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Abstract: We give conditions under which, if, for any fixed p, all the solutions of (1) ~ = f (  p, x) enter a compact set Kt, (depending 
on p) after a finite time, then all the solutions of (2) ~ =f(p ( t ) ,  x )+  e(t) 'tend to' the moving compact set Kp{ o. 

The differential equation (2) may be obtained when applying a time-varying control law to a system. Non-linear output tracking is 
concerned. 

This may also apply to indirect adaptive control when you design such and adaptation law that you have a priori informations 
about e(t), the equation error, and p(t), the parameter estimate. 

Keywords: Disturbed ordinary differential equation, Boundedness, Robustness, Slowi~j varying systems, Non-linear adaptive control, 
Non-linear systems stability. 

1. The general result 

Some motivations for studying equations (1) and (2) shall be given in Section 2. We state our results 
first. 

1.1. Introduction; similar results 

Our result consists in deducing from a property for any fixed p, of the (autonomous) ordinary 
differential equation 

Yc=f(p, x) (1) 

a slightly weaker property of the (non-autonomous) equation 

:c=f(p( t ) ,  x ) + e ( t ) .  (2) 

This is a robustness result with respect to two kinds of perturbations: e(t), an additive perturbation, 
and p(t) ,  which makes the system time-varying. 

Many robustness results exist about local stability properties of an attractive point or set. In [6, §3.8 to 
3.10], the robustness of different kinds of stabilities with respect to C°-small or L~-small perturbations are 
studied. In [11, Th. 6, §5.6], slowly varying systems are dealt with (i.e. the case when e = 0 and p = t): if 
Ilaf/apll < kllxd, and the origin is an hyperbolic stable equilibrium of (1), then the same holds for (2). Total 

~,,~_~_~~...~-ka'tv ra~ldts . . . . . . .  are_._ givens. . . . . . . .  in [7']. Let_~ ...... us mention at last Grobmann-Hartmann theorem (see for instance 
[10]), which is a very powerful tool for the study of hyperbolic equilibrium points. 

In this paper, we are interested in the robustness of a global property, namely, the existence of a 
compact set to which all solutions enter after a finite time. For further precisions, see (H0) in Section 1.3. 
We have not been able to find any result about the robustness of such a global property in the literature. 

To get our result, we apply the Lyapunov second method, with the function T(p,  x) given by the time 
necessary to reach the compact set, following the flow of (1) for p frozen. This rather natural function is 
more convenient than those given by converse Lyapunov theorems (as Th. 3.15.5 in [6], for quasi-uniform 
ultimate boundedness). In particular, the dependence on p is easily obtained. 
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1.2. Notations 

• H is a bounded open subset of R q (in which the parameter p evolves). 
• (p, x) ~ f ( p ,  x) is a CLmap from H × R" to R" (H  stands for the closure of the set H). 
• ~l, is the flow of (1), i.e. 

(3) 

• R is defined by 

0 
R(p, x, t)- (4) 

R(p,.,. ) is also the transition matrix of the system (I) linearized along the solutions, i.e. 

0 0f 
O-s[R(p, x, t), R(p, (5) 

1.3. Our result 

Our main assumption about the frozen systems (1) ia assumption (H0). 
Primarily, it asks for any solution of (1) to enter a compact set Kp after a finite time. This is rather 

similar to quasi-uniform ultimate boundedness [8, Def 3.8; [6, §3.13.1 (B4)] which asks for a ball outside of 
which any solution spends only a finite amount of time; however, no care is taken there about the 
solutions getting inside and outside many times, whereas here, in (H0), we demand the solutions to enter 
Kp only once: this is (7) (of course, constraining Kp to be a ball would then be too restrictive)• Topological 
necessary conditions for this property (called there K-stability) to be met are given in [2]. Of vuur~ (this is 
the first part of (6)), Kp is supposed to remain in a bounded area when p varies. 

In addition, the field f ( p , . )  is asked (in (8)) to point strictly inward Kp all along OKp (its boundary). 
For the sake of simplicity, Kp is supposed to be the set where G(p, .  ) is negative, G being a smooth 
function. This makes precise "Kp smoothly depends on p" .  

