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Abstract: We establish that the eigenvalues of the gradient at 
an equilibrium point of the 'zero-dynamics' defined by Byrnes 
and Isidori [1], are nothing but the finite linear zeros of the 
linearized system at the equilibrium, if the nonlinear system 
can be input-output decoupled by feedback and its lineariza- 
tion is controllable. This property allows us to describe (and to 
give an algorithm to find) the output functions leading to 
stability while using a linear model following controller. We 
study on an example the problem of both stability and maxi- 
mal linearization. 

Keywords: Zeros, Nonlinear control, Feedback decoupling and 
partial linearization. 

Introduction 

is needed (for example: the decoupling matrix is 
non singular at the equilibrium). But, even in this 
case, the above definitions are difficult to use. In 
particular, they do not allow an easy characteriza- 
tion of those functions of the state leading to 
stable equilibria. In this direction, a further inter- 
esting question is the possibility to both stabilize 
the equilibrium and to obtain by feedback the 
largest linear system (see [12]). 

In this paper, we restrict our attention to de- 
coupable systems. In Section 1, we characterize 
the 'zero dynamics' around the equilibrium by 
introducing the notion of 'finite nonlinear zeros'. 
In Section 2, we prove that the finite nonlinear 
zeros are nothing but the finite zeros of the linear 
system obtained by linearizing the open loop non- 
linear system around the equilibrium. In Section 
3, we characterize the set of functions of the state 
leading to stability and we propose an algorithm 
to place the poles at the equilibrium. Finally, in 
Section 4, we study on an example how can be 
handled both stability and maximal linearization. 

It is now well known how to impose a decou- 
pied linear dynamic behavior to functions of the 
state whose number may in general be equal to the 
number of inputs (see [3,4,7,11]). However, if this 
number is smaller than the dimension of the state, 
then part of the state is made unobservable. Con- 
sequently, stability cannot be easily guaranteed. 

By an appropriate choice of local coordinates 
(see [8]) it can be seen that the closed loop nonlin- 
ear system is made of the desired linear system 
plus an extra nonlinear subsystem whose state is 
unobservable. With analogy to the linear case, 
Byrnes and lsidori [1] have called 'zero-dynamics', 
the restriction of the closed loop dynamic to this 
unobservable part. Isidori and Moog [9], have 
remarked that this definition is equivalent to their 
definition as the dynamics of 'reduced inverse 
systems' or as the 'zero-output-constrained dy~ 
namics'. However, as in the linear case (see [10]), 
for this equivalence to hold, some other condition 

I. Finite nonlinear zeros 

We consider the following system on R": 

yc - f o ( x )  + f ( x ) u  (1) 

where x is the state and u is the input m-vector. 
The vector field fo and the matrix field f are 
assumed to be sufficiently smooth. 

Let 0 be a singular point of/o, i.e. fo(O)= O. 
Given h -- (h j), m sufficiently smooth func.. 

tions of the state, with 

h(0) =0, (2) 
our control objective is to obtain the following 
linear decoupled dynamical behavior: 

pl , d J h , ( x )  dP'+lh'(x) + E = 0 ,  i = 1  . . .  m,  
dt '~'' ' ~b) ~-t7 , , .~-0 

(3) 
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where the 0~ are arbitrary constants and, for each 
i in { 1,.. . ,  m }, O~ is defined, from the system (1), 
as the smallest integer k such that LfL~oh i is not 
identically zero, Lgh denoting the Lie derivative 
of h with respect to g, i.e. 

Lgh ( x ) = ~ gi 
Oh 

i=1 Oxi" (4) 

We call (NL) the system (1) with the functions h 
as output functions: 

f.~ = f o ( x ) + f ( x ) u ,  
(NL) =h(x). 

