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A ROBUST ADAPTIVE MINIMUM VARIANCE CONTROLLER*

L. PRALYt, S.-F. LIN$, AND P. R. KUMAR

Abstract. This paper addresses the twin questions ofperformance and robustness ofan adaptive controller
for single-input, single-output, linear, stochastic systems. The authors present an adaptive controller that
has the following properties:

(1) Attaining optimal regulation and tracking in the ideal, minimum phase, known upper bound on
system order, known sign and lower bound for the leading coefficient (bo), positive real condition on noise
case, and self-tuning in a Cesaro sense to a minimum variance regulator in the case of pure regulation.

(2) Providing mean square stability when the system is of minimum phase, with known upper bound
on order but not necessarily satisfying a positive real condition on the noise.

(3) Providing mean square stability when the system is in a graph topological neighborhood (ofcomputable
size) of an ideal plant as in (1), and the statistical properties of the disturbance are violated.

(4) Continuing to stabilize the system when the adaptation gain is prevented from vanishing.

Key words, robustness, performance, adaptive control, optimal control, minimum variance control,
graph topology, minimum variance regulator, self-tuning regulator

AMS(MOS) subject classification. 93C40

1. Introduction. Over the past 15 years, stochastic adaptive control theory has
seen much development. The notable pioneering contributions of Astr6m and Witteno
mark [2] and Ljung [14], [15] analyzed, respectively, the possible equilibrium values
of the parameters to which an adaptive control law could converge, and the stability
properties of these equilibrium points. This set the stage for the subsequent rigorous
development of the foundations of the asymptotic theory of the so-called self-tuning
controllers.

In 1981, Goodwin, Ramadge, and Caines [6] were able to successfully use some
extensions of the martingale convergence theorem to show the convergence of a certain
stochastic Lyapunov function. They were thus able to establish that for a variety of
stochastic gradient algorithms the time average of the squared tracking error is almost
surely optimal, a property we shall refer to as self-optimality. These results were then
extended by similar arguments to some other algorithms; for example, an adaptive
controller based on a modified least-squares estimate was analyzed by Sin and Goodwin
[24]. In 1985, Becker, Kumar, and Wei [3] addressed the issue of convergence of the
parameter estimates, and, in so doing, they also established the convergence of the
adaptive regulator. By exploiting some geometric properties of the parameter estimate
sequence, and some subsequent probabilistic analysis, they were able to show that
while the parameter estimates converge almost surely (a.s.), they do not converge to
their true values. Instead, the parameter estimate vector converges to a random scalar
multiple of the true parameter vector. However, since the particular control law used
for the regulation problem employs only ratios of estimates of individual parameters,
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the adaptive control law remains invariant under scaling of the parameter estimates.
Hence convergence of the adaptive regulator to the true optimal regulator takes place
almost surely. This result therefore proved the so-called self-tuning property of the
adaptive regulator. Recently, this self-tuning property has been extended by Kumar
and Praly [11] to the tracking problem, where the goal is not to regulate the system
output to stay close to zero, but to track a given reference trajectory while optimally
rejecting the noise entering into the system. The essential difference between the
regulation and tracking problems is that in the former problem it is not necessary to
estimate the coefficients ofthe colored noise polynomial (in the ARMAX representation
of the system), while in the latter it is necessary to do so if we want to track arbitrary
reference trajectories. Since an additional number of parameters have to be estimated
in the tracking problem, it turns out that more "excitation" of the system is needed.
This excitation is in turn guaranteed if the reference trajectory is sufficiently exciting
of appropriately high order (see Kumar and Praly 11]). In many practically important
situations, such as, for example, the set-point problem, however, the reference trajectory
may only be a constant level, which is sufficiently exciting of order one, or some other
trajectory that has a low order of excitation. In these situations, it turns out that not
all the coefficients of the colored noise polynomial need be explicitly estimated, but
rather knowledge ofa smaller set ofparameters derived from the coefficients is adequate.
This allows the design of an adaptive tracker that uses a smaller dimension parameter
estimator (which is still of larger dimension than is needed in the regulation problem).
Such smaller dimensional adaptive trackers have also been proved to be self-tuning
(see Kumar and Praly 11]).

The successful results quoted above essentially show that the adaptive regulators
and trackers tune themselves to optimal regulators and trackers for the unknown system.
Inevitably, such results are crucially dependent on making some "exact" assumptions
about the unknown system being controlled. In particular, for such exact asymptotic
optimality and strong convergence results to hold, it has been assumed that the
stochastic system being controlled is linear, of minimum phase, of known order, and
the disturbance entering into the system is a stochastic process satisfying some specified
statistical properties.

Assumptions of the above type have been called "ideal" assumptions, and ques-
tions have been raised, especially in deterministic adaptive control (see Egardt [5],
Rohrs, Valavani, Athans, and Stein [22], and Ioannou and Kokotovic [7]), about
whether the adaptive controllers designed on the basis of these assumptions, and for
which a successful "ideal" theory has been built, are robust with respect to these
assumptions. Specifically, do "small’ violations of these assumptions lead to drastically
different behavior from that predicted by the ideal theory?

The order requirement arises since we must choose the dimension of the adaptive
regulator before we can tune it. However, the true system need not necessarily be (and
is frequently not) of the exact order that is assumed. It is well known that "small
perturbations" of an nth-order linear system can lead to systems of arbitrarily high
order.

Regarding the disturbance, the assumption made is that it is a stochastic process
with a rational spectral density, and thus is representable as the output of a system
driven by white noise. Moreover, the order of this "coloring" filter is assumed known.
Finally, it is also assumed that the noise satisfies a certain "positive real" condition.
This is essentially a requirement that the disturbance be close to a white noise and be
not too colored. However, none of these assumptions need be strictly satisfied in
practice. The positive realness condition also arises in recursive system identification
using the pseudolinear regression method (see Solo [25], Ljung and S/Sderstr/Sm [16],
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and Kumar and Varaiya [12]). It is basically a pseudogradient condition (see Ljung
and S6derstr6m [16] and Kumar [10]) guaranteeing that the direction in which the
parameter estimates are recursively adjusted (in the types of recursive identification
algorithms being employed) is appropriate.

Regarding the minimum phase restriction, it is well known (see Astr6m 1 ], Peterka
[17], Shaked and Kumar [23], and Kumar and Varaiya [12]) that when a stationary
control law that minimizes the output variance is used to control the system, then the
control actions used become unbounded if the system is of nonminimum phase.
However, for adaptive control where a nonstationary, nonlinear control law is used, it
is not necessary that the minimum phase assumption be satisfied in order for the
control inputs to be bounded. Hence the minimum phase assumption is a restrictive
condition; it is easily violated by a very fast unstable zero that corresponds to a very
small numerator perturbation of the transfer function.

Much attention has therefore been given in recent years to the issue of robust
adaptive control, especially in deterministic adaptive control, to determine under what
conditions signals in the system remain bounded under violations of assumptions (for
example, see [8], [9], [20]). In the adaptive control of stochastic systems, however,
noise is an essential feature of the system, and it is of interest not only to guarantee
boundedness of signals, but it is also important to reject the noise optimally, or at
least much of it. Thus, performance of the adaptive control algorithm in rejecting the
corrupting noise, and thus tracking the desired reference trajectory with small tracking
error, is also an important goal in stochastic adaptive control.

In this paper, therefore, we address the twin questions of performance as well as
robustness of adaptive control laws for linear stochastic systems. In particular, we
address the issue of adaptive controllers that are performance-optimal when the ideal
assumptions are satisfied, and that are robust with respect to perturbations of the system
from the ideal assumptions.

We will consider two types of perturbations of the system from optimality. First
we consider perturbations of the coefficients of the colored noise polynomial that can
be large and that allow gross violation of the positive real assumption. This problem
has been treated by Egardt [5] for bounded noise and extended in Praly [18] for
mean-square bounded noise.

Second, we consider system perturbations. Vidyasagar [26] has identified the
appropriate topology on the set of linear systems, called the graph topology, which is
the weakest topology such that there is a stabilizing linear controller for a nominal
ideal system that remains stabilizing, and such that the closed-loop transfer function
is continuous (uniformly over all frequencies) when perturbations with respect to this
topology are allowed. Thus, for any given weaker topology which thus allows more
perturbations, there is not necessarily any single linear control law that continues to
maintain stability. Since self-tuning or adaptive control is really an online or real-time
search over the space of linear controllers, we cannot expect to do better than allow
for perturbations with respect to this graph topology. Thus while (nonadaptive) linear
controllers are designed for perturbations with respect to the graph topology from a
given nominal system, adaptive control laws should be designed to maintain stability
with respect to the graph topology from all possible nominal systems. This indeed is
the goal of this paper. We will achieve it by extending the approach of Praly [19] to
the vanishing gain case.

Last, asymptotic optimality and convergence results for adaptive controllers rely
on adaptive parameter adjustment schemes that use an asymptotically vanishing step-
size, i.e., the gain converges to zero. However, to maintain the ability to adapt, the
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gain should be nonvanishing. Thus we also need to analyze the effect of nonvanishing
gain on the ideal adaptive control algorithm.

In this paper we therefore exhibit an adaptive controller for linear stochastic
systems that is optimalfor all ideal plants, and remains stable with respect to violations
of the positive real condition, and with respect to perturbations of the system, in the
graph topology, from all ideal plants. Moreover, we show that stability is preserved
when the gain is prevented from going to zero.

Specifically, we present an adaptive controller for which we prove the following
performance and robustness properties:

(1) Attaining optimal regulation and tracking in the ideal case when the system
is of minimum phase with a known upper bound on the system order, and when the
coefficients of the colored noise polynomial satisfy a positive real condition (Theorem
5.1). In the case of the regulation problem, we also show that the adaptive controller
self-tunes in a Cesaro sense to minimum variance regulator (Theorem 5.2).