A s s u m p t i o n  (Ho). (a) ~.~(x) is well defined for any p ~ / / ,  x ~ R", t > 0. 
(b) There exists a CLfunction G '  H x R" ~ R, such that: 
(bl) The sets 

L = { ( x , p ) l G ( p , x ) < ~ O }  and K e = { x l G ( p , x ) ~ O  } ( f o r a n y p )  (6) 

are compact• 
(b2) There exists a function T'  H × R" ~ R (this is the time needed to reach Kp), such that 

V(p, x, t) t < T(p, x) .~ t~(x)  ~ Kp, (Ta) 

t> T(p, x) ~ t ~ ( x ) ~ K ~  ( the in te r iorse tof  Kp). (Tb) 

(c) There exists a positive constant C such that, for ~ in i~Kp, 

OG 
- c .  (8) 

Let us now define the other hypotheses needed for the theorems: 
(i) No finite escape reverse time: For any p in H, any x in R" and any negative t, ~ ( x )  is well 

defined• 
(ii) Bounded p-sensitivity: II(Of/Op)(p, x)ll is bounded for p in H and x in R n - Kp, 

(iii) Uniform quasi-instability in reverse time: ]IR(p, x, T(p, x))ll is bounded for p in H and x in 
R" - Kp or, equivalently, with ~= ~r~p, X)(x ) and t =  T(p, x), II[R(p, ~, -t~l-lll is bounded for p in H, 

in OKp and t positive. 
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(~fi') Uniform exponential instability in reverse time: There exist positive constants ol, to such ~hat 
IlR(p,x, T(p,  x))ll < a e  -~r¢p' ~ for any p in H and x in R n - K p  or, equivalently, I][R(p, ~, - t ) ] - l l l  < 
ae -~t for any p in H, ~ in OKp and t positive. 

(iv) Lk-bounded perturbations: ~b belongs to L 1 and e belongs to L k for some k (1 ~ k < + o¢), i.e. 
f ~ l e ( t ) l  k d t <  +oo and f~  I P( t ) l  d t <  +oo. 

(iv') Bounded perturbations: There exists a positive constant a, smaller than 1, such that 

C l e ( t ) l + ~  gp+-~g~fp I P ( t )  l < l - a ,  

II II II II = max H 8 f ( p ,  x, II = max ( p , x )  = max -~ptP x) , fp (p,~)~L - ~  ' 
gx (p, x)GL ~ ' gP (p, x)¢L 

where a and ~0 are defined in (iii') and C in (8). 

Comments. All the assumptions are about the frozen systems or about f ,  e and p explicitly. (H0) is the 
main assumption about the frozen unperturbed system (1). (i) to iv) are needed to prove that when it holds 
for 0) ,  something like it holds for (2). 

The first point in (H0) only prevents the solutions from going to ~jfinity before entering Kp. In fact, if 
the flow is well defined up to T(p,  x), (7b) implies that it is always defined. 

(i) means, in picturesque words, that "no bounded set can be reached from infinity in finite time". It 
makes T infinite at infinity. 

(iv) or (iv')  make precise how e and p are weak perturbations. In particular, the bounds in (iv') tell us 
how l e I and I P I should be small. 

(ii) and (iii) (or (iii')) are the two really restrictive assumptions on the structure of the 'frozen systems' 
(1). 

(ii) is rather strong. In particular, it excludes the case f ( p ,  x ) =  A ( p ) x  where A(p)  would be a matrix 
depending on p: our theorems unfortunately do not include slowly varying linear systems studied for 
example in Vidyasagar [11]. 

(iii) (or (iii')) mean: in reverse time, let x be the point reached at time t, starting from ~ on the 
boundary of Kp; then, starting close to ~ and following the flow during the same (reverse) time, you do not 
end up too close to x, uniformly with respect to t. In Section 2.4, an example is given in which (iii) appears 
not to be superfluous. 

We may now state our two theorems: 

Theorem 1. I f  (Ho), (i), (ii), (iii), (iv) hold, then .for each solution x( t )  of (2), one can find a time to such 
that: 

(a) X(to)EKp(to ). 
(b) After t o, x( t )  is sometimes outside Kpct), but both the length of the time intervals in which this occurs 

and the maximum distance between x( t ) and Kpct) during these intervals tend to zero, and, as a consequence, 
dist(x(t), Kp(t)) tends to zero. 

Theorem 2. I f  (Ho), (i), (ii), (iii'), (iv') hold, then for each solution x( t )  of (2), one can find a time to after 
which x( t ) is always inside It~(t). 

1.4. A counter-example in which assumption (iii) fails 

being the following Cl-map from R to R: 

~(s )  = 2 ( 3 -  2s) 

on] - oo, o], 
on[O, 1], 
o n [ l ,  +oo[,  



86 

. 

