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ABSTRACT

We give a vector field f on R? with a globally attractive fixed point. It is nowhere
small except near this fixed point (its norm is greater that one outside a bowl)
Nevertheless, an arbitrarily C°-small perturbation makes some solution go to infinity.

The study is presented as an annex of (1], namely as an example pointing out the
necessaryness of an hypothesis in a robustness theorem exposed in this paper. We first
recall this theorem; then we show that all its hypothesis except one are satisfied, and
that its conclusion (boundedness of all the solutions of the perturbed equation) fails.
The missing hypothesis has to do with the boundedness of the transitions matrix of the
linearized unperturbed system along reverse time trajectories. We see how and where it

fails.
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1. RECALL OF THE THEOREM 1 IN (1]

This result consists in deducing from a property for any fized p, of the (autonomous) ordinary

differential equation
X =1f(px)
a slightly weaker property of the (non-autonomous) o.d.c.

% = 1(p(t)x) + e(t)

1.1. Notations
« Ilis a bounded open subset of R (in which the parameter p evolves)

o (p.x) = f(px) is a C'- map from X R® to R® (IT stands for the closure of the set IT).

o @, is the flow of (1), ie. :T [@;(x] ] =pe(x) ;) =x

o Ris defined by: R(px,t) = % [‘%‘(x} ]

R(p,.,.) is also the transition matrix of the system (1) linearized along the solutions, i.c.:

2 [Rexo] = oo Reox) 5 Rpxo)

1.2. The theorem
Assumption (H,)
o ®}(x) is well defined for any p€ll , x€R® t>0

o There exists a C'-function G : [IXR® — R, such that

1- L= {(xp)| G(px) < 0} and K, = {x| G(p,x) < 0} (for any p) are compact sets.

2 There exists a function T TIXR® — R (this is the time needed to reach K,), such that

t < T(px) = &)(x) €K,
Vip.x,t)

> (o) = ®}(x) €K, (the interior set of K,)

o There exists a positive constant C such that, for € in 9K, %(p.s) f(p.€) < -C

Hypothesis (i) to (iv)
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(i) ”No finite escape reverse time”: For any p in IT , any x in R® and any negative t, Py(x) is well
defined.

(i) " Bounded p-sensitivity’: | g—;(p,x) lis bounded for p in IT and x in R*-K,

(iii ) " Uniform quasi instability in reverse time”: | R(p,x,T(p,x)) | is bounded for p in II and x in
R"K, or, equivalently, with § = &®%)(x) and t=T(p,x), | [R(p,&~t)]"* | is bounded for p in
11, € in 9K, and t positive.

b belongs to L' and e belongs to L* for some k ( 1<k<+oo ),

(iv) "L*-bounded perturbatio
i i le(t)|*dt < +oo and [ |B(t)] dt < +oo
Theorem: If (H,), (i), (i¢), (iii), (iv) hold, then for each solution x(t) of (2), one can find a time t,
such that:

o x(to) €Ky

o After t, x(t) is sometimes outside K, but both the length of the time inl‘ervz.ls in which this
occurs and the maximum distance between x(t) and K, during these intervals tend to zero, and,
as a consequence, dist ( x(t) , Ky, ) tends to zero.

For the proof, see [11] where this is theorem 1.

2. STUDY OF THE EXAMPLE
We give here a field f on R2 which doesn’t depend on any parameter, but satisfies the hypothesis of
the theorem (with a zero dependence on p) except (iii ); we just add e(t) belonging to L%, and the conclu-

sion of the theorem fails : some solutions of
x = f(x)+e(t)
50 to infinity Let us define this field

2.1. The field and the perturbation
Let ¥ be the following C'-map from R to R
%(3-2s) on [0,1]

Y(s) =¢ 0 on |-00,0]
1 on [1,400[

we define the field f on R? by the following formula

1+x

() = w(y+1)w(x)[ ! ‘wwn{wm}[_‘} vl g Ta)



and e by

e = | 9
T+

The compact K is defined by G(x,y) = x* + (y+2)27—i— so that

K is the bowl with center (0,-2) and radius %

Fig.2 gives an idea of the solutions of ¥=f(x).

2.2. Assumption (H,) and hypothesis (i),(if ) (iv ) are satisfied

(i) is true because  is underlinear.

(i) (i) are true because 21 =0 ; [t =1 ; p=0
P °



Let us check that (H,) is satisfied:
-The first point is true because f is underlinear.
-The last point (18) is true because the inner product is exactly -1.
-Finally, we must show that, starting from any point outside K, the solutions enter K in a finite time. In
fig. 2, seven areas are designed, referred to as [1] to [Z] and corresponding to the piecewise definition of .
K is in [T] where { is a simple linear field, and it is clear that any point (x,y) in [Z] and outside K
gets into K in a time %Log[A(x’+(y+2)z)], so that we just need to show that starting in any other area,
we get into [Z] in a finite time.
Considering the direction of f on the frontiers, it is clear that the only possible changes of area are

those designed on fig.3

so that it is impossible to pass infinitely many times in any area: this is obvious on fig. 3 except for [5]
and [B] but y<0 in these areas and you can go 5-6 in the upper part of the frontier and 6-5 in the lower
part (see the equations) so that the only possibility to get many times through an area is to go 5-6-5. So.
we only need to check that we always remain a finite time in a given area

[T and [Z] : this is obvious because =1 so that starting from (X,,yo) in [1]or [Z], you get into [Z] or
[E] at time 1-x, (>0), unless you have already gone into [4]or [5]

[Z]: here, the solutions are

x(t) = Xg+t

v
¥(t) = yoLog(l+ =)

50 that you must get into [ in a time e’>-1
(] and [E] : there, y < 7% so that you get into [Z] in a time smaller than 2, unless you got into [E]
meanwhile.