(2) Providing mean-square stability when the system is of minimum phase with
a known upper bound on the system order but does not necessarily satisfy a positive
real condition (Theorem 4.6).

(3) Providing mean-square stability when the system is in a graph topological
neighborhood of computable size of an ideal system as in (1) (Theorem 6.8).

(4) Continuing to stabilize the system when the adaptive gain is prevented from
vanishing to zero (Theorem 7.7).

There are still many unresolved questions. Maybe the most important is to
determine whether adaptive controllers without the modifications we have used are
already robust, even though our modifications are well motivated. Moreover, we have
not really been able to deal with the removal of the minimum phase assumption, even
though, as we will show later, our adaptive controller is robust with respect to graph
topological perturbations that do result in nonminimum phase systems.

2. The adaptive controller. In this section we present our adaptive controller. In
the next five sections we analyze the effect of the adaptive controller when it is applied
to a variety of systems satisfying varying assumptions. (Thus we are reversing the usual
order of presentation, where the intended systems are first described before the adaptive
controllers are defined!)

We will suppose that the system under control is a single-input, single-output
system with input sequence u(t) and output sequence y(t). We will also suppose the
following:

(A2.i) The reference trajectory y"(t) is bounded.

There are several fixed parameters that are chosen a priori. We choose the
following:

(A2.ii) Three integers nR, ns, and nc (which describe the dimensions of our
adaptive controller, but not necessarily those of the system);

(A2.iii) Two positive numbers 0 < Ao < )tl (which serve as bounds on certain eigen-
values);

(A2.iv) Three positive numbers p > 0, tro > 0, and K > 0;

(A2.v) A parameter vector 0 of dimension (nR + ns + nc + 2) whose first com-
ponent is larger than or equal to tro;

(A2.vi) An integer d _-> 1 (which models the delay but may not be equal to it).
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We use the regression vector c(t) defined as

ck(t):=(u(t), u(t-ns), y(t), y(t--nR), y’(t+ d--1), y"(t + d-nc)) r.
Given O(n), F(n), and p(n) > 0 for all n -<_ t- 1, and having applied a new control

input u(t-1) and observed a new output y(t), we recursively define the adaptive
controller as follows"

(2.1)

(2.2)

p(t):=p(t-1)+max (p, llck(t-d)ll2), t>=l

p( t_ d) := oh(t-d)
p’/2(t

(we choose p(t) 0 for =< 0),

(2.3) g(t) :=

(2.4)

l + r(t-d)F(t-d)(t-d)’
e(t) := y(t)-Or(t-d)(t-d),

e(t)
(2.5) g’(t) := 1/2p (t)

(2.6)

(2.7)

(2.8)

Fl(t) F(t-d)-g(t)F(t-d)(t-d)r(t-d)F(t-d),

F(t):=(1 A--I)F’(t)+AoI (wechoose AoI<=F(O)<-A1 I)

01(t) := O( d) + g( t)F( d)( d).( t),

(2.9) 02(t) := 01(t) + max (0, tro- s(t)) FI(t______)
Fll(t)

where

s(t) := first element of the vector 02(t),
FI(t) := first column of the matrix F(t),

Fll(t) := (1, 1)th element of F(t),

(2.10) 0(t) := 0 +(02( t)- 0 e) min (1 KA1 )oll 0i-- 011
Finally, the control input is defined implicitly through

(2.11) Or(t)6(t) y’(t + d).

Explanation ofadaptive control algorithm. There are essentially only three features
of our adaptive control law that are different from the usual adaptive control laws.

Normalization. The sequence p(t) is a normalization (or scaling) sequence. The
vector 4S(t-d) obtained by normalizing (i.e., dividing) b(t-d) by pl/2(t) is then the
normalized regression vector, and similarly ,(t) is the normalized prediction error. These
normalized signals are then used to update the parameter estimates.

Condition number bounding. The matrix F(t) is what is usually called the "covari-
ance matrix." It is well known in recursive identification (see Lai and Wei [13] and
Kumar and Varaiya [12]) that if the condition number of the so-called "covariance
matrix" remains bounded as t- , then the parameter estimates converge to their true
values. Equation (2.7) ensures that the eigenvalues of F(t) remain within the interval
[Ao, All, thereby keeping the condition number uniformly bounded. (In fact, as the
reader can verify, any F( t) >- Fl( t) satisfying the property that its eigenvalues lie in
the interval [Ao, A] can be used.)
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Parameter estimate projection. Finally there is a set of two modifications that
ensure that the parameter estimates are kept bounded, while at the same time making
sure that the first component of the vector 0(t) (which is an estimate of the so-called
"high-frequency gain" of the system) is kept positive and bounded below. This is done
in two stages. The first stage, (2.9), ensures that the first component is larger than tro.
The second stage, (2.10), keeps the parameter estimates inside the sphere with center
and radius KA 1/Ao by projecting them radially onto the surface of the sphere whenever
they wander outside.

Remarks on modifications. The reasonableness of the modifications of normaliza-
tion and eigenvalue bounding can be seen from the following calculation. Normal
unmodified adaptive control laws using least-squares parameter estimates would use
the (d interlaced) recursions

O(t)=O(t-d)+
R-l( d)qb( d)

l + qb T d)R-l( d)qb( d)
(y( t) oT( t-- d)dp( t- d)),

R(t)-- R( d) / qb( d)b T d).

These recursions are clearly equivalent to

O(t)=O(t-d)+
R(t-d))-l b(t-d)

p(t) pl/2(t)

qbr(t-d)(R(t-d))-lqb(t-d)1 + i?-2) p(t) pl/2(t)

(y(t)- Or(t d)(t- d)
pl/2(t)

R(t-d)..)
-1

O(t) O(t d) +
-"’p-(-t; (t- d)

(t).
I + T(t_d)(R(t-d)) -’

p(t)
qb(t-d)

Thus we see that modified adaptive control uses F(t-d) instead of (R(t-
d)/p(t)) -1. This is reasonable since R( t- d)/p( t) <-_ I, and F(t-d) also has a lower-
bounded minimum eigenvalue. Hence both R-l(t-d)/p(t) and F(t-d) are of the
same order and grow at the same rate. Last, the bounding of the maximum eigenvalue
of F(t-d) is a reasonable effort at keeping the condition number bounded.

An intuitive rationale for the introduction of normalization is the following. Let
us consider the case where the system is not of the order assumed. Then, generally we
can assume that the system can be represented in the following form (which also allows
infinite-dimensional systems):

y(t)=ay(t-1)+bu(t-1)+ (aiy(t-i)+[3iu(t-i))
i=2

where the summation represents the portion of the system dynamics that has not been
modeled. Then, under the-assumption that ns--nR=O, we have th(t-1)=
(u(t-1),y(t-1)), and so for any 0=(01, 02) T,

y(t)-r(t-1)O=(a-O2)y(t-1)+(b-O1)u(t-1)+ (aiy(t-i)+fliu(t-i)).
i=2
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This modeling error may be unbounded irrespective of the choice of 0. However, the
neglected component can be bounded by

(ce,y(t-i)+fliu(t-i))
i=2

it’[3i y2(t-i)+u t-i)
i=2 i=2

bythe Cauchy-Schwarz inequality. Noting that i=2 (y2(t- i)+ u(t i)) <- p(t), where
pl/:(t) is the normalization factor, we see that ly(t) (t 1)01 <= Mo, when {cei} and
{/3i} are in 12. Hence the error due to mismodeling is bounded when we use the
normalized quantities instead of the original variables. This is the heuristic reason for
our use of normalization.

The purposeful bounding of the parameter estimates (by keeping them in a certain
sphere), which is our last modification, does not cause any problems, at least when
the "true parameter vector" is known to satisfy a similar bound, thus allowing conver-
gence of the parameter estimates to their "true values" if that is necessary. As we show
later, there need not even be a "true parameter vector" for this modification to be
reasonable. In fact, Egardt [5] has shown that some sort of parameter boundedness
is necessary for good behavior. Similarly, keeping the first component of the parameter
estimates bounded below is tolerable at least when the true parameter vector also has
the same lower bound on its first component.

It should be noted that our bounding of the eigenvalues of F(t) is somewhat
similar to the case of the stochastic gradient algorithm (see Becker, Kumar, and Wei
[3]). In fact, the stochastic gradient algorithm is a special case of our modified adaptive
controller that is obtained when we choose Xo X in (2.7). In general, however, we
expect that the initial transient performance of the adaptive controller will be closer
to the least-squares algorithm, but that the asymptotic convergence rate will be governed
by that of the gradient algorithm, although we have not been able to establish either
of these results analytically.

The modifications present in our adaptive controller, which were first proposed
in Praly [21], therefore, all stem from reasonable motivations. In what follows we
actually show the power of these modifications in a variety of situations.

3. Some properties of the adaptive controller. Interestingly enough (and very useful
to us), the adaptive controller that we defined earlier satisfies some useful conditions
irrespective of the system to which it is applied.

Let us define O as the intersection of the closed sphere with center 0 and radius
K, with the closed half-space So=> tr0 (where So first component of vector 0 O). Note
that by construction (see (A2.v)) 0 belongs to O. For any 0 O, we define the prediction
error by

(3.1) wo(t) :: y(t) 0 Tb(t d)

and its normalized version by 0(t) := Wo(t)/pl/Z(t).
We wish to emphasize that the results of this section are obtained without any

assumptions on 0(t). The following preliminary results are of much interest, and will
be very useful to us. Since they are a direct consequence of our definitions, their proofs
are omitted.

