 
With C(x, O, e, .) and v(.) being K-periodic, a solution (x(t), O(t)) of (S t) is K- 

periodic if and only if (x(K), O(K))) = (x(0), 0(0)). Looking for K-periodic solutions 
of(So) is very simple because in (So), 0 is frozen, and the remaining system is linear: 
for any 0 such that I - A(O) K is nonsingular, there is one and only one K-periodic 
solution (x(t), O) of(So); its explicit expression is used in (5). Of course, when e ~ 0, 
0 may vary in (S,), so that, when writing (x(K), O(K)) = (x(0), 0(0)), the 0-equation 
is no longer degenerate. Therefore, the system (St) often has fewer periodic solutions 
than (So). In fact, only a few of the K-periodic solutions of (So) continue into 
K-periodic solutions of (S,); the following theorems identify these "good" periodic 
solutions of (So). 

In Theorem 1 we show that if 0 is a nondegenerate (hyperlaolic) zero of E, then 
the periodic solution (x(t), O) of(S,) does continue into a periodic solution. We have 
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not been able to check this assumption for the example of Section 2.5, based on a 
d-steps-ahead adaptive scheme; this is the motivation for Theorem 2, which employs 
weaker hypotheses using degree theory, satisfied in the (wide) class of adaptive 
controllers describei~ in Section 2. Let us state the theorems precisely: 

Theorem 1. I f  a Oo in ~ can be found such that 

(i) E(Oo) = O, 
(ii) E'(Oo) is nonsingular (E' denotes the derivative of E), and 

(iii) I - A(0o) x is nonsingular, 

then there is an t o and a continuous map 

[ - ~ o ,  Co] --' ~ "  • Rp, 
e ~ (x~, 0~) (6) 

such that (x~, 0~) is the initial condition of a K-periodic solution of (S,) (of course, 
(x~, 0~) is in U,); for e # O, it is locally the only initial condition of a K-periodic solution 
of (S~). 

Theorem 2. I f  an open bounded set V can be found such that V c ~ and 

(i) E never vanishes on aV (the boundary of V), 
(ii) deg(E, V, 0) :/: 0, and 

(iii) det(A(.) r -- I) never vanishes on V, 

then there is an eo > 0 and an R > 0 such that, for le[ < eo, ~R.(O, R) x V ~ U~, and 
(S,) has (at least) one periodic solution with initial condition (x, O) in ~R.(O, R) • V. 

The proofs are given in Appendix A. 

Remarks. (1) The notation deg(f, U, ct) stands for the degree of the map f on the 
open set U relatively to the value a. For a full definition, see [L2] or [M]. 

(2) The hypotheses of Theorem 2 are weaker than those of theorem 1: from (i) 
and (ii) of Theorem 1, 0o is a nondegenerate zero of E, so that defining V as a small 
ball around 0 o, the degree is _ I, which gives (ii) of Theorem 2; (i) and (iii) of Theorem 
2 are immediate consequences of (ii) and (iii) of Theorem 1, respectively. 

1.3. Stability of the Periodic Solutions 

The map E also allows us to characterize the (in)stability of the periodic solutions 
given by Theorem 1: 

Theorem 3. I f  a Oo in f~ can be found such that 

(i) E(Oo) = O, 
(ii') E'(Oo) has no purely imaeinary eiaenvalue, and 

(iii') A(Oo) has no eiaenvalue on the unit circle, 



378 J.-B. Pomet, J.-M. Coron, and L. Praly 

then there is an % and a continuous function of 8 in [0, Sol, (xt, Or), which is the initial 
condition of a K-periodic solution of (St). For ~ v ~ O, it has the same number of 
(exponentially) stable and unstable directions as E'(Oo) (considered as a vector f ie ld)  
plus A(Oo) (considered as a diffeomorphism). 

In particular, i f  0 o is an exponentially stable zero of the vector field E and A(Oo) 
is an exponentially stable matrix, then, for e positive small enough, (St) has an 
exponentially stable periodic solution; otherwise (assuming (i), (ii'), and (iii')) it is 
unstable (i.e., it has at least one unstable direction). 

The proof is given in Appendix A. 

Remarks. (1) Of course, it is understood that O(t) remains in ~, i.e., that 0(0) is in 
Us; this is true for e small enough because, for e = 0, 0 is frozen in f~. 

(2) (ii') and (iii') imply (ii)and (iii) of Theorem 1, so this theorem only deals with 
the solutions given by Theorem 1. 

2. Application to a d-step-ahead Adaptive Control System with 
Unmodeled Dynamics 

2.1. Statement of the Adaptive Control System 

We consider the AR MA representation of a plant: 

D(q-t)y = [q-lN(q-1)]u, t > O, (7) 

where u = (u(t)),, ~ and y = (y(t)),~ N are the input and output sequences, q-i is the 
unit delay operator, and D and N are real polynomials whose degrees are respectively 
d* and n*. 

The control law is given (implicitly) by the following equation, which can be 
solved for u(t) if the first component of O(t) is nonzero (this turns out to have some 
importance, see (13)): 

O(t)r~(t) = yM(t + d), (8) 

where ~ is given by 

�9 r(t) = (u(t), u(t - 1) . . . . .  u(t - n**), y(t), y(t - 1) . . . . .  y(t - d**)) (9) 

(yM(t)) t ,  ~ is a reference output known d steps in advance (the control objective is 
to have y track yM). 

For later notational convenience V is the polynomial vector given by 

Vr(X) = (D(X), XD(X) . . . . .  X"**D(X), X N ( X )  . . . . .  Xa**+aN(X)) (10) 

In (8), 0 is the (n** + d** + 2)-dimensional parameter vector, adapted as follows: 

O ( t )  = O ( t  - 1) + s y ( t )  - -  O ( t  - -  1)r$(t -- d)$(t*-- d). (11) 
1 + ~$(t - d)r$( t  - d) 
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2.2. Computation of the Determining Field E 

The closed-loop system consists of (7), (11), and (8). To use the previous section, we 
must mold the systedn description into an (S,)-like system. In fact, defining x(t) as a 
vector containing enough (and at least as much as O(t)) present and past values of 
u and y, (7) and (8) may be rewritten into the following (possibly nonminimal) 
state-space representation: 

x(t + 1) = A(O(t))x(t) + B(O(t))yM(t + d) (12) 

which contains only two nontrivial equations: those giving y(t + 1) and u(t + 1). 
The latter comes from (8) and is not defined when the first component of 0, say 0 ~1), 
is zero; A(O) and B(O) are therefore defined if and only if 0 ") is nonzero. This 
illustrates the usefulness of assuming, in Section 1, that A and B are only defined 
on f2; here, 

f~ = {0 ~ R p, 0 ~1~ # 0}. (13) 

Of course, C is given by 

y(t) - O(t - 1)r~(t - d) 
C(x, O, e) = 1 + e~(t - d)r~(t  - d) ~(t - d). (14) 

We now apply Section 1, (S~) being given by (12) and (11). Theorems 1-3 of 
Section 1 do not really need the exact form of A and B: all the conditions only 
involve the determining field E and the nondegeneracy of A(O) k -- I. We now need 
the expression for the field E: 

L e m m a  4. System (S~) being given by (12) and (I I), the determining field E has the 
following expression: 

g - I  
E(0)= Z I)~l 2z" -aJ jN(z j ) -  

OrV(z~) 
~=o iOrV(zi)lz V(z-a), (15) 

where V is given by (10), z = e zi~/x (i 2 = - 1), and the p~ '  s are the Fourier coefficients 
of yM(t + d): 

1 K - 1  
yM(t + d) = ~ ~ 3~z-J'. (16) 

j=o 

All the proofs of this section are given in Appendix B. 