We introduce the so-called 'decoupling matrix' A, 
whose i-th row is 

(LiLfoh,), i= I,..., m. (5) 

Throughout the paper we have the following as- 
sumption: 

it (0) is non-singular. ( n l )  

This implies that m _< n. 
In this case, a direct computation (see [3,4,7,11]) 

shows that the following state feedback allows us 
to meet the objective, in a neighborhood of 0: 

. i x )  (6) 

where • is the foi!owing block-diagonal matrix 
m × n x of the 0~'s: 

• =diag(O 1, .... 0,,), 0 , = ( 6 , . . . , 0 ~ , )  , 

and 

where ~' in Rq with q = n -  n x, is introduced to 
complete (when necessary, i.e. when n x < n) 
into a coordinate chart. A and K are block-diago- 
nal matrices: 

A = diag(Al, . . . ,  A m), 

K = diag(K1,.. . ,  K,,), 
# 

l 
0 1 0 ... 
: " •  

Ai= ! 

K/= (1, 0 , . . . ,0 ) ,  

0 

1 , 

K~ ~ (RO,+1) * . 

The subsystem (ZI)  with dimension nx is as 
desired linear and split into m independent sub- 
systems• Each subsystem can be stabilized by a 
suitable choice of the Cj.'s. 

On the other hand, the remaining part of the 
state (~" in these new coordinates), has a nonlinear 
dynamic and is unobservable from y. 

This remark has motivated the next definition: 

Definition 1 [1,2]. We call asymptotic unobserva- 
ble submanifold, the q-dimensional submanifold 

From (9) we see that whenever x belongs to N, 
= A~ is zero• Therefore N is an invariant sub- 

manifold of (NL)-(6). 

m 

nx= E (P, + 1)• (7) 
i=l 

a o is the m-vector with i-th component fro = 
L~o + lh, and finally, ~ is a vector in R"^ defined by 

. ,  I4o,  h , . . ,  ""  ' " "  '" ,0 (8) 

Remark. An important result which can be found 
in [8] is that, when zl(0) is invertible, al~/Ox has 
rank n x on a neighborhood of 0. Moreover, the 
coordinates transformation x ~ (~, ~') allows us 
to rewrite the closed loop system (NL)-(6) in 

{ ( , ~ I ) I ~ - - - - - ~ ,  
(9) 

Proposition 1 [1,2]• The restriction to N of the 
closed loop vector field ], 

] = / o  + f a - ' ( * , -  ao ) ,  

is independent of • and tangent to N. 

As a consequence, the following definition 
makes sense: 

Def in i t ion  2• We call f the vector field of N, 
induced by the restriction of ] to N. From (9) we 
have 

= go(0, 

The triangular form of (9) allows us to state the 
following proposition: 
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Proposition 2. The eigenva_lues of the gradient off 
at the equilibrium point, vf (0), are the nx poles of 
the desired linear subsystem (_ZI) and the n - nh 
eigenvalues of the gradient off at 0. 

With analogy to the linear case: 

Definition 3. We call finite nonlinear zeros at an 
equilibrium point the eigenvalues of vfA at this 
equilibrium point. 

Remark. Bymes and Isidori have called { the 
‘zero-dynamics’ (see [l]). The ‘finite nonlinear 
zeros at an equilibrium point’ are the eigenvalues 
of the ‘zero-dynamics’ at this equilibrium point. 

2. Main result 

We denote by 

{ 
~=Fx+GU, 
Y=HX, 

(9 

the linear system obtained by linearizing (NL) 
around zero, i.e.: 

F= g(O), G=f(O), H= g(O). 00) 

Recall that fo(0) = 0, h(0) = 0, and (Hl): A(0) is 
invertible, which implies that G has full rank m. 

We make a second assumption: 

The linear system (L) is controllable. (H2) 

In this case, an equivalent representation is given 
by the controller polynomial form (see [lo]), with 
s the derivation operator: 

( 

p(s)q = u, 

Y=R(s)rl, 
(11) 

where q is a partial state. In particular, this im- 
plies 

R(s)P(s)-’ = H(sI- F)-‘G. (12) 

Qefinition 4 [lo]. We call finite linear zeros, the 
finite zeros of (L), nasnely the complex values z for 
which det( R( z)) is zero. 

Let us now give our main result. 

Theorem. Under the assumptions (Hl) and (H2), 
the finite nonlinear zeros at the equilibrium point are 
the finite linear zeros. 