£-B. Pomet, L. Praly / Robust boundedness 

1 
l + x  

. 

- 2 .  

, , , : f"T L. :_..2_ : : ; ")" 

X ~ -X 

~ = -(y+2) 

0 .  5 .  1 0 .  

Fig. 1. Phase  po r t a i t  o f  .~ = f ( x ) .  

1 5 . 0  

we define f and e by the following formulae ,Tigure 1 represents the phase portrait of  .~ = f (x ) ) :  

[ 1 ] [ ]  [ x ]  
f([y])=~(y+l)~(x) -I/(l+x) +~(Y+I)[I-~(x)] J2 +[I-*(y41)] _(y+2) ' 

[ 0 ] 
"(') = 1 / ( 1  + t )  " 

The compact set K i,~ defined by G(x, y) = x 2 + (y  + 2) 2 - ~; K is the ball with center ( 0 , -  2) and 
radius l 

f does not depend on p so that (1) is written .~ = f ( x )  and (2) is written ~ = f ( x )  + e(t). What exactly 
happens is: 
- the point (0 , -  2) is a global attractor of (1), so that (H0) is satisfied. 
- some solutions of (2) go to infinity, so that the conclusion of our theorems fail. 
- (i), (ii) and (iv) are satisfied; (iii) fails (if not, Theorem 1 would be false!). This points out that 
hypothesis (iii) is necessary. 

The complete study of this example is done in [9]. Let us sum it up: 

(H0), (i), (ii) and (iv) are satisfied: 
(i) is true because f is underlinear. 
(ii), (iv) are true because af /Sp=O; f~e2(t)  d r =  1; # = 0 .  
Let us check that (H0) is satisfied: Point (a) is true because f is underlinear. Point (c) is true because 

the inner product is exactly - 1 .  Finally, we must show that, starting from any point outside K, the 
solutions enter K after a finite time. In Figure 1, seven areas are represented, referred to as region A to 
region G and corresponding to the piecewise definition of f .  One may convince oneself (or see [9]) that any 
solution spends finitely mach time in finitely many areas before entering region G, where f is linear and 
pointing inward K. 
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The conclusion of the theorem fails: 
This can be seen for in region C, the disturbed system is: 

1 1 
:~=1,  Y =  1 + 4  1 + t '  

so that any solution starting from an (Xo, Yo) in region C goes to infinity: 

x(t)----Xo+t,  t )+Log(l+t)>yo. y ( t )  = Y e -  Log 1 + 1--+ x---o 

Why? 
Intuitively, this comes from the fact that the angle between f and the x-axis goes to zero as x goes to 

+ oo. Consequently, any vertical perturbation shall reverse, far enough on [he x-axis, the sign of the 
vertical component of f,  turning a situation in which the solution went from region C to region F, then to 
region G and finally to the compact set K, into a situation in which the solutions never leave region C. 

In fact, this may be translated into (iii)'s failing: a rather long cot Jputation (see [9]) more or less derived 
from the former intuitive remark leads to 

llOrct*'°))((x, ~))- Or(t*'°))((x, 0))[[>I ½(I + x)e+ o(e). 

Hence 

IIR((x, 0), T((x ,  0)))[ 0 ]1 II = II~li~o "~1 [*r((*'°) '((x, , ))-~r((* '  °'X<x' °')] II >_. ½(1 + x )  

which makes (iii) fail, because this tends to infinity when x does. 

1.5. The proofs 

For the proof of Theorems 1 and 2, we shall use the three following lemmas: 

Lemma 1. Under the Assumption (H0), and as long as Op(x) is well definea~ we have 

ST 
T( p, Op(x)) = T fp ,  x)  - t, a---~( p, x ) f ( p ,  x ) =  - I .  (9) 

Proof. This is quite obvious. When you have been walking toward K r for a time t, the time you need to 
reach K v has decreased of exactly t. This can be written properly from (71!. [:] 

Lemma 2. Under assumption (H 0), T is a CLfunction, and we have 

aT 1 aG +7, , ,~ '(~))R(p,  x T(p,  x)),  
a-~ (p' ~ ) =  - a~ ~7'" ~7<, .,< ax (P' ' 

ax(p, , x)) 
(10) 

8x ( p '  

a/ ~;(~)) d,] eT , f:'"x)R(p, r(p, (11) 
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or equivalently, with the notation 

~(p, x) = +7<" ~>(~), 

we have 

aT ~ ( t,, x) 

°u, 
ax (p' ~(p' x))f(p, ~(p, ~)i 

0G 
Ox (P' ~(p'  x ) ) [R(p ,  I~(p, x), - T ( p ,  x))] -1 

O T ( p , x ) = - 1 [ _~p G a-7 aG P' ~(p' ~)) 
a--~-(p, ~(p, x ) ) f ( p ,  ~(p, x)) 

aa )f,<,, ] +--~x (p,  l~(p, x) [R(p,  ~(p, x),  -'r)] - '  af z , ~o ~ t p  +;'(~,(p, ~)) d , .  