LEMMA 3.1.
(i) l=>g(t)>-l/(l+Al);
(ii) If 0 (R), then o(t) oll--< K,, for some constant K
(iii) p(T) > t=l II(t- d)ll 2.
Proof The proof is trivial. [-!
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It should be noted that g(t) is the only eigenvalue of the matrix [I-
g(t)F(t-d)h(t-d)fr(t-d)] that is not equal to 1. Since (2.8) can be rewritten as
01(t)=[I-g(t)F(t-d)f(t-d)r(t-d)]O(t-d)+g(t)F(t-d)h(t-d)(t), it is
then clear that g(t) tells us how contractive the homogeneous part of this update
equation is, and (i) provides a lower bound on the rate of convergence ofthe parameters.
Statement (ii) above merely makes note of the fact that 0(t) is kept bounded.

LEMMA 3.2. Define a Lyapunov function Vo( t) := O(t) O) TF-I( t)( O( t) 0), for
0 (R). Then

Vo( t) <- Vo( t- d) + ff2o( t) g(t) ’2(t).

Proof
Step 1. (Fl(t))-1= F-l(t-d)+ (t-d)r(t-d). After some algebra and (3.1),

we have

(3.2) (01(t)-O)7"(F’(t))-l(ol(t)-O) Vo(t-d)+ o(t)-g(t)2(t).

Since (Fl(t))- >=F-(t) and because of (3.2), we have

(3.3) (01(t)--o)TF-l(t)(Ol(t)--O)<= "Co(t--d)+ ff;2o(t)--g(t)P.2(t).

Step 2. Let A’(t)=(O2(t)-O)rF-l(t)(O(t)-O)-(Ol(t)-O)’F-(t)(O(t)-O).
Then some algebra yields A’(t) (02(t) + 0(t) 20) rF-(t)(O(t) O(t)).

Now we consider two cases.
Case 1. If tro<-S(t) then 01(t) O(t) and so N(t) =0.
Case 2. If cro > s(t) then

O’0- S(t)A_’(t) 02(t) + 01(t) 20) Te
Fll(t)

o- So(t)
-F(t) [s(t)+(-s(t))+s(t)-Zs]<--O (sinces(t)<tro<So)

where e (1, 0,. , 0) T

Hence, in any case we have

(3.4) 02(t) 0) rF-l( t)( 02(t) O) <= Vo(t- d) + ff20(t) g(t) ’2(t).

Step 3. For convenience, let M and d denote

Ml:=(O(t)-O)rF-l(t)(O2(t)-O) and

Now consider two cases again

dl:= K A-- 1

;to o2(t) 0 II"

Case 1. If d => 1, then 0(t) 02(t) and so M Vo(t).
Case 2. If dl < 1, using (2.10) and the Cauchy-Schwarz inequality, then

M1- Vo(t)=(O2(t)+ O(t)-20)rF-l(t)(O2(t)-O(t))

(_d2,)llO2(t)_Oll z a K O= O

1]02(t)-Oll 2

[1-d2-2(1-dl)d,]>O.,

Hence, in any case, M >= Vo(t) and the result follows
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The above recursive bound on the "Lyapunov function" will be useful sub-
sequently.

LEMMA 3.3.
(i) So(t) --> cro;
(ii) I]0(t)ll _-< II011 + K(A,/Ao)=: R;
(iii) e(t)= y(t)- ym(t);
(iv) IIo(t)-o(t-d)ll<-Vl(1 +/o)lO(t)l;
(v) For any 0), e2(t)<-_p(t)(l +Al)(Vo(t-d) Vo(t))+(l +A1)w20(t)

and 0 <-_ Vo(t) <- V4 TM 1/Ao(K + K(A1/Ao))2.
Proof Formulas (i)-(iii) follow almost by definition.
(iv) Because []g(t)F(t-d)(t-d)]l_--</2, it follows that

(3.5) 01(t) O(t- d)ll--< --[o(t)[.
From the algorithm, we can easily see that

(3.6) 02(t) 01(t)) 7"F-1 (t)( 02(t) 01(t)) (O’o-- S(t))2

o

(3.7) l102(t)_Ol(t)l12 Aa (o Ilo(t-d)-O t)ll =,
(3.8) IIo(t)-o=(t)ll<=llo2(t)-o(t-d)ll
Using (3.7) and (3.5), we have

(3.9) 02(t) 01(t)[I 2 <=o I’( t)l"

Combining (3.8), (3.9), and (3.5), we have

o(t) o(t- d)ll--< o(t) 02(t)11 / o=(t) o(t- d)ll-<- 2110=(t) O(t- d)ll

_--< l+oo)l’(t)[.
(v) From Lemmas 3.2 and 3.1(i),

’2(t)
<-- g( t).2( t) <= Vo( t- d) Vo( t) + ff2o( t),
I+A1

and the bound on e2(t) follows readily. On the other hand,

Vo(t)<--llo(t)-oll =<-- -Ol[/g,o/
and the claimed bound follows, since IIo-o11_-< K due to the requirement that
OO. [3

The first result above merely states that the subsequent projection onto the surface
of the sphere continues to preserve the property (i). The fourth result above gives a
bound on the increments of the parameter estimates in terms of the normalized errors,
while the last result gives a bound on the normalized errors themselves.

This last result is fundamental. It shows that insofar as the norms of the sequences
are concerned, the adaptation law may be regarded as a static gain operator with
inputs wo(t), /p(t) and output e(t). The gain from w2o(t) to e2(t) is simply (1+A1),
which increases as the speed of adaptation measured by the largest eigenvalue A1 is
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concerned. It tells us that the error given by the parameter estimates will be smaller
than x/1 +A1 times the error given by any vector 0(R). The gain from p(t) to e2(t) is
(l+A)(Vo(t-d)-V(t)). Suppose now that, due to the boundedness of V0(’), the
"mean" value of Vo(t-d)-Vo(t) is close to zero. Then boundedness of e2(t) will
follow from the small gain theorem [4] if the operator e(t)- x/p(t) has bounded gain
and the operator e(t)- wo(t) is an operator whose gain multiplied by x/1 + A is smaller
than 1. Moreover, since this result holds for all 0 (R), we have

1 t+" 1 +r

"t= e(i)<= =tE p(i)(1-A)(Vo(i-d)-Vo(i))+(l+A)minoo 1 t=t2., Wo(i)

for all t-> d and T. This tells us why optimality can reasonably be expected to hold.

4. Stability in ideal, not necessarily positive real case. In this section we analyze
the performance of the adaptive controller when it is applied to minimum phase
ARMAX systems of known order. We do not make the usual positive-real assumption
on the coefficients of the colored noise polynomial; in fact, we do not even assume
any stochastic properties of the disturbance except for mean-square boundedness.
Nevertheless we show that the adaptive controller proposed in the previous section
mean-square stabilizes the system. (In the next section we show that stability result
can be strengthened to one of optimality when a positive real condition is satisfied.)

We consider therefore the following ideal system"

(4.1) A(q-)y(t) q-dB(q-1)U(t)+ C(q-1)w(t), >- 1

where

A(q-) 1 + ., a,q -i B(q-) biq-’ bo O, C(q-) 1 + ciq-’
i=1 i=0 i=1

Note that we assume the following:

(A4.i) Positive numbers ,o, A, delay d and reference output y"(t) are the same
as that used in the adaptive controller (see 2).

We only assume that the noise or disturbance {w(t)} is mean-square bounded, i.e.,

1
(A4.ii) lim sup - w2(t) -<_ K < a.s.

Tcx

Regarding the polynomials A, B, and C, we make the following assumptions.

(A4.iii) B(z) has all zeros outside the closed unit disk.

-1), and C(q-1), there exist polynomials S*(q-1), R*(q-), andGiven A(q-1), B(q
Q*(q-1) so that

(4.2)
(4.3)

S*(q-1)A(q-1)+ q-dR*(q-’)B(q-’)= B(q-1),
S*(q-’) Q*(q-’)B(q-1).

We will assume that, with ns and nR corresponding to the choices in the adaptive
controller, we have

(A4.iv) S*(q-1) is of degree ns,

(A4.v) R*(q-1) is of degree rig, i.e.,
R

S*(q-1) Y’. s*q-’ and g*(q-1) r*q-.
=0 =0

We define

(4.4) 0* (So*, s*s, ro*,’’’, r*R, 0,..., 0),
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and make the following assumptions:

(a4.vi) (0 0") T(0 0") _-< K;

(A4.vii) So* => tro, where So* is the first component of 0".
With these assumptions in hand, we can proceed to our proof of stability. In what

follows we denote the components of 0(t), the parameter estimate, by

(4.5) O(t)=(So(t),. ",S,s(t), ro(t)," ", r,,(t),-c,(t),. .,-c,c(t)) .
As we have observed at the end of 3, we must first understand how the normalizing

sequence p(. is related to eZ(t), the sum of the squares of y(. and u(. ).
LEMMA 4.1.

Tp<=p(T)<-K2 Y’, Y"2(t) + 2 (e2(t)+w2(t)) +To forsomeconstantK2.
t=l t=l

Proof Let

chr(t) := (u(t-1), u(t- ns), y(t), y(t-- nR), y"(t + d--1),

(t+d-nc)),
or(t) :-- (Sl(t),""", Sns(t), ro(t), rnR(t), -cl(t),""",-Cnc(t)) r.