For the proof of this theorem we introduce the 
following two sets: 

P, = (eigenval ues of (NL)-(6) linearized 

around zero), 

Pz = (poles of (XI ) > U (finite linear zeros). 

Let us first prove the following proposition: 

Proposition 3. Under the previous conditions (Hl) 
and (H2), we have the following equality: 

PI = Pz. 

Proof. We linearize the equation of the closed 
loop system (NL)-(6), around the equilibrium 
point to obtain 

& [ %tOj +f(O&O)]X 

+ Z(o) 8 xu(0) 

where @ is the contracting tensor product. 
Since, by assumption fo(0) and h(0) are zero, 

with (6) the same holds for u(0). Hence, 

g= [ $8 +/(0&O)] x* (1% 

This means that the linearized closed loop system 
(13) is nothing but (L) in closed loop with 

04 

Let us make (au/k)(O) explicit. From (6), u 
satisfies 

A(x)u(x) =Z 

with 

PI 
z’= -L/q;+‘hi - C +iLii,hi 

j=O 

and 

~j(X) = L/ Lr4;hi(X). 
J 
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differentiating, each member of the equality 
A(x)u(x)= Z we obtain, with u(0) = 0, 

OZ.. 
a (o )~(o) ,  = ~ ( 0 ) ,  

which gives 

Ou OZ 
ax(O) = a-~(O)-ayx (0). 

We will obtain the expressions of 5(0) and 
(aZ/bx)(O) by showing by induction on every 
integer k that 

_ Oh, k ( .)  
[Ix Ox " 

(a) (15) is true for k = O. 
(b) Let us assume (15) holds for k. We have 

0 0 
o 

o :o>1 = 0-~ (d L~o hi; ~=0" 

Since f0(0) is zero, this equals 

(dL~oh,; W:~)lx_-:o" 

By the induction assumption, this is equal to 

a~ (o) . (o) - b y ( o ) - - ~ - ( o )  (o) . 

Using (15) we get the expression of A(O): 

L/ L~h,(O) = (dL~;h,; fj)Ix=O 

ÜL~oh, 
- 0~ (0)h(0) 

0h, 
i)x (0)( Of° (0)1P'fj (O) = ~  ~x  

and the expression of (OZ~/Ox)(O): 

OZ ~ Ohi ( ~ _ _ ~ )  p'+~ 
a~ (o )=  ax (o) (o) 

P' ,~)h, ( 0 f o ) J  
- E ~;-ff~ (0) Tx(O) . 

j = 0  

Now, following (14), let us apply to the system (L) 
the following law: 

0u v=~(o)x+a-~(o)w 
0Z + W). (16) = a -  ( o ) ( ~ ( o ) x  

The outputs Y satisfy 

d t a , + l  ) at A./ 
i "~ 

dt(P,+ a) Yi + E ~j-~'~,j Y~ = W', j=o tit 
i = 1  .... m, 

(17) 

and therefore denoting by T(s) the closed loop 
transfer W-* Y, det(T-~(s)) is the polynomial 
given by 

m Pt 

det(T-1(s)) = I-I sP'+1+ ~ ¢~ sj , (18) 
i = l  j = 0  

whose roots are exactly the poles of (El). 
On the other hand, from Wolovich (see [13], 

Section 7.2), if Q denotes the equivalence transfor- 
mation which gives the controllable companion 
form of (L), the closed loop transfer T(s) can also 
be written, with R(s) and P(s) given by (11), 

T(s) = R(s)P~I(s)A-1(O) (19) 

where 

po(~)=e(~)-Ps(~) 
with 

s(~) = 

1 0 

s d~-l 0 
0 1 

$d2-1 1 

0 $ d'n-I 

the d i being the controllability indices of (L) 
(di > 1 since G has full rank m) and t~ = CQ 
where C = -(Ou/Ox)(O). 

Using this expression of T(s) we obtain 

det(T-l(s)) det(R(s)) = det(A(O)) det(Pc(s)). 
The conclusion follows with this equality, Defini- 
tion 3, the invertibility of A(0) and the fact that 
the poles of the closed loop system are exactly the 
roots of det(Pc(z)) = 0. El 

Proof of the Theorem. We know by Proposition 2 
that 

Pl = {poles of (EI)} tO {eigenvahes of Vf(xc)}. 
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On the other hand, 

1'2- {poles of (.YI)} 0 {finite linear zeros}. 