2.3. The "Exact Modeling" Case 

This case has been thoroughly treated, e.g., I'GS-]; we take 

n** > n*, d** > d* - 1, d > 1, (17) 

X a-~ divides N, (18) 

X N ( X )  and D(X) are coprime. (19) 
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The two first conditions are, strictly speaking, exact modeling, and the third one is 
the controllability of the plant. Without any assumptions on the reference input yM, 
it is proven in [GS] that if 

~ h a s  all zeros disk, (20) its outside the unit 

then all the signals are bounded and the output y(t) converges to yM(t). If, in 
addition, the reference output is sufficiently rich of order n** + d** + 2, which in 
the periodic case is equivalent to 

(yM) has at least n** + d** + 2 nonzero Fourier coefficients (21) 

(see [BS]), then the output (y) exponentially converges to (yM)i, and the parameter 
estimate exponentially converges to the true value (| defined in (22)); this is proved 
in [BS]. 

Our techniques easily prove local exponential convergence in this case. Under 
assumptions (19), (1 7), and (1 8), there is one value of 0, say | such that (7) may be 
written as 

o T t l I ( t )  = y(t + d), (22) 

this is the "d-step-ahead predictor form" (see, e.g., [GS]). For such a 61, we have the 
following polynomial identity: 

X~| - XN(X) ,  

so that, obviously, E(| = O. Furthermore, E'(61) is easy to compute; differentiating 
(15), we get 

K-1 i~12 V(zJ)V(z-Y) T 
E'(61) = - ~ iorv(zJ)lZ j=O 

which is negative definite when (21) is satisfied (by an argument very similar to 
Lemma 10). This and Theorems 1 and 3 imply the existence of a periodic solution 
for the closed-loop system. Moreover, since N ( X - I ) / X  ~-d is the characteristic 
polynomial of A(61) if (20) is satisfied, this solution is exponentially stable. It is not 
difficult to see that even for e > 0 this solution gives O(t) = 61 and y(t) = y~(t). 

2.4. The Case of  Unmodeled Dynamics 

The results stated in this section are proved in Appendix B. 
Let us consider first the case when the integer d (the delay of the controller) 

satisfies 

K - d** __< d < K (modulo K). 

This implies the existence of an integer a such that 

1 < a < d * * +  1, z 1 - d = z  ~. 

Since n** + a + 1 is less than n** + d** + 2, the least possible dimension of  0, we 



Periodic Solutions of Adaptive Systems 381 

may define 

| = (0, . . . ,  0, 1, 0 . . . .  ,0) r. (23) 
,& 

g �9 
n * * + a + I t h  row 

Then, from (10), the following polynomial identity holds: 

XaN(X)  =- |  (24) 

It is clear that if the reference output is sufficiently rich, of order n** + d** + 2, | 
is the only zero for the expression of E given by (15) (compute (O - O)rE(O); it is 
stricly positive when 0 ~ | Unfortunately, this | is not in f~ (see Definition 1), 
and, even worse, A(| is not defined (because Otl) = 0, see Section 2.2). Hence, in 
this situation no periodic solution may be proved to exist within the framework of 
our theory. We therefore assume now that 1 < d < K - d** - 1 (modulo K), or, 
without loss of generality since we are considering K-periodic solutions, 

l < d < K - d * * - l .  

This is assumption (c) below. Notice that exact modeling plus sufficient richness 
imply (c): (18) implies that d < n* + 1; (17) implies that n* + 1 < n** + 1; sufficient 
richness implies that K > n** + d** + 2, or equivalently n** + I < K - d** - I; 
finally, sufficient richness plus exact modeling imply 1 < d < K - d** - 1. Hence 
there is no contradiction between Section 2.2 and (23) and (24). 

Our main contribution consists in studying the situation of assumptions (a)-(c) 
which is beyond the scope of I'GS] ((b) implies the existence of unmodeled dynamics). 

Let us state these assumptions, recalling that z = e2~/r: 

(a) K > n * * + d * * + 2 .  
(b) n * * < n * -  1 ; d * * _ < d * -  I. 
(c) l < d < K - d** - l. 
(d) There is no zero term in the Fourier decomposition of the priodic entry 

yM. 

(e) No z j (the Kth roots of 1) is a zero of N. 
(f) The polynomials D and X N  are coprime. 
(g) The sum ~f~dlp~tl(zt~-n~JN(zJ)/lOrV(zJ)12)V(z - j)  is zero for no 0 in 

R n * * + d * * + 2 .  

K i M 2 (1 d)3 J T J T J 2 (h) E(O)= ~ - d , l ~ j  I ((z - N(z ) -  0 V(z))/lO V(z)l ) V(z-J) is zero for no 0 
n + d  + 2  in R whose  first component is zero. 

We have the following proposition: 

Proposition 5. Under assumptions (a)-(g), we can f ind  G, an open bounded subset 
o f  R "*'+n**+2, such that, E bein 9 #ire by (15), 

�9 E does not vanish on dG (G's boundary), 
- A(0) K - I defined by (12) is invertiblefor any 0 in G, and 
�9 deg(E, G, 0) :~ 0. 
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The main result is: 

Theorem 6. Under assumptions (a)-(h), the closed-loop system (7), (I I), (8) has at 
least one K-periodic solution. 

Comments on the Assumptions 

Assumption (a) is clearly satisfied when (c) is satisfied and the delay d is smaller than 
the (maximum) number of past values of u in ~(t), because then d ~ n** + 1 and, 
from (c), n** + l < K - d** - 1. 

Assumption (b) means unmodeled dynamics. Precisely, there are not enough past 
values both of u and y in �9 to allow the existence of a 19 such that (22) matches (7). 

Assumptions (c) and (d) together imply sufficient richness (SR) of order n** + 
d** + 2 of the input yM; see IBS]. 

Assumptions (e) is implied by the plant having a stable inverse, as assumed in 
[BS]. 

Assumption (f) requires the plant (7) to be controllable. This clearly a necessary 
condition for proper control. 