Note that these "reduced" vectors are obtained by removing the first component
from the vectors 4)(t) and O(t). From Lemma 3.3(iii) and assumption (A4.iii), we
obtain that

T T--1

(4.6) [[4(t-d)llZ<=C Z (Y2(t)+e2(t)+w(t)),
t=l t=l

for some constant C1. From (2.1) we have

T

(4.7) p(T) <- Tp+ E (u2(t-d)+l]chr(t-d)[[2)
t=l

Using (2.11), (4.6), and Lemma 3.3(ii), we get

E u d)=
y (t+d) t)b (t) 2

,=1 ,=1 So(t)

2 r 2R2 ,
(4,8) <----tr--o Z y"(t)+----3- [14,(t-d)ll 2

t=l O’ t=d+l

T
<-- C E (ym2(t) + e(t) + wZ(t))

t=l

for some constant C2

When we combine (4.6)-(4.8) the result follows. [3

The following is a technical result that we use below.
LEMMA 4.2. Let v(t)>=0 be a sequence of positive real numbers for all >= 1. If
T1/T t=l v(t) <- V, for all T>-_ 1, then

q+k v(t) ( q+ k)(i) t=q+lt-<V l+log whereq>=l;

q+k v( t) V
(ii) Y <-- (q+k)l- whereq>=l, O<-a<l.

t’-q+l 1 a
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Proof Let X(T) (1/T) 2 ",=1 v(t); then v(t)= tX(t)-(t- 1)X(t- 1).
q+k v(t) q+k 1

(i) Y, 2 X(t)-X(t- 1)+- X(t- 1)
t=q+l t=q+l

+ X(t- 1)
=X(q+k)-X(q)+ 2

t=q+l

NV 1+ NV l+log
t=q+l q

+ v(t) + (t-l)
(ii) 2 2 --X(t)-X(t-1)

t=q+l t=q+l

N(q+k)-X(q+k) + 2 (t-l) X(t-1).
,=q+l (t-l)

If 0 a < 1, then (t 1) a(t 1)-. Therefore we have

E (t-1
)

a E t- (q+k) 1-

=q+l (t-1 =q+ 1-

Hence the result follows.
LEMMA 4.3. For any , 0 < 1, and with Vo(" the sequence shown to be bounded

in Lemma 3.3, there exists a constant C such that
q+k

t(Vo(t-d)-Vo(t))C(q+k), qdl.
t=q+l

Proof The proof is by induction. Consider the case where d 1. Then,
q+k

t=q+l
t(Vo(t-1) Vo(t)) (where0 -< Vo(t) <- V4fromLemma3.3)

q+k

<=qaV4+oV4 (t-1)-l<=2V4(q+k).
t=q+l

The induction is now on d. Suppose that for i= 1,..., d- 1 there exist Ci such that

q+k

E t(Vo(t-i) Vo(t))<--Ci(q+k), q>-d.
t=q+l

Then, let us consider
q+k

=q+l
t(Vo(t-d)- Vo(t))

q+k q+k

t(Vo(t-d)-Vo(t-d+l))+
t=q+l t=q+l

t(Vo(t-d + l)- Vo(t))

q+k

t=q+l
t( Vo( t- d) Vo( t- d + 1)) + Cd-,(q + k)

<=2(q+k)(d-1)V4+(2V4+Cd_,)(q+k)=: Cd(q+k)

and the induction is complete. [3

We now reinterpret Lemma 3.3(v) to show that (t) is small in the mean-square
sense. This will then show that the operator e( t) - x/p( t) can be considered small in
the mean static gain operator, at least as far as norms are considered. Unfortunately,
this property holds true only for time intervals where p(t) is much larger than t.
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LEMMA 4.4. There exist almost surely finite random variables and such that for
X’q+ksome given e>0, q+l<=t<-q+k, q>=l if t/p(t)<=e then ,,=q+l

L+ ev(1 + A1) log (q+ k)/q.
Proof From Lemma 3.3(v) and Lemma 3.2, we have

q+k

(4.9)
t=q+l

2(t) C0 - (1 + A,) min vZo(t)
0O t=q+l

for some constant Co. By the definition of 0", we have

(4.10) Wo.(t) Q*(q-l)C(q-’)w(t).
TBecause w(t) is almost surely mean-square bounded, i.e., lim sups- (1 / T) t=

a.s., Q.(q-1) and C(q-1) are polynomials, from (4.10) we see that there exists an
almost surely finite random variable such that

1 T

(4.11) sup - E w.(t) -<_ ff a.s.
t=l

If t/p(t)<--e, then o.( t) <- e( Wo.( t)/ t) for t[q+l,q+k], q>-l. Combining this
inequality, Lemma 4.2(i), and (4.11), we have

E (-2(t)=Co+(l+A1)e l+log
q+

L+ e(1 + A 1) log
q + k

=q+l q q

With Lemmas 4.1 and 4.4 now established, we are in a position to "close the
loop." To do so we need an appropriate version of the small gain theorem given in
the next result.

LEMMA 4.5 (Bellman-Gronwall Lemma). If p( T) <- M4T+ Mzp( To) +
T-, 2( t)p( t), then/t=To+l

p(T) <= M4T+ M2p(To)
T-1 T-1 T--1

H (1 + yK’2(t))+ )’/4 t’2(t) H (1 +
t= To+l t= To+l i=t+l

for some positive constant M2 and some positive random variable 114.
Proof The proof uses mathematical induction and we provide a sketch. For

T To+ 1 statement is obviously true. Suppose that the statement is true for To + 1 _-< T _-<

T1, then p(TI+l)<-44(T+l)+Mzp(To)Xl+ylI4X2, where

Tl T1
XI:=I+T ’, ’2(t) H (l+y’2(J)) H (l+y’2(J))

t= To+I j= To+I j= To+I

and

T T1
X2:-- 2 t,z(t)+ Y ,2(t j2(j) H (1+ y,2(i))

t= To+l t= To+l j= To+l i---j+

T1 T
’. t’2(t) I-I (l+y’2(i))

t= To+l i=t+l

We now show that the adaptive controller mean square stabilizes the system under
the assumptions stated at the beginning of this section. Note that we are not assuming
a positive real condition on the noise.
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THEOREM 4.6. For system (4.1), subject to the assumptions (A4.i)-(A4.vii), our
algorithm ensures that:

1 7‘

(i) limsup- ] yZ(t)< a.s.,
T-oo t=

1 7‘

(ii) limT‘_sup - t1= u2(t) < c a.s,

Proof For (given by (4.11)), Kz (given by Lemma 4.1), and A1, there exist
random variables t and t such that

(4.12) d 1- K2g(1 + A1) and 0 < c < 1 a.s.

Suppose now that there exists a time interval (To, T1] such that

T
p(T)-

where T may be infinite. (Note that if such an interval does not exist, then we are done.)
Because y’(t) is uniformly bounded and w(t) is almost surely mean-square

bounded, by means of Lemma 4.1, there exists
M" T+ K2 t=T-1 e2(t) almost surely.

Since e(t)=(O*-O(t-d))rd(t-d)+wo.(t), from Lemma 3.1 and (4.11) there
exist M2 and/3 such that Z 7‘0 eZ(t)< Mzp( To)+ 1/3 Tot=l

Using this inequality and the Bellman-Gronwall Lemma, we have
T--1 T--1 T--1

P(T)<=4T+Msp(To) [[ (l+K2Z(t))+K2]4 t2(t) 1-[ (l+K2’(i)).
t= To+I t= To+l i--t+l

q+k 62 K2/, 1--From Lemma 4.4 and (4.12), we have l-I ,=q+l (l+K2 (t))<=e (q+k)/q) .There-
fore there exists an almost surely finite random variable M6 such that

(4.13) p(T)<I(/I6[T+p(To)(T-1) T-1

+(T--1)l-,=To+lt62(t)
Choosing 0=0* in Lemma 3.2, we have (1/(l+A))?.z(t)<=(Vo.(t-d)-Vo.(t))+
.(t). Hence we get

T-1 T-1

tag’E(t)--<--(l+A1) t(Vo.(t-d)-Vo.(t)+zo.(t)).
t=To+l t= To+I

From Lemmas 4.3 and 4.2(ii), we have
7‘-’ w2*(t)

< M7(T- 1) at)<=cl(r-1) +(l+A,)g 1-
t:To+ t:To+

for some//7. We can rewrite (4.13) as p( T)/T <= -’/6(1 + 1/g +//7). Hence there exists
a random variable gl such that

T
->Y>0.(4.14)

p(T)--
T-dFrom Lemma 3.1(iii), we know that 1/g > (1/T) ],= yZ(t). This implies that

TlimsupT‘_ool/TYt=lYZ(t)< a.s. Similarly, lim supr_ (1/T) T

a.s.

5. Optimality in the ideal, positive real case. Now we turn attention to the so-called
ideal case, where the noise satisfies a positive real condition, and show that the preceding
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stability results can be improved to prove that the sample mean-square variance of the
output error is actually optimal. Also, in the case of regulation, we prove that the
adaptive controller self-tunes in a Cesaro sense to a minimum variance regulator.

Given the system in the previous section, let us suppose that the polynomials

S

S(q-) := E s,q-’ and R(q-) := riq
-i

=0 =0

satisfy the equations

(5.1) S(q-1)A(q-1)+ q-dR(q-)B(q-1)= C(q-)B(q-1),

(5.2) S(q-) Q(q-)B(q-1).

Then we can define 0(t): (So,’", s,s, ro,"’, r,,-c,’.’,-cnc) 7"

Regarding the noise {w(t)} we assume the following:

(A5.i) It is a martingale difference sequence on a probability space (12, F, P).

Specifically, denoting by Ft the sub-r-algebra generated by the observation up to
and including time t. We assume that:

(A5.ii) E{w(t)lF,_}=O a.s.;

(A5.iii) E(w(t)lF,_}= r2 a.s.;

(m5.iv) sup, E(lw(t)12+lF,_}<oo a.s. for some 6>0.

Next, let v(t):=Q(q-)w(t); then
d-1 d-.1

(5.3) E(v(t+d)lF,)=Z q=:v2 a.s. where Q(q-1) := E
=0 i=0

Clearly the minimum tracking variance is v2 (see Kumar and Varaiya [12]). We
now show that our adaptive controller achieves this optimal tracking performance.

THEOREM 5.1. Suppose that the system (4.1) satisfies assumptions (A4.i), (A4.iii)-
(A4.vii), and (A5.i)-(A5.iv). Furthermore, assume the positive realness condition

T+dsuplC(e’’)-ll<l/x/l+A, and also that 00. Then limT_.l/Tt=a (y(t)--
y"(t)) v almost surely.