(12) 

(13)- 

(14) 

Proof. This is just the implicit function theorem applied to 

C(p,  +7 '~' X'(x)) - 0 .  

Differentiating this equality, we get 

b (Opr(x) )  dT+ y~(Or(X))dx  + ( O r ( x ) ) d p  =0.  (15) 

But (O/Ot )[ Or( x )l = f ( p ,  @T(X)) (from the definition of the flow (see (3)); (O/Ox)[~r(x)l  = R(p ,  x, T)  
(see (4)); and (a /ap  )[ Or( x )] = S(p,  x, T), where S is computed as follows: Just writing down that 

0S 0 2 0 
a - v -  +p+, = 

one gets S as the solution of 

a S ( p , x , t )  a/ , o) o. ~ x ( p , + ; ( x ) ) S ( p , x , t ) + ~ p (  +p (x)),  S ( p , x ,  -- Ot 

Using the variation of constants Oust set S(p, x, t )=  R(p, x, t)Q(p, x, t) and compute Q), (5) yields 

g +' S(p.  x, t )= R(p ,  +;(x) ,  ( t - , ) ~ ( p ,  {bp(x) dl". (16) 

Or (s = t - ,, ~ being defined by (12)), 

t )=fot[R(P,g;(p,x) , -s)]-aOfw'-(  q~p-*(~( , )))ds.  (17) S ( p , x  
op . p ,  p 

Formulas (11) to (14) follow from (15) and the following. [] 
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Now, we use an idea of Gronwall inequality to establish the following result: 

Lemma 3. l f  y is a CLfunction from[O, + oo[ to R, such that 

~( t )  <~ - 1  + a( t )  + ( y ( t )  + a) f l ( t )  whenever y ( t )  >~ O, (18) 

where 
• a is a positive real number, a and fl are real continuous maps. 
• a(.) belongs to L k for a certain k, 1 ~ k < + oo (i.e. [ f~o i a[ k]l/k = ak < + CO). 
• fl.(:).belong,~to!)(i.e ..... f_~lBI = B,< + ~ .  

Then (j) There is a time t o > 0 such that y(to) <~ O. 
(jj) After t o, y may sometimes be positive again, but both the length of the time intervals in which this 

occurs and the maximum of y on these intervals tend to zero. 
OJJ) As a consequence, tim t_. oo max{ y, 0} - 0 .  

Proof. Step 1. Let t 2 > t 1 > 0 be such that y( t )  >i 0 for any t in [t 1, t2] (if no such t 1, t~ exist, the lemma is 
obviously true). In the following, t stands far any real number in [q, t2]. Let us perform a sort of a 
variation of constants: we define the function h by 

y ( t )  = h ( t )  + Y ( h )  ef"/~ - f 'ejj~ds + f t i [a (s )  + afl(s)l  ef~'~ds. (19) 
etl 

Then, from (19), h(tl) = 0 and, from (18) and (19), /~ < 0 in [t 1, t2]; hence h ~< 0 in [h, t2], and 

e/? /,i y(t)<~ -f'eg d + y ( t , ) +  l a ( s ) l  eg~ds+  af'l$(s)l e £'#ds 
, , t  I t~ 

~ < - e - & ( t - t l ) + e  & la[ k ( t - t ,  + Y ( t l ) + a f t  ' Ifll • 4 

We may derive two inequalities from (20), which is true for any t in [tl, t2]: 
1. Noticing that 

m a x [ _ p ~ + q ~ t l _ l / k ) + r ] =  l qk ( 1 ) k - !  
~ R  k pk-I  1 -- -~ + r, 

we get 

1( 
[q, t2l 

2. Noticing that 

e-'~ [f~ lal k]+ e& [y(tl)+ aft~fl]" (21) 