Assumptions (g) and (h) are difficult to interpret. The following result shows that 
(g) is "almost always" satisfied. Since we found nothing similar for (h), we study in 
an example (Section 2.5) below what it means. 

Proposition 7. Let K, d, n*, d*, n**, and d** be fixed such that (a) is satisfied. The 
set of (N, D, yM) such that (b)-(e) are satisfied is a natural subset of an (n* + d* + 
K + 2)-dimensional real vector space. It is almost all this space both in the sense of 
measure theory and of Baire theory. 

We study the case 

i.e., the control law is 

2.5. An Example 

n** = d * * = 0 ,  d =  1, 

01(t)u(t) + O2(t)y(t) = yM(t + 1) (25) 

and C (see (14)) is given by 

O(t), e(t)) = y(t) - 01(t] -TI- ~ [ u ~  - -  1)u(t - 1~ +-Y-2~ - - I )  + 02(t - i-~l)y(t - 1) \y(t(u(t - 1)1))" (26) C(x(t), 

Then a computation (or application of Lemma 4) gives the determining field 

(()) E 0,02 = 127) 

where the bar denotes complex conjugate and 

1 K-1 
z~ = z j = e 2~ y~( t  + 1) = x / ~  j=Eo 3)~zj' Nj = D(zi), D 1 = N(zj). 
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The linear plant is still given by (7). Let us examine the meaning of assumptions 
(a)-(c) in this example: 

1. Assumptions~a), (c), and (d) are satisfied if the period is at least 2. 
2. Exact modeling occurs when N is constant and D has degree 1; if the degrees 

are larger, assumption (b) is satisfied. 
3. From Proposition 7, we know that the set of polynomials N and D and input 

yU such that (g) holds is a dense open subset with measure one in the set of 
all the possible N, D, and yM; there is nothing further to say regarding this 
example. 

4. Assumption (h) means that there is no 02 solution of (E(O) = 0 with 01 = 0) 

1 ~1 M2Dj 
I~j I z- f~(z~ - o2) = o, 10212 0 

1 K - I  

~ ~ I.P~12(zi - 02) = 0, 
10212 

i.e., if the determinant of this linear system is nonzero: 

K - 1  K--1 M 2 M 2 Ok 
Z Z i I (28) 

k=O 1=0 

This is a nonzero polynomial in the coefficients of N and D and the Fourier 
coefficients ofyU; see the explanation of this at the end of Appendix B. Hence 
for this example, (h) is "almost always" true as well as (g). 

3. Conclusions 

In Section 1 we have given general conditions for the existence and stability of 
periodic solutions of an adaptive system with periodic excitation. Being able to find 
a periodic solution (which is the natural ideal regime in this case) and its stability/ 
instability provides thorough local knowledge of the closed-loop performance. 

In Section 2 we have presented a very concrete and common class of adaptive 
controllers for poorly modeled plants. We were able to prove the existence of 
periodic solution(s), at least "almost always," but we have no tool to study its (their) 
stability, except in the "exact modeling" case, which is already well known. We 
conclude that this~ study is only a first step toward a complete description of the 
behavior of an adaptive controller in feedback with a high-order linear plant. 

Acknowledgment. We are very grateful to an anonymous reviewer for a careful 
and detailed review. 

Appendix A. Proof of the Results Stated in Section 1 

We first prove Theorem 2 and then Theorems 1 and 3. 
As noticed in Section 1.2, looking for K-periodic solutions of (S,) is the same as 
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looking for f i xed  points of the K-advance map of (S,), which maps (x(0), 0(0)) into 
( x ( K ) ,  0(K)): 

Definition 3. The K-advance map of (S,), o~r,, is defined from U, (see Definition 2) 
to R" x R p as the map taking (x, 0) to (x(K), O(K)), where (x(t), O(t)) is the solution 
of(S,) with (x(0), 0(0)) = (x, 0). In short, 

~,(x(0), 0(0)) = (x(K), O(K)). (29) 

To understand the behavior o f ~  as 5 tends to zero, we introduce ano ther  map 
if,, such that 

('0 0) o ~d,. (30) ~ = I +  el 

Definition 4. Let if, be the map from U, to R" x R p defined by 

( ) ~r 0(0)) = x ( K )  - x(0), Y. C(x ( t ) ,  O(t), 5, t) , 
t = 0  

where (x(t), O(t)) is the solution of (S,) with (x(0), 0(0)) = (x, 0). 

(31) 

A last definition to simplify the notations is 

Definition 5. For  any 0 such that A(O) r - I is nonsingular, we let 

K - I  

)~(0) = [I -- A(O)X] -t ~ A(O)K-J-'B(O)v(j).  (32) 
j = 0  

)~(0) is then the only X such that (X, 0) is the initial condition of a K-periodic 
solution of (So). 

To prove the existence of fixed points o f ~ ,  we might think of using a continuation 
method starting from those of o,~ o. Unfortunately, the fixed points of ~o are highly 
degenerate since the 0-part of ~o'S derivative is the identity. However, from (30), it 
is clear that any zero of r~, is a fixed point of ~ (the converse being true only  if 
e ~- 0), and they turn out to be nondegenerate. These remarks lead us to the following 
method for proving Theorem 2: 

1. Study [in Lemma 8] the case 5 = 0, that is find zeros of f#o from zeros  of E, 
more precisely show that the topological degree of fro on a bounded open 
subset of R" x f2 is nonzero if the degree of E is nonzero on a bounded  open 
subset of f~. 

2. Show [in Lemma 9] that, for e small enough, the degree of r~, on the same 
subset is nonzero too, which guarantees the existence of some zeros for  f#,. 

3. Conclude that these zeros are fixed points of ~ ,  and therefo, re initial condit ions 
of periodic solutions of (S,). 



Periodic Solutions of Adaptive Systems 385 

Lemma  8. I f  V is an open, bounded set such that ~" c f~, 

(i) det(A(-) K - I) has a constant sign on V, and 
(ii) E never vanis~s on OV, 

then, for R > 0 large enough, 

deg(fro, NR,(0, R) x V, 0) - sign{det(A(-) x - I)} deg(E, V, 0). (33) 

P roof  of Lemma 8. It is clear from (31), (32), and (5) that  

fro(X, 0) = 0 if and only if x = X(0) and E(O) = 0. (34) 

This enables us to fix R: E being continuous,  the set Z of all the zeros of  E in V is 
closed and bounded,  so it is compact;  1: being continuous,  x(Z) is compact  and 
therefore bounded,  and we may choose R large enough to have 

Z({0 ~ VlE(O ) = 0}) c ~n.(0,  R/2). (35) 

It is clear from (34) that N'a,(0, R) x V contains all the zeros (x, 0) of  fro with 0 
in V. Fur thermore ,  we have no zero of fro in 0(~n,(0, R) x V) because 

O(.~R.(0, R) x V) = O~n.(0, R) x V c Nn.(0, R) x OV. 