Proof. From (5.1) and (4.1), it is easy to see that (e(t)-v(t)) is F,_d-measurable.
Now let

(5.4) z(t- d):= e(t) v(t),

(5.5) b(t) := (0- O(t))rdp(t),

(5.6) h(t) := b(t) z( t);

then it is eagy to see that C(q-)z(t)=b(t). Hence h(t)=(C(q-)-l)z(t).
Because C(ei’) is strictly inside the circle with center 1, and radius l/x/1 +

there exists a positive e such that E= (z2(J)/( 1 +A)-h2(j)) -> e E=I z2(J) for all t.
Let us define a function

(5.7) S(t):= ]r-A -h2(j-d)-ez2(J-d) t>=d+l
j=d+l

with S(d):=0. Obviously, $(t)>=O for t>=d and

S(t)-S(t-1)=z2(t-d)-h2(t-d)-ez2(t-d) for t=>d+l.
I+A1
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Since WoO( t) e( t) b( t- d), from Lemma 3.2 and (5.4) we get

Voo(t)<= Voo(t-d)+(o(t)-6(t-d))-g(t)O2(t)

Voo(t-d)+(e(t-d)+e(t))2-2(e(t-d)+e(t))6(t-d)+6(t-d)
g(t)(e(t d) + e(t))

where 6(t-d):= b(t-d)/p/2(t), (t) := v(t)/pl/2(t), and e(t-d):= z(t-d)/pl/2(t).
Taking the conditional expectation and using Lemma 3.1(i),

I)
2

E{V(t)IF’-a}<= V(t-d)+(1-g(t))-+(e(t-d)-6(t-d))2-1--l+A1 2(t-d)
v S(t-1)-S(t) e22(t_d)"<= Voo( d) + (1 g(t)) ---777,,+

P(ptt) t)

However,

and so,
T

t=d+l

Because

<
S(t-1) S(t-1) S(d)

<
p(t) --p(t-1)’ p(d) dp

7" 1-g(t) M1 7"

E{Vo(t)[Ft-d} <-- ., Vo(t-d) +v2 E +-e E (t-d).
,=d+, ,=d+l p(t) dp ,=d+l

1--g(t) T(t-d)F(t-d)c(t-d)
p(t) p(t)(l+ (t-d)F(t-d)(t-d))

A,dpr( t- d)dp( t- d)
p(t)(p(t)+ ,6(t- d)6(t- d))

p(t)-p(t-1)<A1 p2(t p(t--1) p(t)
T

This implies that t=d+, (1-g(t))/p(t)A,/dp.
Taking unconditional expectation, and noting that Voo(t) is bounded (surely),

w 2(t-- d)} < M2. Hencethere exists M2 such that eE{t=d+

(5.8) ’e’t)-v’)’< a.s.
,=d+ p(t)

From Kronecker’s lemma and (4.14), we get

(5.9) lim
1 r

r (e(t)--v(t))2=O a.s.
t=l

Hence E{(y(t)-y(t))2lF_d} E{(e(t)-v(t)+v(t))2F_a}=(e(t)-v(t))2+v.
Now, continuing as in Lemma 7 of Becket, Kumar, and Wei [3], we get the desired

result.
It should be noted that as (1 + Aa) increases, the speed of adaptation is increased.

However, the condition sup ]C(e)-l]<l/41 +Z then becomes more stringent,
requiring that the noise be even closer to pure white noise. Hence we see that A allows
a tradeoff between the rate of parameter convergence and the tolerance of the algorithm
to colored noise.
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In fact, we can even prove that the adaptive regulator self-tunes in a Cesaro sense
to the set of optimum minimum variance regulators. To exhibit this result, we concen-
trate temporarily on the regulation problem. In this case,

y" (t) 0 for every t,

07"(t)=(Ol(t), O,s+l(t), O,s+z(t)," ", O,,s+,,+z(t)),
qb r(t) (u(t), u(t- ns), y(t), y(t-- nR))

and (2.11) can be rewritten as

(5.10) OT(t)dp(t) =0.

Let us define R’(q-1, O( t)) := Yi=o Ons+z+i( t)q -i and S’(q -1, 0(t)) := y"si=o Oi+( t)q-
Then from (5.10), we have u(t)=-(R’(q-, O(t))/S’(q -1, O(t)))y(t).

Note that D:= {OIR’(q-1, O)S(q-) S’(q -1, O)R(q-1)} is the set of parameters
that yield a minimum variance regulator. We now have the following result on self-
tuning in a Cesaro sense.

TTHEOREM 5.2. For every open set O D, lim-_ 1/Tt=l l(0(t) O)= 1 almost
surely, where 1(.) is the indicator function.

Proof Because z(t)=y(t+d)-Q(q-1)w(t+d) E{y(t+d)[Ft}, from (5.9) we
know that (14.i) in Becker, Kumar, and Wei [3] is true. From Lemma 3.3(iv), we have

[lO(t)-O(t-d)llz<--2A’ 1 + vo/ o(t)
+

o(t) .]"

It is easy to see that {X(t):=YI= (v2(i)-v)/i; F} is a martingale. Due to (A5.iv)
X(t) converges and so on (vZ(t)-v)/tO almost surely and this implies vZ(t)/t-O
almost surely. Because lip is the upper bound of t/p(t) for every > 0, so vz(t)/p(t)
(v=(t)/t)t/p(t)-O almost surely. Combining with (5.8), we get I]O(t)-O(t-d)ll2-O
almost surely. Therefore (14.ii) in [3] is true.

From Lemma 3.3(ii), (5.10), Theorem 4.6(ii), and Lemma 3.3(i), we can see that
(14.iii)-(14.vi) in [3] are true. Hence our result follows from Theorem 19(ii) in [3].

6. Robustness of optimal adaptive controller. Having proved in the previous section
that our adaptive controller yields optimal performance for ideal systems, we now turn
in this section to proving that the preceding adaptive controller is robust. This means
that if mean-square stability holds for an ideal system IIo (and it does, as we have
shown), it will continue to hold for all systems in an open neighborhood of Ho. For
this to make sense, we need to define a topology on the set of linear systems. We will
consider the graph topology (see Vidyasagar [26]) and show that the adaptive controller
applied to systems in a graph topological neighborhood retains mean-square stability.
Furthermore, we will also give lower bounds on the size of these graph topological
neighborhoods.

Let F be the set of proper rational functions F(q) whose poles are all in the open
unit disk. F is equipped with the norm y(. ), defined as y(F):= suplq[= IF(q)[, for all

T x2(t).F F. For a sequence x(t), we define its /-norm as
We will prove that our adaptive controller stabilizes nonideal systems H if they

satisfy the following assumptions:

(A6.i)

(6.1)

Let the system H be described by the equation

a(q)y( t) B(q)u( t- 1)+ C(q)w( t), t>_l
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where A, B, C F, A, B are coprime, B/A is a proper rational function,
A(c) 1 C(c), and the noise is a stochastic process that satisfies merely

r w2(t)) 1/2< V, where V is a deterministic finite number. (ThisSUpT (1/Tt=l
clearly holds if, for example, the noise is bounded.) We also assume that
lym(t)[<=M for all t>O and y’(t)=u(t)=y(t)=w(t)=O for all t<=O.

Because B(q) is an analytic function outside the unit disk, we can write a Laurent
series B(q)=Yi__ohiq -i and, for d->_2, set p(q-1) equal to yid= hq-i’, otherwise it
equals zero, and D(q):= Fi=o h+d-lq .

It is easy to see that

(6.2) B(q) p(q-l) + q,-dD(q)"
Note that for the ideal system Ho (as in 5), Po(q-1) 0 and Do(q) Bo(q-1) F.

Because Iio is minimum phase, Do(q) is strictly stably invertible. Motivated by this,
we assume the following"

(A6.ii) D(q) is an invertible element of F (i.e., D(q) and D-(q) belong to F, or
we can say D(q) is a unit of F).

For a system II, we define

T(q) (A(q),. q-nsA(q), q-lB(q),. q-",+)B(q), 0,..., O) r.
With D(q) a unit of F, for every 0 we can define a new element of F by

(6.3) Ho(q) := 1 D-(q) TT(q)O.
Clearly y(H0) is a continuous function of 0. Hence we can choose 0 O so that
y(Ha) =< y(H0) for all 0 60. Next we assume the following:

(A6.iii) y(Ha) < )’h, where Yh 1/)’4 l/x/1 + A1
(A6.iv) T(P)<(Th-T(Ha)/(T(D-)(kT(D-I)T(A)+k2+ka(Th-T(Ha)))Td3-)),

where kl, k2, and k are strictly positive constants given in the Table 1 in
the Appendix (as is )’3 also).

We illustrate these assumptions by the following two examples.
Example 1. Consider the adaptive controller with ns =0, nR =0, nc =0, i.e.,

qb( t) (u( t), y( t)). We now examine the above assumptions by allowing only one
parameter to vary. Consider 0 (1, r), which denotes that the adaptive controller is
associated with the idealized plant

(1 + rq-)y(t)= u(t- 1)+ w(t).

However, suppose that the true plant is given by

A(q) l + aq- + a_q-2, B(q)= l, C(q) =1.

Then straightforward computations give

T(q) (1 + aq-l + a2q -2, q-1),
Ho(q) -q-(a + r+ a2q-)

D(q)=l,

and it follows that

y(H0) sup /(al + r)2 + 2a2(a + r) cos a +a la + rl + la21.
0<c 2,rr

Therefore we get g= (1,-a,) T, Ha -a2q -2, and )’(Ha)= Jail.
Hence, for this problem, with the expression of )’h, assumption (A6.iii) is just

equivalent to a=l < 1/,/1 / ,.
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Note that all the other assumptions are satisfied. Thus by this inequality we see
that A1 also allows a tradeoff between the rate of parameter convergence and the size
of the allowed value of a2 (see also the last comment of 5).