[B] here, §>0, so that if we didn’t go into [Z] y would have a limit y, (-1<y,<0), and x should be

sometimes as large as we want, but for y<§ (for example) and x large, it results <0 so that we



would have x—-+oco .y—y,  y—O0 but this is impossible for y =_M ey +1)(y+2)
e

would tend to ~ [1-%(y,+1)|(yo+2) Which is not zero. We have proved that f satisfies H,.

2.3. The conclusion of the theorem fails

We have checked all the hypothesis, except (i ), but the conclusion of the theorem fails: in [Z], the
field is

and the solutions

x(t) = Xg+t

—y— o
¥(t) = yo - Log(1+ T, )+ Log(1+t) > y,

so that y doesn’t get down, and x goes to infinity.

2.4. How (iii) fails

In fact, this non robustness comes from the fact that the angle between f and the x-axis goes to zero
as x goes to +0o so that any vertical perturbation may reverse, far enough, the sign of the vertical com-
ponent of f, turning a situation in which the flow got from [T] to [6] and then to [Z] and the point (0,-2)
into a situation in which the flow never gets out of [ for x large enough.

Assumption (i ) tells something like this : let x enter K, at a the point & (i.c. T*#(x)=¢ ).Then,
if you move slightly x to a neighbour y, & moves to ®7*Pl(y) which is not too far from & (the ratio is
bounded). Such a condition seems, intuitively important for our global property: if it fails, when you start
from very far, a slight motion (brought by e(t) or p(t)) may have too important consequences on the
future.

We shall now try to see how and where (iii ) fails. It shall turn out that
TR((00) T((0))) | = o0 when x,—~+co 20)
which, of course, is enough to contradict (i) To prove (20), we shall show that
I R(00) T((0))) (§) I = +o0  whenx—too [

First of all, let M, be the point (x,,0) t, be the time t at which ®'(x,) enters [Z] and
®"(x,) = Ny = (x,,-1) (see fig.4). Then



R(M,T(M)) = R(N, TNt ) - R(Myt ) ©2)
but, since the solution is, from N, in [Z] where the field is a simple linear one, we may compute

R(No, T(Mo)-t; ) = R(NoT(No)) = Re (23)

We shall now get a lower bound of
0 " 1 1,
1ROt ()1 = tim £ Ity @My |
where M, = (xo,€) ; we set , in addition, N, = ®"'(M,)
To do this,let us study ®'(M,) for t€[0,t,)

M, is in [T] because ¢>0 Solving the field in [Z] we see that $'(M,) gets from [Z] to [E] (y
changes sign) at time

te = (Xo+1)(e~1)

(24)
Mg = (Xo,€)
te
Mo'(xc.i) = § (M)
=N 52 (Me)
W) e z -
%y A
-7 (:,)—’ Qe_(‘x., 5: (ME)
-
-~ - 7
fig ¢
We set then P, = &(M,) = (xo+,0) (see fig.4 again). We have t,—0 when e—0 so that
for epsilon small enough, t,<t; and we may get into [B] ; the field then becomes
x = y(y+1) - [1-¥(y+1)ix
3= - g+
®,(M,) can’t go outside [E] before the time t,. To see this, let t,+t, be the time t at which $(M,) gets
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from [&] to [Z] and set Q, = &7 (M) = (xz,-1) (see fig. 4). Then y decreases from 0 to -1 within the

time t; on the trajectory (Mo,M,), and within the time t;-tc+t, on the trajectory (P,Q,); noticing that

for the same value of y, y is weaker on (P,Q,) than on (P,,Q,) [ because (P,,Q,) is strictly on the right of

(P,,Q.) ], and that both curves may be paramatrized by y [because ¥ >0], we get t, < t~t,+t,

0<t <t

so that t, is positive , and N, is "before” Q,, as designed on fig.4

Now, it is clear that, & being continuous,
t¢—0 and t, =0 as e—0
then, since
No= @M = ¢ ()
we have

Q=N = 4 1@) + o) = [‘;j‘:ﬁ,”(fj‘)’]

so that, noticing that Q-N, = [xﬂ;x‘ ],

I8 (M- "Ml = INANJ = IN-Q+Q-No|

= Vixexre Pt + o(1l)

> [ N ]n( +0(t)  [because x;<x, and t,<t, |

Now, from (24) and (25), we get

R0l > [(0) VIT < Je 4009

hence
1RO (§) 1 2 (1) VI+xF
and , from (22) and (22),
ﬁ
2

IR((%0) () (§) 1 2

which does go to infinity as x goes to +0o  This proves (21) and makes (i) fail.

hence

(25)