--p~-I- q~tl-1/k) + rffi [-- -P~ + q~O-l/k)] + [-- -P~ + r] 

and that this is negative when • is bigger than 2r/p and (2q/p)  k, we get, since y(t2) must be positive, 

t 2 -  t, ~< max 2 e 2& y( t l )  +  151 , (2 e2$')k  lal k . (22) 

Step 2. Now, the point (j) of the lemma is given by (22), taking t I = 0: no t 2 bigger than 2e2~'[y(0) + ill] 
and (2e2/3')kak may be such that y remains positive all over [0, t2]; hence the existence of a time to such 

that y(t  o) is negative. 
Point (jj) (and consequently (jjj)) is obtained as follows: considering that a belongs to L k and fl to L1, 

the upperbounds given in (21) and (22) both tend to zero as t I tends to infinity. This means that both the 
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maximum value of y on ]tl, + oo[ a.:.._ a the maximum possible length of an interval after tl on which y 
remains positive tend to zero as tl tends to infinity. [] 

We shall now state the proofs of Theorem 1 and 2: 

Proof of Theorem 1. x(t) being a solution of (2), we consider the function (of time) p defined by 

p( t )  = T(p(t) ,  x(t)).  " (23) 

With (9), we get 

aT a'r_~.~ 
p(t)= -1  + -~x (P(,t), x ( l ) )e ( i )  q- ~p (p( t ) ,  x ( t ) )p( t ) .  (24) 

Considering (13), (14) and bounds taken from (8), (ii), (iii), and the fact that (p ,  ~2(P, x)) lies in the 
compact set L (see (6)) so that any function of (p,  4(P, x)) is bounded, we get constants C1, C2, C3, such 
that 

x(t)) c o(t) + 

and 

tS(t) <~ -I + Cl le(t) l+(C2p(t)  + C3)lP(t)l .  (25) 

We may now apply Lemma 3 with y = p. 
The result of Lemma 3 is enough to get point (a) of the theorem because when p( t )  is negative, x(t) is 

inside K~,~,). To deduce (b) and (c) of the theorem from (jj) and 0JJ) of Lemma 3, we shall now derive a 
bound of the distance between x and Kp in terms of T(p,  x). 

From Lemma 3, O(t) tends to zero as t tends to infinity; hence, there exists a time tl such that when 
(for instance) t > tl, p(t)  is less than 1, which means that either x(t) is in Kp¢ o or 0 < T(p(t), x(t)) <~ 1. 
In the former case, dist(x(t), Kp¢o) is zero. For the latter, we need to bound dist(x(t),  Kp<o): let 

M = max al)llf ( p, x)ll 
(p, x)~k(L x[0, 

where ~k is the map defined on R q x R ~ x R (from (Ho) and (i), the flow always exists) by ~k(P, x, t ) =  
Op(x). Then M exists because, L being a compact set and O continuous, 6 ( L  x [0, 1]) is a compact set. 
Hence, for t larger than t 1, (p( t ) ,  x(t)) is in ~k(L x[0,  1]) (from the definitions), so that IIf(p(t), x(t))ll 
remains smaller than M, and 

, f r<p.  dist(x(t)  Kptt))<~ X)[lf(Op,(x), p)[ld~<~MT(p, x)<~Mp(t). (26) 
~'0 

This completes the proof. [] 

Proof of Theorem 2. We use the same comparison function p as in the proof of Theorem 1; (24) is true 
again. Now, comparing (13), (14), (iii') and (iv'), we get 

~( t )  < - a < 0  when p( t )  >~ 0. 

Hence the theorem (to is at most p(O)/a). [] 

2. Two different motivations for our results 

2.1. Following a trajectory 

Consider the plant 

Yc=A(x) + B(x)u,  (27) 

and let (Kp)p ~_ r, be a family of 'targets' (sub~ets of the state-space) smoothly depending on p Suppose 
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that one can, for any (fLied) possible value of p, design a control law u = a(p, x) such that any solution 
of 

~= f (p ,  x) ~ a(x) + B(x)ot(p, x) (28) 

enters Kp after a finite time and stays inside afterwards. 
Now, one wants )6 'fel!ew' a moving target Kp(,), and one ~hnp!y uses ~ = a(p(t), x) at any time. This 

gives 

X=f(p(t) ,  x ) - A ( x )  + B(x)a(p(t) ,  x), (29) 

which is (2) with e = 0 (or e could be there as a noise). Theorem I or 2 may now apply to this time-varying 
system under conditions on A, B and a. We shall only give very simple sufficient conditions for the 
hypothesis of Theorem 2 to be met: 