1. I f x  ~ O(~n.(0, R)), from (35), there is no 0 such that  x = X(0). 
2. If 0 ~ or, e(O) # 0 (from (ii) in the hypothesis of Lemma 8). 

Therefore,  in these two cases, from (34), fr6(x, O) :~ O. 
Let us now compute  det[fr;(x,  0)] for (x, 0) such that fro(X, 0) = 0. (fr; denotes 

the derivative of fro.) This is necessary for studying the degree (see (39)). For  this 
purpose we let 

note that  

fro(X, 0) = 0 

We decompose fro as follows: 

x = Z(0) + 4; (36) 

if and only if ~ = 0  and E(O)=O. 

(x, o) -+ (r o) -+ fro(X, o). 

The first map  clea~ly has the derivative 

lp /"  

The second map has the derivative, evaluated for ~ = 0, 

A(O)" -- I .  0. , , '~.  

R(0) E'(o))' 

we give some of the details of this computat ion:  The  top-left block is 
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(O/O~)(x(K) - x(0)) and a computation of (1) from 0 to K gives 

K-1 
x(K) -- x(O) = (A(O) K -- l)(z(0) + ~) + ~ A(O)K-'i-IB(O)o(j). 

j=0 

The bottom-left block, R, is a p x n matrix whose form is of no significance. The 
top-right block is zero for x(T)  - x(0) = 0 when r = 0, no matter the value of 0. 
The bottom-right block is (Old0) [~,~_~ C(x(t), O, O, t)], where (x(t), O) is the periodic 
solution of (So); this is exactly E'(O). 

So we have 

\ R ( O )  E'(O)}\O., .  I .  J 
when x=x(O ). (37) 

i 

And, therefore, 

det(fr6(x, 0)) = det(A(0) K - I) det(E'(0)) when fro(X, 0) = 0. (38) 

Now we must distinguish two cases: 

Case 1. Zero is a regular value of E (i.e., E'(O) is nonsingular whenever E(O) = 0). 
Then, since det(A(.) r -  I) never vanishes on V, (0, 0) is also a regular value in 
R" x R p for fro (see (38)), hence (from Definition 1.1.4 of [L2]) 

deg(C~o, ~R,(0, R) x V, (0, 0)) = ~ sign det fr~(x, 0) 
(x. 6) r dgR,,( 0, R) x V; ~o(X, 0) = 0 

= ~ sign det(A(O) r - I) sign det E'(O). (39) 
O~ V;EtO)=O 

This gives the lemma since 

deg(E, V, 0) = ~ sign det(E'(0)). (40) 
0r V;E(O)=O 

Case 2. Zero is not a regular value of E (i.e., for some 0 in f~, E(O) = 0 and E'(O) 
is singular). Here, (39) and (40) cannot be used to compute the degrees of fro and  E 
because some determinants are zero. 

However, Sard's theorem (Theorem 1.2.1 in [L2])enables us to find a regular 
value of E, ~r (tr e RP), as close as we want to the nonregular value 0. On the other 
hand, E being continuous and dV being compact, there is an r > 0 such that 
~rp(0, r) contains no point of E(OV), and, consequently, {0} x ~r .(0,  r) contains 
no point of fro(C')(~'R.(0, R) x V)); hence, choosing Ilal[ < r, from Theorem 2.1.2 of 
[L2], 

deg(E, V, 0) = deg(E, V, a) (41) 
and 

deg(fro, .~a.(0, R) x V, 0) = deg(fr o, ~'R.(0, R) x V, (0, a)). (42) 

Besides, the same computation as in Case I with a instead of 0ap and (0, (r) instead 
of 0n. • Rp gives 

deg(ffo, &R.(0, R) x V, (0, a)) = sign{det(A(-) r - I)} deg(E, V, (r). (43) 

From (41), (42), and (43), we easily deduce the lemma in this case. �9 
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We now extend the result of this lemma to some small positive e: 

Lemma 9. I f  there exists a bounded open set V such that V c D, 

(i) det(A(-) x - I) has a constant sign (and never vanishes) on V, and 
(ii) E never vanishes on a V, 

then an R > 0 and an eo > 0 can be found such that, for  tel < to, 

(ct) &R.(O, R) x V = U,, 
(•) ~ never vanishes on O(&R.(0, R) x V), and 
(y) deg(fr Na~(0, R) x V, 0) = deg(f~o, &~.(0, R) x V, 0). 

P roof  of Lemma 9. Let 

Co = sup IIC(x, O, e, t)l[. 
(x,O,~)r xV x[0, 1] 

As long as O(t) can be computed,  i.e., O(t - 1) ~ U~, we have 

II0(t) - O(t - 1)11 < eCo and II0(t) - 0(0)11 < kcolel < Kcolel.  

If we choose, for instance, e < (1/2Kc o) dist(dD, V), then (ct) is satisfied. 
The map 

(x, 0, e) ~ ~(x ,  0) 

is cont inuous from ~R.(0, R) x V x [0, +oo)  to N n x R p so it is uniformly con- 
tinuous, for instance, on N'~.(0, R) x V x [0, 1]; hence, 

~ converges uniformly on .~R.(0, R) x V to ~o when ~ --. 0 (44) 

From (ii), (34), and (35) we deduce that fio never vanishes on 0(NR.(0, R) x V). 
Furthermore,  (44) and the compactness  of O(~R.(O, R) x V) clearly imply the ex- 
istence of an ~o such that  (/~) is satisfied for any e < to. 

Condit ion (fl) being proved, (t ~ ,  fit) is a homotopy  on N~,(0, R) x V joining fo  
to ff~, which, thanks to (fl) (see Theorem 1.3.5(3) of [L2]),  gives (~). �9 

Proof  of Theorem 2. The degree on V is the sum of the degrees on all its connected 
components  (see Theorem 2.2.1(1) of [L2]),  so that  (ii) implies that  E's degree 
relative to 0 is nonzero on at least one of V's connected components ,  say V'. F rom 
(iii), det(A(.)K _ 1) has a constant  sign on V', so that, with V' instead of V, asumption 
(i) in Lemmas 8 and 9 is satisfied and, using these lemmas, we get, for e small 
enough, 

deg(ff~, ~ r . ( 0 ,  R) x V', 0) r 0, 

which means that  ff, has att least one zero in &R.(0, R) x V'. 
Since a zero of if, is a fixed point  of ~ and a fixed point of ~ gives a periodic 

solution of (S~), the theorem is proved.  �9 

Now, the proof  of Theorem 1 is quite simple, and that  of Theorem 3 needs only 
a few computations:  
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Proof of Theorem 1. Considering (38) and the assumptions, the implicit function 
theorem clearly gives the result. �9 

Proof of Theorem3. From continuity, the K-periodic solution has the same 
(in)stability property as the corresponding fixed point of the K-advance map. Then 
we apply the well-known first approximation stability theorem (see ILlI):  a suf- 
ficient condition for (in)stability of a fixed point is given by the position with respect 
to the unit circle of the eigenvalues of the derivative of this map, evaluated at the 
fixed point; this is precisely the matrix .9~,'(x~, 0,). Let us compute it. 