Example 2. To illustrate that our assumptions do not require the system to be of
minimum phase, we now consider ns =1, nR=0, nc=O, d=2, i.e., b(t)=
(u(t), u(t- 1), y(t)). We now study the assumptions bythe variation oftwo parameters,
so suppose that 0 (1, s, r)7"; this clearly corresponds to an adaptive controller for an
idealized plant:

(1 + aq-1)y(t) q-lu(t- 1)+ w(t).

However, suppose that the true plant is (1 + aq-a)y(t)=(b+ q-)u(t-1)+ w(t). Then
we have

T(q) (1 + aq-’, q-’(1 + aq-1), (b+ q-1)q-1), D(q)= 1,

P(q-)=b, Ho(q) -q-i(a + s + rb + (as + r)q-1).

Therefore we get

3’(no --la + s + rbl + las + rl, T(Ho)=0, 0= 1, 1-ab’l-ab

Hence all the assumptions are satisfied if (A6.iv) holds, i.e.,

Ibl< h

kl(1 + lal) + k+ k3)’h3’3’

which reduces to

{ {(Ibl 42(i+,,)R(+Ial)+R,/i+,,+24 +--o,/L +2(lal+lbl)+2

+3+
supy’

I+--(I+R2) + <1.
p . o-o o.o J

Note that the actual plant has a zero at -1/b. Thus we see that if the plant is
nonminimum phase, then we can model the unstable zeros by delays, provided these
zeros are large enough. We notice that by reducing the size of the parameter domain
(i.e., by decreasing R and increasing O-o), we allow smaller unstable zeros. This is a
manifestation ofthe well-known fact that high gains may cause problems in the presence
of unmodeled dynamics.

We see also that the threshold for the unmodeled unstable zero depends on the
/o-norm of the forcing signals w and ym of the closed-loop system. This is a manifes-
tation of its nonlinear nature. However, since these norms are divided by v/, we can
overcome this difficulty by choosing the threshold p in (2.1) proportional to the square
of these norms.

We consider a graph topology constructed from the set F. All the properties of
[26] can be rederived here. Specifically, this topology is the weakest one such that
feedback stability is robust and closed-loop transfer functions are continuous (with
respect to the "sup" norm). Since this topology on the collection of systems II follows
from the topology on r3, our robustness result follows from the following theorem.

THEOREM 6.1. The set of (A, B, C) satisfying assuptions (A6.ii)-(A6.iv) is open.
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_Proof. The set

(, F, H, o)l, F, H, GF, F U, y(H)< Yh,

yh y(H)
(G) <

y(F)(k,y(F)y()+ k2+ k3(Yh-- y(H)))yd3-1(, , )
is an open set of F6 where U denotes the set of units of F. This holds since U is an
open subset of F, and the mapping F-l-> F is continuous on U (see [26]).

Let us prove that the mapping (A, B, C)--> P is continuous. Using the Cauchy-
d-2Schwarz inequality, and Parseval’s theorem (see [4]) we have y(P)-<i=o ]hi[ <--

v’d-ly(B). Since the mapping (A,B, C)-->P is linear, and as we have just shown,
also bounded, this proves that it is continuous. This implies that the mapping
(A, B, C)- D is continuous, and (A, B, C)---> Ho is continuous, for any fixed 0. Hence,
for any fixed 0, the mapping (A, B, C)- (D, Ho, P) is continuous.

Therefore the Set

0o := {(A, B, C)ID U, y(H0)<

y(P)<
,. e( Uo) }y(D-’)(k, y(D-’)y(A)+ k2+ k3(’Yh-T(Uo)))’Ydj-’(A, B, C)

is open, and therefore U 0,o 00 is also open. The result follows.
Before showing the proof of Theorem 6.8, the main robustness theorem, we need

some results. As Lemma 3.3 shows, it is sufficient to prove that the operator e(t) --> /p(t)
has a finite gain and the operator e(t)- w(t) has a gain bounded by 1/v’l+hl. In
what follows, we use a number of positive constants ai,/3i, y, 6i, V/, and ki, given in
Table 1 in the Appendix, that depend on T(A), T(B), T(C), M, V, K, R, nc, ns, nR,

/x, d, p, ho, h, and cro.
LEMMA 6.2.
(i) p(t)>=p(t--1);
(ii) [[dpll<=p(T+ d)<- llqb[I2+ Tp+ V1;
(iii) 1/2([luHt / Ilyl[,) -<- I1 11, <--  ,llull, / 211yll, / %/o.1;
(iv)
Proof Formulae (i) and (iv) are immediate.

T(ii) Since p(t+d)-p(t+d-)<-_P+ll4(t)ll, we have E,=l(P(t+d)-
p (t + d 1 )) <-_ Tp + & T. Choosing V := p(d), we find that p T+ d)

(iii) The left-hand inequality is obvious; for the right-hand side,

114, t-< (1 / ns)llul]+(1 + nR)lly[[t + nctM2.
Now choosing /1 :-- /1 + ns, 3’2 := /1 + FIR, and al := MVc, we get the result.

LEMMA 6.3. p(t + 1) <_-- yp(t).
Proof

(6.4) ly(t+ 1)l -< w(t/ 1)1 + (B)II u II, / /(A- 1)Ilyll, + T(c- 1)11 w[I,.
Define &’(t):=(u(t-1), ", u(t-ns),y(t), ",y(t-nR),ym(t+d-1), ",y’(t+
d-n)) and O’(t):=(Sl(t), ,s,s(t) ro(t), r,R(t),-Cl(t), ,-c,c(t)) T. Then
the control law becomes

(6.5) u(t) =ym(t + d)- orT(t)r(t)
So(t)
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By Lemma 6.2(ii) we have

(6.6) 4,( t)ll 2 p(t + d 1)+ y2(t) + M2.

Putting (6.5) and (6.6) together, we have

(6.7) u2(t) <= 2_ (M + R2(p(t + d 1) + y(t) + M2)).
o-o

Next, with Lemma 6.2(ii), we have

(6.8) ll4,(t-d / 1)ll=<-p(t)+u2(t-d / 1)+y(t-a + 1)+ M.
From (6.4) and Lemma 6.2, we have

y2(t- d + 1)--- [I w(t- d + 1)1 / (T(B) / T(A- 1))(llullt-a / Ilyll,-)

(6.9) +

V o(t).

Combining (6.7)-(6.9), we have

p(t+ 1)p(t)+p+ II(t- d + )11 =

N 2+R
e O(t)+ I+R y=(t-d+l)+M+o+ (I+R)

2 v (c-
I+R +2((B)+ (A- !)) +

+[2+ZRg ++ +M( + R ()
P Po

=: r,(t).
LZMMA 6.4.

II,- (D-’)E(A)IlYlI, + (C)ll wll, + (P)II u II,-,].

Proo Using (6.2), we have D(q)u(t-d)=A(q)y(t)-C(q)w(t)-
P(q-’)u(t-1), that is, u(t-d)=D-’(q){A(q)y(t)-C(q)w(t)-P(q-)u(t-1)}.
The result follows.

The next lemma is immediate.
LZMMA 6.5.
(i) Ilyll, Ily
(ii) II(t)ll , fo to, where , M.
We therefore see from Lemmas 6.2, 6.4, and 6.5 that the operator e(t)p(t)

has a bounded l-gain, neglecting T(P).
LZMMA 6.6.

wall, (Ha)llY II, + (D-’)(P),(II II,-, + ,)+ (D-1)II wli, + (D-’)M.
Prooy

T(q)y(t)=[B(q)(6(t-) W(q-’)(t+d-))+C(q)U(q-’)w(t)]
where

U(q-’) := (,..., q-, o,..., o, o,...,o)L
W(q-’) := (o,..., o, o,-.., o, q-’ q-")
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From (3.1), (6.6), and the equality above, we have

D(q)w( t) [D(q)- Tr(q)]y( t) + V(q-)U4( t- 1)

rB(q) W(q-1)ym(t + d 1) + rC(q) U(q-1)w(t).

Using (6.3), we get

w(t) H(q)y(t)+ D-l(q)P(q-1)rdp(t 1)+ D-l(q)rC(q)U(q-1)w(t)
D-l(q)TB(q) W(q-1)ym(t + d- 1).

Hence

wall, (na)llY II, / Y(D-)Y(P)R([Iqbi[,- + 01)

+ 3"(D-’)R3"(B)VcMs/+ 3"(D-1)R3"(C)s/I+ ns IIw[I,.
If we choose a2:=R3"(B)vc, fll:=R, and a3:=R3"(C)v/l+ns, the result
follows. I:]

If we neglect the last three terms, this lemma and Lemma 6.5 tell us that the gain
of operator e(t) w(t) is 3’(H).

LEMMA 6.7.

I[yml[tMx/r<aapl/9-(t) wherea4:= M/v/ft.
Proof From the fact that ly’(t)l<=M and Tp<-p(T), the result follows.
Our result on the robustness of the adaptive controller with respect to the graph

topology is given by the following theorem.
THEOREM 6.8. Under assumptions (A6.i)-(A6.iv), the adaptive controller infeedback

with the system II, yields mean-square bounded inputs and outputs.
Proof As observed at the end of 3, and due to the lemmas above, we can use

a small gain argument.
T-dBecause p(T)/T >- 1/T,= yZ(t), if we can prove that there exists N so that

(6.10) N> p(T)
T

then lim SUpT- 1/T ]= y2(t) < 03. Similarly, we will have lim SUpT"
T1/T Y,--1 u (t) <.