For example, consider, as d'Andr6a and L~vine ;n [3], the problem of following a given trajectory xv(t) 
for a robot arm (p  = xp; Kp is the ball with radius r around xp). In this case, B(x) is bounded, and 
a(p, x)= C(x)(x - xp) + D(x) where C(x) is bounded. Then: 
- (H0), (i) and (iii') are satisfied if, for any p, a (p ,  x) makes xp a hyperbolic stable point of (28). 
- (ii) requires B(x)(Oa/Op)(p, x) to be bounded; this is B(x)C(x). 
- (iv') requires the maximum speed along the reference trajectory to be small enough, the requked 
smallness depending on the maximum of B(x)C(x), the sharpness of the exponential :onvergence in (28) ,  
and the size of the balls Kp. 

Under these conditions, from Theorem 2, the control law u(p(t), x) shall bring x(t) close to xp(t) 
(precisely,  IIx - xpll < r )  after a finite time. 

2.2. A non-linear adaptive control problem 

We consider the following family of models parametrized by 0: 

~ = 0"[A(~,)  + B(~,)u], (30) 
and we suppose that for any value of 0,  a control law u--a(O, z) is known, such that the closed-loop 
system, which may be written like (1): 

~=f(O, ,,) -~ 0"4,(0, ~,), ~,(0, z) ~A(~,) + e (z )a (0 ,  ~,), (31) 
has the following boundedness property: m~y solution z(t) enters a compact set Ko after a finite time, and 
never leaves it afterwards. 

N o w ,  we want to control a plant which is one of these models, corresponding to an unknown value of 0, 
let 0". We estimate it by a ~ -; . . . .  t.., .h,. ~^,^ ._ -. • ,- c:,,-,--, ~,s ,**~ ,v,,vV~az,g es~unatlon law: 

~=h(~, z) (32) 

and the complete control law for (30) is (32) together with u ( t )=  a(0(t),  z(t)). The complae closed-loop 
system is then given by ( 3 2 ) - ( 3 3 ) :  

(33) 

where 

[0.-01%(0, 
Now, let (O(t), z(t)) be a solution of the system (32)-(33); it is also a solution of its associated system 

defined by the following non-autonomous differential equation: 

with 

Jc=f(p(t), x)+e( t )  (2) 

(e(O(t), z(t)) i f t ~ [ 0 , ¢ [  (34) 
O(t) i f t ~ [ 0 , ~ ' [ ,  ( t)  0 if t E l ' r ,  +oo[, p ( t ) -  0 i f t ~ [ ¢ ,  +oo[, e = 
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where [0, 1"[ i,~ the maximum right-interval on which the solution of (31)-(32) exists (~- might be infinite). 
Theorem 1 or 2 may now be used if you have a priori estimations on e and p, which depend on the 

trajectory you follow (this is quite different from the former example in which p(t) was an explicit data of 
the problem). 

We may get these estimations in an idealistic case using, instead of (32), the following least-squares 
estimator, unfortunately unrealizable since ~ is needed: 

(35) 
()= -Q•(O, z ) , ( 0 ,  z)TQ, Q ( 0 ) = I .  

Then, 

e(t)=~.(t)-O(t)Ttb(O(t), z ( t ) ) =  [O*--O(t)]Tqj(O(t), z(t)).  

In this case, (see [5] for instance), studying the time variations of (0*-O(t ) )TQ(t ) - l (O( t )  * - 0 )  shows 
that, regardless of the control laws a(O, z) any solution (O(t), z(t)) of (35)-(33) is such that ~(t) belongs 
to LI([0, ~-[) and e(t) belongs to L2([0, 1-[). Clearly, from (34), p ~ LI(R); e ¢ L2(R). 

This satisfies hypothesis (iv); the assumption we made about (31) means that assumption (H0) is 
satisfied; if, in addition, f satisfies conditions of 'no finite escape reverse time' (i), 'bounded p-sensitivity' 
(ii) and 'uniform quasi-unstability in reverse time' (iii), then Theorem 1 says that any solution x(t) of (2) 
has the properties described in the conclusion of Theorem 1. In particular, it does not escape. 

Consequently, z(t) being a particular solution of (2), this proves that the solution (0, z) exists till 
infinity (~- = + oo); moreover z(t) enters the moving Ko(t) and then only leaves it for little escapades, both 
their time-length and the maximum distance between x(t) and Kott) tending to zero as t tends to oo. 
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