Differentiating (30) we get 

where (x~, 0.) is the initial condition of the periodic solution for (S,). defined in (6). 
On the other hand, we notice that from Theorem 1 and the continuous differ- 

entiability of A, B, C, x~, and 0~, the Hadamard Lemma (see [AE]) yields the 
existence, in a neighborhood of zero, of a bounded function A(e), satisfying 

f~(x,, 0~) = fa;(Xo, 0o) + eA(e). (46) 

Now, from (37), if we define S by 

(47) 

we obtain 

S = ( A(O~ -- I + eAl(e) , eA2(e ) "~ 
eA3(E ) ~E (0o) + 82A4(e)/' (48) 

where Ai(e), i = I, 4, are bounded on a neighborhood of zero. Now we apply Lemma 
1 of [K]: since A(Oo) r - I is nonsingular, there exists a function L(e) bounded on a 
neighborhood of zero such that S may be put in triangular form by the change of 
basis 

in such a way that 

T S T _ t = ( A ( O o ) r - l + e ( A t + e L A a )  0 ) . ( 4 9 )  
~A a e.E'(Oo) + e2(A, - AaL) 

Relations (45)-(49) lead to 

M~,~,(x~, O~)M_t = (A(Oo)r + 8(At + ~LAa) 0 ) 
~A a I + eE'(Oo) + e2(A4 - AaL) 

with 
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oz, 2{A(0o) x} + o(1) and 1 + It follows that the eigenvalues of 3"~ (x~, 0~) are 
e Re 2{E'(0o)} + o(e), where o(1) and o(e)/e are continuous functions o f t  which tend 
to zero as e tends to zero. This finishes the proof. �9 

Appendix B. Proof of the Results Stated in Section 2 

Proof of Lemma 4. We have to compute the vector field E, the particular system 
(S,) considered being given by Section 2. From (4) of Definition 1 we have 

K - 1  
E(O) = ~,, (y(t) - ordp(t -- d))dp(t - d), (50) 

t = 0  

where y(t) and r are the only K-periodic solutions of the system (7), (8) such that 
O(t) = 0. As these y(t) and u(t) are periodic, we may write their Fourier decomposition 

1 x- i  1 r - i  
Z Z 151) 

j = o  x / / g  - j = o  

and, applying the Parseval identity to (50), we get 

K - I  
E(O) = Z (f?J -- zdJoT~i)J)Zdj~j" (52)  

j=O 

Let us now compute the ,9~ and ~fs  by using the 39~'s. In order to make the 
notations clearer, let us define the X-polynomial vectors Z. and Zy by 

ZT=(1 ,  X . . . . .  X"*',0 . . . . .  0) and z T = ( 0  . . . . .  0,1, X . . . .  ,xd'*). (53) 

Then, from (9) and (10), we have the following expressions for the polynomial vector 
V and the time-dependent vector ~: 

V(X) = O(X)Z.(X) + XN(X)Zy(X),  (54) 

�9 (t) = [ Z , ( q - l ) u  + Zy(q-~)y]( t ) .  (55) 

Then, from (7), (8), and (54), 

OrV(q-X)u(t)  = D(q-~)yM(t  + d), (56) 

o r v ( q - 1 ) y ( t )  = q - I N ( q - X ) y M ( t  + d), (57) 

and, from (56), (57~ and (55), 

orv (q -X )O( t )  = V(q-~)yM(t  + d). (58) 

Now, from (51), (57), (8), and (58), we get 

z J N ( z J ) r  

= = o v(z j)  , 

Equations (59) and (52) give (15) and the lemma. 

pM V(zJ) " (59) 

Before proceeding with the proof of Proposition 5 and Theorem 6, let us state 
the following technical lemma: 
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Lemma 10. Under assumptions (b), (c), and (f), any n** + d** + 2 vectors taken 
from among all the V(zi), for 0 < j < K - 1, are linearly independent in C **~ 

Proof of Lemma 10. 
P is the following ~ x n** + d** + 2 matrix: 

p = 

We have V r = (I, X, X 2 . . . . .  Xa)P r (for one positive 5) where 

k 

[d o 
dl 

n** + 1 

c o l u m n s  

1 

�9 . .  ( o )  

do 
dl 

�9 . ." 

(0)  . . .  : 

dd* 

dd* 

d** + 1 
columns 

k 1 
Y 

o (o) t 
n O " . .  

nl ". 0 i 

�9 . n O 

nn* n 1 

(o) ~ 

Matrix P has full rank when (f) is true since its columns are extracted (because 
n** < deg X N  = n* + 1 and d** < deg D = d*) from the Sylvester matrix of  the 
coprime polynomials D and XN (see [W]). This proves that the components of 
V are n**+  d * * +  2 linearly independent polynomials, and the result then 
follows from the properties of the Vandermonde matrix given by the n** + d** + 2 
different z J�9 �9 

Proof of Proposition 5. All the real difficulties in this proof are contained in Lemma 
11 given in Appendix C. To use it, we must first point out that our E(0), given by 
(15), looks like the E(x) of Lemma 11, defined in (70)�9 In order to see this, consider 
(15), and just select together the j th  term and the (K -- j)th, which is its complex 
conjugate (for each component). This gives 

l n t ( K / 2 )  . _ _  . 

2j%TQ~. f f  , (60, 
j = O  

E ( 0 )  = 

where the 2j's are given by 

and the uj's and Q/s are given by 

for 0 < j < K/2, 

~j = 1~712 (61} 

u i = 2 Re(zCl-d)JN(z j) V(z-J)), 

Qj = 2 Re(V(z -j) V(zJ) T) 

(62) 

(63) 

u o = N(1)V(1), (64) 

Qo = v(1) v(1) r, (65) 
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and, if K is even, 

ur/2 = N ( -  1) 1/"( - 1), (66) 

QK/2 = I, ' (-  1) V( - 1) r. (67) 

Considering (60), we apply Lemma 11 with p = n** + d** + 2, the 2i, Qi, and 
u~'s being given by (61)-(67). Let us check that the assumptions of this lemma are 
satisfiecl: 

~ The Qj are obviously positive symmetric (see (65), (67), and (63)). 
�9 Assumption (H1) is satisfied since the image of Qj is spanned by the real and 

imaginary parts of the complex vector V(zJ), and ui is a real linear combination 
of them. 

�9 Assumption (H2) is satisfied because Lemma 10 tells us that the Im Qj span 
Rn"+d'*+2; in addition, every Qj is positive. 