We now prove (6.10).
TFrom Lemma 3.3(v), we get [lell2<-(l+,,)Z,=(v(t-d)-V(t))p(t)+

(1 + A1)][w]]-. Let

(6.11) A2( r) := max \0, ,=, (Vo(t-d)- V(t)) p(T)] and 3’4:=(1+A,) 1/’,

then

(6.12) lie[IT 3"4A( r)p’/2( r)+ 3’411 w[[ T.

From Lemma 6.6 and Lemma 6.2(ii), (iii), we have

wall, <-- y(na)llyll, / 3"(D-1)3"(P)l(Pl/(t- 1 + d)+
(6.13)

+ 3’(D-’)a3 Vx/+ 3’(D-’)ce2Mv/.
Substituting (6.13) into (6.12), with Lemmas 6.5 and 6.7 we obtain

Ilell r -< 3’4A(T) + 3’43’(D-1)3’(P)fll 3"a3-1]p’/(T) + 3’43’(D-’)3"(P),a,
+ Y4(H)IIelIT + [.3"a3"(H)M + 3’43’(O-1)(ce3 V+ a2M)]/-.
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Choose/32 := fl ’)/4, V2 :- ")/4M 1 "---" ’)/4g13, 3 :-- ’)/4101, 05 :-- ’4e2M; then

(6.14)

(1 3/4y(H)) --(y4A( T)+ f123,’(D-1)/(P)’ya3 -1) pl/2(T._.___) -1

4-T + V23,(H)+ 8,(D V

+ as/(D-) + 4-
From Lemmas 6.4 and 6.2 we have

u T- <---- r(D-1)[ T(A)Ilyll / r(c) v4-/ 2r(P)p’/2( T+ d 1)].
Using this inequality and Lemma 6.2, we have

p’/(T) y, y(D-’)y(A)IlYI] T + Y, Y(D-’)y(C)V
+ 2yl

Choose 4=2T, 2 yy(C), V3=, and y5 yr(A); then

(1 r(D-1)r(P)r-4) pl/(T)

(6.15)

where we let
From assumption (A6.iii), there exists e > 0, so that 1- (H)4 e. Substituting

(6.14) into (6.15), we get

(6.16)

r(o-1)r(e)4r-

1
NM+Mo

where

Mo:= (D-)V++

M:=+((D-)’+ 7) 7(D-)(P)3.

From assumption (A6.iv), we know that (P)(D-)(4+(((D-)s+
)/e))-< 1. For convenience, define n := 1-(D-)(P)(4+(((D-)s+
)/e))7- > 0. Choose some fixed such that

(6.17) 0<<

Case 1. For each time T such that (T)N , (6.16) can be rewritten as

( n-- T4(T + TsT(D-1))(r))"’l/2(r) M1
Let

M2 := r/- a > 0 (from (6.17));
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then

Hence p(T)/T is bounded almost surely.
Case 2. Consider some time interval, say (To, T), such that

(6.18)

P ’/Z( T) <= ( M-o + Mo) 1

p’/(T) (M,) 1

"--’---> -+Mo
M2
for every T To, T) (where T1 To may be infinite),

=< + Mo4Z,

On such intervals, we necessarily have A(T)> 6 for every T (To, T). From
(6.11), A(T) > 6 yields

r p(t) 32(6.19) t=l (V(t-d)- V(t)) p->
r Vo(t), T>0. Note thatDefine W0(T) E,=r_a+

VO(T) VO( T d) for T >_- 1. Because 0 <- Vo(t) _-< V4, We have
Wo( T)- WO( T- 1)

(6.20)
From (6.19), we know that

0 <= Wo(T) <- dV4.

(6.21)
T

E (Wo(t-1)- W(t)) p(t) 6"
,=, o( ri >

We define

(T )W(T) E WT
p(t+l)-p(t)

,=, p(T+l)
+
W(0)p(1)
p(T+ 1)

Note the following:
(i) From (6.20), 0 <= W( T) <- dV4;
(ii) From (6.21), ] T

,=1 (Wo(t- 1)- W(t))(p(t)/p(T))> 32;

p(T) +(1-p(T))W(T);(iii) W](T) W T-
p( r+1---- p( r+ 1-------

(iv) From (ii) and (iii),

W(T-1) W T) > 62 p( T+ I) p(T)_|._z_|
2

>
p(T+l)-p(T)

p(T+ 1) \’3] p(T)
T6(To, T1).

hence for any Te(To, T), we have Y,T=To+, (p(t+l)-p(t))/p(t)<=(y3/6)2V4d. Since
p (t) is increasing,

log p(T)<(2) 2 p’/2(T) ([(y3] 2 )p( To + 1) V4d or ,/2(
-<_ exp V4d

p To+l) 2\6/
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From Lemma 6.3 and (6.18), we get

/91/2(T) 3( 1 ) (l__(3 2

-<_--- M,"oo+Mo exp
\2\6]

V4d"

Cases 1 and 2 tell us pl/2(T)/ is bounded.

7. Stability with nonvanishing adaptive gains. In the previous sections the gain of
the parameter estimates, or equivalently the stepsize of the adaptation algorithm, has
been allowed to converge asymptotically to zero. Indeed this is necessary if we
asymptotically want to achieve optimal tracking. However, this vanishing gain also
causes the adaptive controller to have asymptotically diminishing ability to adjust to
system changes. Hence, in practice, adaptation gains are frequently prevented from
going to zero. Therefore in this section we address the nonvanishing gain case of our
adaptive controller.

We choose such that 0 < < 1. Let F’ be the set of proper rational functions
F(q) whose poles are all in the open disk of radius . F’ is equipped with the norm

y(F) sup IF(q)l, F
Iql=

For a sequence x(t), we Oenne its l()-norm as Ilxll:=Z --’x(t). Note that ift=l
F(q)F’ and z(t)= F(q)x(t), then ]]zlly(F)llxl].

Let us consider system II, which can be described as follows"

(A7.i) We suppose that the true system satisfies

(7.1) a(q)y(t)=B(q)u(t-1)+C(q)w(t), tl

where A, B, C F’, A, B are coprime, B/A is a proper rational function,
and A()= 1 C(). Regarding the noise w(t) we will merely assume that
it is bounded, [w(t + 1)[ where V is a deterministic finite positive number.

As before we will also assume that lye(t)[ M for all > 0 and

y(t)=u(t)=y(t)=w(t)=O forallt0.

Because B(q) is an analytic function outside the disk of radius , we can write
a-2 hq_i.a Laurent series B(q)= hq-i and state that if d >2, then P(d-)==oi=0

otherwise it equals zero and D(q)==oh+a__q- It is easy to see that B(q)=
p(q-1)+ q-aD(q)" Then we assume the following"

(A7.ii) D(q) is an inveible element of F’.

As before, we define

T(q) := (A(q), q-"A(q), q-B(q), q-",+’)B(q), 0,..., 0)

For any 0, we define Ho(q):= 1 D-(q) T(q)O and choose
y(Ho), for all 0 . We also make the following two assumptions"

(A7.iii) y(H)< y where Yh := 1/y4;

(A7.iv) y(P)<(y-y(Ho))/(y(D-’)(kay(D-1)y(a)+ks+k6(y-y(Ho)))y’)
where k4, ks, and k6 are strictly positive constants given in Table 1 in the
Appendix (as is Y0 also).
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Because the mapping F(q)-+ F(txq) is an isomorphism on the field of rational
functions, all the properties of [26] can be used here. In particular we obtain a topology
that is the weakest one, such that feedback tz-exponential stability is robust.

TrEOREM 7.1. The set of (A, B, C) satisfying assumptions (A7.ii)-(A7.iv) is open.
Proof The proof is the same as in Theorem 6.1 except that we need to prove that

d-2the mapping (A,B,C)-+P is continuous. Note first that y(P)<-Y,i=o[hi[tz -i and
X"-’ -’</d I(Y,=o -2,)1/2hitz Now, using Parseval’s theorem, we havei=0 ]hi[Ix

2 --2i=ohi/x -_<suplql>=+,{B(q)[ 2. Hence y(P)<-v’d-ly(B) proves that the mapping
(A, B, C)-> P is continuous.

Now we define a new normalization sequence"

(7.2) p(t)=l2p(t-1)+max(p, llrb(t-d)ll2), t>-I

where p (t) 0 if <_- 0 and 0 < p < o.
It is important to note that in going from (2.1), where we had simply 2 1, to

(7.2), we have made our assumptions more restrictive. This can be seen by comparing
Theorems 6.1 and 7.1, In the latter we need /x-exponential stability, whereas in the
former mere exponential stability is sufficient. In particular, this means that in the
latter case we cannot neglect a pole-zero pair that nearly cancels and that corresponds
to an eigenvalue larger than/x in modulus. We can also note that for the first example
of 6, we now obtain the restriction

The following lemmas are essentially similar to those in 6, and so we abbreviate
the proofs.

LeMMA 7.2.

(i) tz-rlw(T)l =< Ilwl[--< a3IUI’-Tv’
(ii) /z-2’p(t)-> tz-2(’-)p(t 1);
(iii) 1/2(llullr + Ily[[) 5-1[4,11 <-- ’Y9[lUIIT
(iv) ll61}r<= y81x-r+ap’/2( T+ d)<= }16l}r+ V6lUb-T -’1" V5.
Proof (i) The proof follows from the definition of the norm Ilwllr as Ilwll-

E,=/xr -2’w2(t) and from (A7.i), which assumes Iw(t+l)] <= V.
Inequality (ii) follows from (7.2).
(iii) [14,11<=(+ns.)z-2"llull+(+n,)z-".llYl[+ncM(t,-’-"/(1-z)). Now

-..choose Y9 vci + 7,/x- , y, v’i + nntz and O6 M(.c/4l-/.,2) and the result
follows.