�9 Assumption (H3) i s satisfied from (61) and (d). 
�9 Assumption (H4) is exactly (g). 
�9 Assumption (Hs) derives from (e) and (f): if one y ~ 0 is in the kernel of some 

Qj, then, since the Qj are symetric, it is orthogonal to the corresponding Im Qfi 
this implies, from expressions (65), (67), and (63) and Lemma 10, that the sum 
of these Im Qi is not the whole space and is a direct one, which finally, from 
(H1), implies that the corresponding u~ are independent. 

Applying Lemma 11 then gives a bounded open subset of R n**§247 G(r, R, rl), 
described in (71), such that E does not vanish on the boundary of this set and E's 
degree on this set is nonzero. In addition, A(0) K -- I is invertible for any 0 in 
G(r, R, ~/); if not, there would be 0 in G(r, R, ~l), Xo of suitable dimension (in (12)), 
and j (0 < j  < K - 1) such that A(O)Xo = Z~Xo, so that x(t) = Xo ztJ would be a 
solution of(12) for yM = 0. Then ~(t) = ~o z'j would be a solution of(58) for yM = 0 
and some D o extracted from x 0. This would imply oTV(z j) = 0 and, from (63), 
QjO = 0, which, from (53), is impossible if 0 is in G(r, R, rl). �9 

Proof  of Theorem 6. Since G, given by Proposition 5, is bounded and E is con- 
tinuous and does not vanish on the hyperplane {0 ~1) = 0}, it does not vanish on 
H' = {0 ~ G; 10~1~i < ~} for ct small enough either. Then let 

V --- G(r, R, rl) - H'. (68) 

The hypotheses of Theorem 2 are satisfied: 

�9 V c f~ because Vc~ {0 tlJ = 0} = ~ (from (68)). 
�9 E does not vanish on 0V because it vanishes neither on 0G (from Proposition 

5) nor on H'  (because ~t has been chosen small enough). 
�9 deg(E, V, 0) is equal to deg(E, G, 0) - deg(E, H', 0) from (68), and deg(E, H', 0) 

is zero because, from Proposition 5, E does not vanish in H'. 
�9 det(A(') K - I) never vanishes in 1/, because, from Proposition 6, it does not 

vanish in G. �9 
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Proof of Proposition 7. We consider (N, D, yM) as a vector in R "*+d*+g+2 made of 
the coefficients of the polynomials N and D and the real and imaginary parts of the 
Fourier coefficients of the K-periodic sequence yM, and we show that to satisfy (e)- 
and (d), we must eliminate a finite union of sets whose measure is zero and whose 
closure has an empty interior: 

Assumption (e): N(z j) = 0 is a hyperplane in R n*+~l*+/f +2, we call it H b. 
Assumption (f) requires the "Sylvester Resultant" of XN and D to be nonzero 

(see IW]). This is a nonidentically zero polynomial in the coefficients of N and D. 
Let us denote the nontrivial algebraic hypersurface where it vanishes by He. 

Assumption (d) is true outside the union of K hyperplanes; let us denote this 
union by He. 

Assumption (g): The sum can be written 

Re[z~l-d~JN(zJ)V(z-J)] with K = 2 k  or 2 k +  1. (69) 
i=o IOrV(z~)12 

(I) If k +  1 < n * *  + d * *  + 2 ,  (g) is obviously satisfied if the vectors 
Re[z~X-d~iN(zi)V(z-i)] are linearly independent. This is true if some determinant, 
which is a polynomial in the coefficients of N and D, is not zero. This polynomial 
is not identically zero since Re[ztX-d~N(zi)V(z-i)] are linearly independent for 
N = 1 and D = X d''. Let Ha be the nontrivial algebraic hypersurface where it 
vanishes. 

(2) If k + 1 > n** + d** + 3, let Hd be the nontrivial algebraic hypersurface 
where the n** + d** + 2 first Re[z~-a~iN(z i) V(z-J)] are linearly independent. Since 
(69) (or the sum in (g)) is homogeneous with respect to 0, we do not change the 
meaning of (g) by compelling 0 to be on the unit sphere of II~ "**+a*~ (denoted 
S"**+a**+~). Hence, the set of the (N, D, yt~) for which (g) fails is exactly n(J) where 
n is the canonical projection from R ".+a*+r+2 x S "'*+a**+l onto R "*+a*+r+2 and 

J = {(N, D, yU, O) ~ ~.*+a*+r+2 x S"**+d**+1/(69) = 0}. 

Now, with 

J1 = {(N, D, yM, 0) e I1~ "*+a*+tr x S"**+a'*+I/(N, D, yM) r Ha and 

(N, D, yM) r He and (69) -- 0}, 

we have, clearly, 

n(J) = n(Jx) w Ha. 

We have proved that the points where (e), (f), (g), or (d) fail are all in 

H~ u H~w Haw H, wn(J1), 

where n(J~) is empty in the case when k + 1 < n** + d** + 2. The H b, H,, Hd, and 
He are nontrivial algebraic hypersurfaces, i.e., they are the set of the zeros of a 
nonidentically zero polynomial; it is clear that their measure is zero and that they 
are closed with an empty interior. We end by proving, if k +*1 < n** + d** + 3, 
that n(J~) has measure zero and has a closure with an empty interior: 

(1) n(Jx) has measure zero because it is the projection of Jx onto R "*+a*+r'2 and 
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J~ is an (n* + d* + K + l)-dimensional manifold. Proof of this fact: Jl being 
entirely outside Hs, any (N, D, y~t) in Jl is such that the n * * +  d * * +  2 first 
Re[zt~-d~iN(z j) V(z-l)] are independent; therefore (69) = 0 gives the n** + d** + 2 
first 1.9~1 as a fud'ction of the coefficients of N, D, and the other [J~l; these 
n * * +  d * * +  2 independent nondegenerate (because we are outside He) equa- 
tions give Jt as a submanifold of ~n*+d*+g+2 X S n**+'t**+l with codimension 
n** + d** + 2, i.e., with dimension n* + d* + K + I. 

(2) Let (Alp, Dp, y~)  be a sequence in n(J1) converging to (N~, D~, y~)  in 
~,-+d.+x+2. There is a sequence (0p) such that (Np, Dp, y~, 0p) is in J1- Since 0p 
remains in S "*'+d*'+l, we may assume that 09 converges to one 0~. If no OrV~(z g) is 
zero, then, by continuity, (N~, D~,, y~, 0~) is a zero of (69) so that (N~, D~, y~)  is 
in n(Jl). If some O~V~(z j) are zero, (N~o, M D~, y~ ) must be in H~, H~, or H, because 
if not, from (e) and (d), the terms in (69), in which the denominator tends to zero, 
do tend to infinity when p ~ ~ because the numerator does not tend to zero and, 
from (f) and Lemma 10, the Re[ztl-d)~N~(zJ)V~o(z-J)-I such that OrV~(z ~) = 0 are 
linearly independent: the component on each of these Re[z{l-~JN~(zJ)V~(z-J)] 

w 

would tend to infinity, which is impossible since (69) is zero for any p. We have 
proved that 

n(Jl) = Jl U Hb W H, u H,. 

Hence rt(J~) has measure zero and, consequently, its interior is empty. �9 

Explanation of the End of the Example in Section 2.5. We have only to prove that 
expression (28) is a nonzero polynomial. It is nonzero because when, for instance 
D = X 2 + 1, N = X 2, and yM(t) = z t + z-', then (28)'s value is 2 sin2(4n/K). 

Appendix C. The Key Technical Lemma 

We use ('1") to denote the inner product on •P: (xly) = xry. We consider: 

(ui)i~ Ix.. N}, a family of real p-vectors, 
(Q~),~, {1...N/, a family of real positive symmetric p • p matrices, and 
()-i)i~ {1...N}, a family of real numbers. 

We define the map E from R p - [,.J~ Ker Q~ to R p and the set G(r, R, rl) (for R > 0, 
r > 0, and r />  0) b'y 

. u i -  Qix 
E(x) (70) 

G(r, R, r/) = {x �9 R~l(for all i �9 {1 . . . . .  N}) r < Ilxll < g and IIQ,xll > n}. (71) 

All the results of Section 2 rely upon the following lemma. 

Lemma I1. Under assumptions (HI)-(Hs),  the degree of the map E on G(r, R, rl) is 
odd (hence nonzero) for r and ~l small enough and R large enough. In particular, E has 
(at least) one zero. 
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Assumptions (H1)-(Hs) are defined below: 

(H 1) For  all i e { 1 . . .  N}, ui e Im Qi. 
(H2) ~ = 1  Qi is nonsingular. 
(Ha) For  all i ~ {1 . . . . .  N}, 2~ > 0. 
(H4) For  all y e (R p - [,.)~ Ker  Q,), ~ l , ( u , / ( y l Q , y ) )  ~ o. 
(H 5) For  all I c { 1 . . . .  , N}, [ ~ i  �9  Qi is not invertible] implies [(ui)~,) is a linearly 

independent family]. 

To prove this lemma, we define, for t > 0, the maps 

N 
E,(x) = IIxll" 2 t, u , -  + ix) 

(xlQix) + tllxll 2" 

Note that, for t v~ O, E, is a C*-map all over R p. In order to prove Lemma 11, we 
first establish the following result concerning the Et maps: 

Lemma 12. There exist strictly positive real numbers r0, Ro, r/o, and t o such that, 
for any r < to, R > R o, rl < 70, t < to, and any t in ]0, to] and x in ~P, we have 

E,(x) = 0 implies [x = 0 or x ~ G(r, R, r/)]. 

Proof of Lemma 12. If the result was false, there would exist four sequences (r.), 
(R.), (t.), and (r/.) in ]0, + ~ [  and (x.) in R p - {0} satisfying the following six 
properties: 

(i) r. ---, 0, 
(ii) R.---, + ~ ,  

(iii) ~t. ~ 0, 
(iv) t. ~ 0, (72) 
(v) (for all n e ~)  Et.(x.) = 0 and x. ~ 0, 

(vi) (for all n e N) IIx.II > R. or [Ix.II < r. or (there exists i e {1, . . . ,  N} 
such that  ]lQix.[I -< q.). 

Since x. ~ 0, let 
1 

p.---IIx.[I ,  y.  = - - x . .  (73) 
P. 

Eventually extracting from (x.) a subsequence also denoted (x.), (y.) converges to 
one y with 

Y, --* Y, IlYll = 1. (74) 

To show the contradiction, we assume (72)(i)-(v) to be true, and show that (72 (vi) 
is then necessarily false, i.e., under  assumptions (72)(i)-(v), eventually extracting a 
subsequence from (x.), we have, for any n and i, [Ix.II < R.  and IIx.II > r.  and 
tlQix.ll > ,7.. This is done in two steps: 

Step 1. Conditions (72)(i)-(v) imply that (Xn) is bounded. 
subsequence of it (denoted (x.) too) would satisfy 

If it were unbounded,  a 

p. -~ +oo. (75) 



Periodic Solutions of Adaptive Systems 395 

Then, from (70) and (73), we would get 

PflUi - QiY. - t .y .  
Et.(x.)  

,=1 (y.IQ,y.)  + t. " 

Let us divide by p a, do the scalar product with y, and separate the sum into the 
terms such that Q~y ~ 0 and those such that Qiy = 0. When Q~y = 0, we have 
(uilY) = (ylQiy.) = 0 because (from (H1)) Qi is symetric and ui ~ Im Qi. We would 
finally get 

(E,.(x.)ly) = ~ 2 p~l(ylui) - (ylQiy.) - t . (yly .)  

p3 O,y~o (Y.IQiY.) + t. 

On the other hand, from (72)(v), 

E,.(x.)  = O, 

so that we would have 

- Z t .(y]y.)  
Q,y=o 2~t. + (y.]Qiy.)" 

- - t .(y]y.)  
(for all n ~ N) Z 2i p2x(ylu') (yIQiy.) tn(YlYn) = Z 2i t. + (y.lQiy.)" 

Q,,r (y.lQiy.)  + t. e,y=o 
(76) 

Now, in (76), the left-hand term tends to -~Q,y#o  ~-i, which, considering (H2) 
and (H3), is negative and nonzero; besides, the right-hand term is positive when n 
is large because t. and (y.IQ~y.) are always positive and (y]y.) ~ 1. Therefore (76) 
cannot be satisfied for n large. We have proved that (x.) is bounded. 

Step 2. With (x.) being bounded, conditions (72)(i)-(v) imply that (x.) (or a sub- 
sequence o f  it) has a limit x such that Qix v ~ 0 for all i. With p. = I[x.[I being 
bounded, we have, may be only for a subsequence of(x.), 

p. ~ p > 0, hence, x. -~ x 

From (70) and (73), we get 

/.~" 21ui - p.(Qiy. + t .y . )  p~2E,.(x.) 
1 t. + (y.lQiy.) 

" = Z ~.i u i -  p.(Qiy. + t .y . )  
e,yr t. + (y.[Qiy.) 

- p. ~ QIY" + t"Y" 
Q~y=o 2i t. + (y.[Qiy.)" 

We notice about the first sum that 

~', ).i ui -- p.(Qiy. + t .y.) ~ 

Q~y~o t. + (Y.tQ~Y.) 

thus it is bounded. 
We now consider two cases: 

with x = py. 

Z /~i Ui 
Q,y=o t. + (y.IQIY.) 