T+d -2t 2 -2d 2T.(iv) tz-2{r+a)p(T+d)>=E,=, Ix II(t-d)ll =>, 11611
When we choose y8 =/x a, the left inequality in (iv) follows. On the other hand,

when we use
T+d

E
t=l

_[1 -,’- +

t=l

r+a
-2,p Ix-2(1- t,-. * 2 P,

,= 1-tx
the right-hand side inequality in (iv) holds if we choose

,/i
Vs a /1

Lepta 7.3. p(t 1) =< y20p(t).
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Proof If we use ly(t+ 1)llw(t+
t+l r(c a)ll w II, instead of (6.4), and

’+,(A- 1)]]yll, +

y2(t-d + 1)<=[Iw(t-d + 1)1 + (3’(n) +/zy(A- 1))/z

(11 II,- + [[yll,-) + ’-+’3,(c- )11 wll,_]

_<-[2(y(B)+tzy(A 1))l-dy8+(l+y(C 1)/x)63 pp] 2p(t)

instead of (6.9), then we get the desired .result.
LEMMA 7.4.

u - a3’(D-)(/(A)IIYIIr + ’(C)ll wll +-(P)II u -),

Proof Because D(q)u(t-d)=A(q)y(t)-C(q)w(t)-P(q-1)u(t-1), we have

The next result is immediate.
LEMMA 7.5.

(i) Y T =< Y + e T

(ii) IlY IIT --<-- M(/x -2T (1 )/(1 -/x2)) ’/2 <= as/X -T.

LEMMA 7.6.

IIWSIIT <= y(H8)llyll T + y(D-1)y(P)/36(ll b r_l + ce,)+ y(D-’)a9/x -r + y(D-’)alollWllr.

Proof The proof is similar to that of Lemma 6.6. l-]

THEOREM 7.7. Under assumptions (A7.i)-(A7.iv), the adaptive controller in feed-
back with the system II, yields bounded inputs and outputs almost surely.

Proof From Lemma 7.2(iv) and (iii), we have 1/2tz-Ty(T)<=/x-p/2(T+ d). If we
can now prove that there exists N < oo almost surely so that

(7.3) p /2(T)<N forT>0,

then clearly y(T)<=2pl/2(T+ d)<2N, so we will have shown that y(T) is bounded
almost surely. A similar situation holds regarding u(T) also.

So we only need to prove (7.3). From Lemma 3.3(v), we have

e 2 _<- (1 + A,)/-p(T)A(T) + (1 +, 1) wll 2
where

(7.4)
T

A2(T):=max 0, E (V(t-d)- V(t))tz2(T-’)
O(t)

,=, p(T)]"

Thus

(7.5) -TIlelJT 3/4 p /(T)A(T)+ y4IIwO[IT where ’y4--V/1-FA1

From Lemmas 7.6 and 7.2, we have

(7.6)
wll T < T(Hff)IIyll T + T(D-’)’y(P)Ivtx-Tp’/2(T)’yIdo+’

+ T(D-’)T(P)4+ "y(P-’)(ce9 + e,o V)/.t -T



262 L. PRALY, S.-F. LIN, AND P. R. KUMAR

where 37 :-" 6’Y8[-61-d and t4:-" 36al Substituting (7.6) into (7.5), we obtain

IIe <-- ’yaJtZ TO 1/2( T)(T) + 4(n)Ilyll + (D-’) T(P)8- 1/2(T)T
(7.7)

+ T(D-)T(P)as + T(O-)(a11 +aV)-T

where f18 := 47, 5 := 44, 11 := a9T4, and a:= a1083T4.
From Lemma 7.5, we have [[yllTllymll+llellT8- +llell. Using this, we

rewrite (7.7) as

(! r4T(n))II e 11T T4a(T) + r(D-)?(P)8?] /(T)+ ?(D-) ?(P)5
(7.8)

+ [r4r(H)as+ r(D-)(a + al2 V)]u-L
From Lemmas 7.4, 7.2, and 7.3, we have

u 11T- r(O-1)[ r,llY + r(P)aU-’/(T)r,-1 + asU-V]
where := a?(A), 7 := 28, and 8 := T(f)d3

From Lemma 7.2(iv), (iii), and this last inequality, we have

-T 1/2(T) < r9 rll 6 -(T-d) W5+ V6 -(T-d)

Y8 Y8 Y8 Y8 Y8

8 /

1
_

Vs E -r a

8 8 8 8
If We choose

69 := Y9 67 Y14 :"-
Y9 "}/11 Y9

Y8 Y8 3"8 Y8

Y8 Y8 3’8

then the inequality above becomes

(1 T(D-1)89T(P)Taff’)tz-Yp 1/2(T)
(7.9) --<__ [’y(D-1)’Yl408--] T,3te8 + T(D-’)86V+ a7 + V8]-T

+[(V-1)14+ 13] llel]T + V7.

From assumption (A7.iii) there exists e > 0 such that 1 (H)4 e. Substituting (7.8)
into (7.9), we have

1
T(D-’) T’4 + 13T(D-1)89T(P)Tff1-

(7.1o)
(T4A(T) + T(D-’)T(P)flsT1) p,/2( T) Mo+ grM,

where

3/(D-’) T14 + ’Y13 ,y4,Y(Ht) 08 + ,y(D-1)(o, 1-4- 012 V)] "+- T(D-’)’Y1408 + 1308

+ T(D-1)t6 Vq- a7 + V8,

T(D-1)T14+ T13 y(D-1)y(p)ts5+ V7.
E
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Now, assumption (A7.iv) implies

T(P)T(D-’)(9 + f18 T(D-’)T14+8 ’)/13) ’yld;l < 1.

Hence, there exists r/> 0 so that

r/:= 1 y(D-1)y(P)(89+ ’Y(D-1)’)/14-13 ’Yl3 38) ld0-1.

Now we choose and fix a 6>0 that satisfies 0< 6 <(’08/(’)/4[’}/(D-l)’Y14+13])) and
examine two cases.

Case 1. If for each time T, A(T)-< 6, then from (7.10),

(D-1)’Y14-1- /13 4zT))pl/2(T) < Mo+tzM1
E

Hence

8(Mo+/zM1)01/2(T) <= 1)
"". N1

r/e e(D- T4 at- /1316/4

and so p(T) is bounded.
Case 2. Suppose, however, that there is a certain time interval (To, T1) such that

p 1/2(To) -< N1,

(7.11) 1/2(T) > N1 for T e (To, T1) (where T1 To may be infinite),

pl/2( T1 N1"

On such an interval, we must have A(T)> 6 for T e (To, T). From (7.4) we get

T

’, V(t- d) V(t))tx 2(T-d)
p(t)

< 62
,=1 p(T)

T V(t), for T > 0, thenLet us define W(T):= E,=T-a+I
T --2t

E (Vs(t-d)-Vs(t)) tX_2TPp(t)
t=l [ (T)

T --2 tp
t=lE (W(t- 1) W(t)) txtX-2rP (t)(T)

Note that 0 <= W(T)<= dV4, for T=> 0.
If we now define

T -2(t+l)p(t + 1)- Ix-2tp(t)
Wa(T) := E W(t) Ix

t=l tx-2(r+p(T+ 1)
W(0)/x--p(1)+ tz-2(T+l)p(r+ 1)’

then

(7.12)
T -2

E (W6(t-1)-W(t)) tx tp(t)
-2

,=, tx Tp( T) W’’( T- 1) W(T) > 62.
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Note that because Wo(T)<= dV4, it follows that W’(T)<-dV4. It is easy to see that

W(T) Ix p T)
-2(T+l)

IX p(T+ I)
W(T 1)+ 1

_2

)IX Tp(T)
W(T).-2(T+)p(T+ 1)

Using (7.12) we have

W T 1) W(T)

IX p( T) (62+ W( T))- 1---2(T+l)p T+ 1)

> IX (T+I)-IX Tp(T)
--27"

IX p( T)

_2T

)IX p( T)
W( T)--2T+)p(T+ 1)

Hence,

T -2(t+ -2tp., tx p(t+ 1)--Ix (t) T

t=To+ Ix p(t) T0+l

2(YlO [W(t_l)_ W(t)]

( ’YlO 2

<= dV4 for T(To T1).
\/

Because Ix-2tp(t) is increasing with respect to time t, from the last inequality we get

1.
< exp dV4Ix-2To+lp(To+ \l

and so again p(T) is bounded.
When we combine Cases 1 and 2, the theorem is proved.

8. Conclusions. Here we have analyzed the twin issues of obtaining both good
performance and robustness out of an adaptive controller for linear stochastic systems.

For minimum phase plants of known order, with a known compact set containing
a stabilizing regulator, and for which we know the sign and a lower bound for the
leading coefficient ofthe control polynomial, we have shown that our adaptive controller
yields mean-square bounded inputs and outputs. If the noise additionally satisfies a
positive real condition, then we have shown that the adaptive controller is asymptoti-
cally optimal in the sense of minimizing output error variance. We have also presented
a ,graph topological neighborhood of an ideal plant, such that the system is mean-square
stabilized even when that system is not ideal and when the statistical properties of the
noise are violated. This holds true whether the adpative controller is used in a vanishing
or a nonvanishing gain mode.

Several open problems remain. It is still not known whether the standard self-tuning
regulator using a least-squares parameter estimate is mean-square stable, let alone
optimal. Moreover, it is not known whether the unmodified adaptive controller
possesses good robustness properties. The first question deals essentially with the loss
of identifiability, and the consequent unboundedness of the condition number of the
so-called "covariance matrix," when the parameter estimates converge. Unfortunately
the second issue cannot really be resolved until the first issue is better understood.
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Appendix.

TABLE

y32=2+try) Re +
p
+1+ M2(I+R2)

+ 1+o’ R2 +2(y(B)+y(A_l))+T,(C__l,
x/

V

2 R+ 0+M(I+R)+My2o + .2 + 0"20 crg

+ 10.o R 2((B)+(A-1))l-ya+(l+(C-1)tx)3
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