(77) 

21 ui -- pQiy (78) 
e,yeo (yiQiy) ' 
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Case 1. If one Qsy at least is zero, the last two sums are not empty,  but, f rom (Hs), 
the us such that Qiy = 0 form an independent  set; hence there exists a positive 
number  C such that  

l i ~ = ) . s t n U  s 2 1 
e o + (Y~IQsYn) > C ~ 22 �9 +oo.  (79) ea=o [tn + (ynlQsy.)] z 

Furthermore ,  about  the third sum: 

P~ ~ Qsy. + t.yn 2 
Oa=o As t~ + (Y~IQsY~) 

< p~ ~ 22 llQsy~ + t.y~ll 2 
e,y=o [tn + (y~lQsy~)] 2 

< ( sup  p2~ sup IIQsy~ + tny~ll 2 Z 
1 22 

/ e,y=O e,y~O [t. + (y.IQ,y.)] 2 

but all the IIQ~y. + t .y ,  It 2 such that  Qsy = 0 tend to 0, so that 

P~ ~Q,,=o Qiyn+t~y~ 2 +  (y~IQ,y~) ( , ~ =  1 ) 2st" = e. 22 - with 
e o [t~ + (y.lQsy.)] 2 

then, from (77), (78), (79), and (80), we get 

ll p~ 2 E,. ( xn) [I --. + oo 

but this is impossible because (72)(v) implies Etn(Xn) = O. 

~n --'~ 0, 

(80) 

Case 2. l f n o  Q~y is zero, then the last two sums in (77) are empty  and x is nonzero ,  
because if it was zero (p = 0), we would have, from (77) and (78), 

p~2Etn(xn) --. ~ us 
1 )" (yt-Qiy) 

but, from (72)(v), Et.(x.) = 0. F r o m  (Ha), this is impossible. We have proved  that 
x.  tends to an x such that  no Qsx is zero, this is step 2. �9 

P roof  of  Lem ma  11. Let r o, R 0, r/o, and t o be given by L emma  12. 

Step 1. It is clear that, i f r  < r o, R > R 0, and r / <  r/o , the map  

[0, 1] x G(r, R, r/) ---, R p, 

(s, x ) ~  IIx 114~g(x) 

is a smooth  h o m o t o p y j o i n i n g  E restricted to G(r, R, r/) to E o restricted to G(r, R, r/) 
never vanishing for x ~ gG(r, R, r/), so that  (from Theorem 1.3.5(3) of  [L2] )  

r < to, R > R o, r / <  r/o implies deg(E, G(r, R, r/), 0) = 6eg(E o, G(r, R, rl), 0). 
(81) 
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Similarily, from Lemma 12, i f r  < to, R > Ro, r /< r/o, and e < to, the map 

[0, 5] x G(r, R, rl) --* R p, 

(t, x ) ~  E,(x) 

is a smooth homotopy allowing us to state (again from Theorem 1.3.5(3) of [L2]) 

deg(E o, G(r, R, q), 0) = deg(E,, G(r, R, q), O) 

and, considering (81), 

r < r o, R > R o, r /<  qo, e < to implies deg(E, G(r, R, r/), 0) = deg(E,, G(r, R, rl), 0). 
(82) 

Step 2. We need to compute deg(E~, G(r, R, r/), 0). As it is easier to study E(x) when 
x is large or close to 0, we first establish (83) according to which this degree depends 
only on the values of E for x large or close to 0. 

Defining N~p(0, R) as the ball in R p with center 0 and radius R, it is clear that 
G(r, R, 11) is included in it, and, more precisely, that ~ , ( 0 ,  R) is in fact the union of 
three disjoint open sets and their boundary: G(r, R, ~I), ~np(O, r), and U~/ {xl r < 
Ilxl[ < R and IIQ~xlf < '1}, so that, from Theorem 2.2.1(1) of [L2], 

deg(E~, ~R,,(0, R), 0) = deg(E~, G(r, R, rl), O) + deg(E~, ~r~,(0, r), 0) 

+ deg(E, ,  U {xlllxll > r and llQ,xll < rl}, 

But, from Lemma 12, the zeros of E, in NRp(0, R) are all in G(r, R, rl) except 0, so 
that E, never vanishes in U~ {xlr < Ilxtl < R and IIQixl[ < q}. Hence the degree of 
E~ with respect to this set is zero and 

deg(E,, G(r, R, q), 0) = deg(E~, ~Rp(0, R), 0) - deg(E,, NR,(0, r), 0). (83) 

Step 3. 

but 

We notice (from (70)) that 

) (xlg~(x)) = Ilxll 4 - Xl + 1 + ~llxll 2 

1 2. (u~lx) < ~ 2~[]uil[. 
x '(xlaix)+~llxl[ 2 - ~  1 

So that, i f e R ~ 2 i  > 2~2,11u,  lf, we can be sure that 

x e 0&R,(0, R) implies (xlE,(x)) < 0. 

This means that E, is pointing inward all along the R-sphere, so 

(t, x)~--~ - t x  + (1 -- t)E,(x) 

is a smooth homotopy on N'R,(0, R)joining E~ to --I  never vanishing on the 
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R-sphere, and, therefore, the degree of - I  being ( -  1) p, 

N 
2 ~. Jhllu,ll 

~R > 1N 

1 

implies deg(E,, ~n,(0, R), 0) = ( -  1)'. (84) 

Step 4. We consider the smooth homotopy: 

r0, 1] x ~a,(0,  r) --, n , ,  

6 "  u, - s(Q,x + ~x) (s, E . , ( x ) =  ifxlt" Ai ~-~ ~ "~-:~'~x 1- ~ �9 

From (H,) and (Hs), we may derive the existence of two positive numbers 51 and 
C I such that 

le[ < sl if and only if ~ Xi(xlQix) + allxll 2 >_ ilxll---- ~ 

because, if this were wrong, there would be two sequences (x,) and (e=) such that 
~.--,  0, IIx./I = 1 (because of the formula's homogeneity), and the left-hand term 
tends to zero as n --, cr Point ~ being an accumulation point of (x,), this would 
contradict (H4) if ~ belonged to no Ker Qi and (Hs) if N belonged to some. 

On the other hand, 

2~t x + ellxll 2 < -- for some C 2 > 0. ~ ~ , j  Ilxll 

Hence, choosing r < C2/2C 1 := rl, we have 

Cl 
x ~ n . ( O , r )  implies IlE,,x(x)ll > -~-Ilxll 2. 

This proves that E,., never vanishes on 0&n~(0, r) so that, from Theorem 1.3.5(3) of 
[L2-1, 

deg(E,.o,~r~(O,r),O)=deg(E,,l,@a~(O,r),O) if r < r  1 and a < a  1, 

but E,,, = E,, and, since E,. o is even, its degree is even. It follows: 

if r < r 1 and ~ < ~1, deg(E,, ~n~(0, r), t3) =- 0 [mod 2]. (85) 

Step 5. From (82)-(85) we get 

r < min(ro, rl) 

t / <  t/o 

< min(%, ~1) 

g > max(Ro,  2~2,11u,11~ 
J 

implies deg(E, G(r, R, 1/), 0) - 1 [mod 21. 
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Consequently, this degree is nonzero, and E, given by (70) has at least one zero 
inside G(r, R, rl). �9 
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