From Proposition 3, /'1 = P2 which concludes the 
proof. [] 

Remark. With (16) we have established the follow- 
ing commutative diagram: 

(NL) linearization) (L) 

1 1 
(NL)-(6) linearization ~(L)-(16) 

where each vertical arrow is obtained by applying 
the feedback law allowing us to meet the linear 
decoupled behaviour objective (3). 

3. Choice of the h functions for stability 

In some cases, the h functions are imposed by 
physical considerations. However, if the control 
objective is only to stabilize the equilibrium point, 
without any imposed h functions, the state feed- 
back law (6) can still be used. The ability of 
choosing h to guarantee stability is proved in the 
following proposition: 

Proposition 4. I f  (L) is controllable, then one can 
always find H f(Sh/Sx)(O) so, that the equi- 
librium point is an exponentially stable solution of 
the system (NL)-(6). 

Proof. Using the same notations as in the proof of 
the theorem, we have 

l t S ( s ) f  R(s) ,  H f  ltQ. (20) 

Let us consider a polynomial Z(s) with degree 
less than or equal to ~'ffi ld i - m factorized in 

Z(s)  = P~(s)P~'- l (s)  . . .  Pro(S). 

Let Ul(s) and U2(s) be unimodular matrices. We 
define 

=Ul(s)( Pl(s) PI(s)P,(s) 
°.° 

PI(S)''' Pm(S) 

U2(s). 

If Ul(s) and U2(s) are such that the i-th column 
degree of R(s) is less than di, then H can be 
obtained from (20). Z(s)  being arbitrary, the pro- 
position is proved. [] 

Remarks. (a) Noticing that the above expression 
of R is its Smith form, the arguments used in this 
proof give a complete description of the set of 
matrices H leading to stable zeros when the poly- 
nomial Z(s) is constrained to have its roots in the 
left half complex plane. In the scalar case equa- 
tion (20) can be directly used, taking for H the 
coefficients of the polynomial numerator of the 
transfer function. In the multivariable case, the 
above expressions are more difficult to handle. 

(b) A priori H = (Sh/Sx)(O) will have compo- 
nents on the whole state. Consequently, around 
the equilibrium, the Oi will generically be zero, and 
the linear system obtained by feedback be of 
minimal dimension m. 

We propose an algorithm which gives H by 
choosing the poles of the set /'1, and imposing 
oi=O, i = l , . . . , m .  

It is based on the following fact: 

Propc i aon 5. Under the assumption Pi = O, Hi, the 
i-th row of the matrix H, is a left eigenvector of 
F -  GC, associated with the eigenvalue h i - -tbio, 
i - 1 , . . . , m .  

Proof. From (16) it appears that the matrix C is 
given by 

au 
C=: -~-~x ( 0 ) = ( H G )  H F + % H ) .  (21) 

Consequently, 

H ( F -  GC) = -~0  a .  D (22) 

Under the controllability assumption of the 
pair (F, G), the following algorithm can be used 
for choosing the h functions so as to insure a 
pole-placement ior the linear system, obtained by 
linearizing (NL)-(6): 
- Find a matrix C to place the poles of F -  GC 
in the left half complex plane to stabilize (L). This 
is always possible from the controllability assump- 
tion of (F, G). 
- Choose m of these poles, and denote them h i, 
i = 1,.. . ,  m, (these m poles will correspond to 
those assigned by the ~ ) .  
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- Solve the equations H : ( F -  GC) = hiHi for i = 
1, . . . ,  m. 
- The matrix H obtained by the superposition of 
the rows Hi is such that, if HG is non-singular, P1 
is equal to the set of the poles of F -  GC. 

4. Example 

While equilibrium point stability is important, 
guaranteed behavior for a larger subsystem is also 
attractive. This leads us to look for nonlinear 
functions h, leading to both stability and maximal 
linearization. 

We illustrate this aspect by an example coming 
from robotics. Consider a link of mass m~, length 
211 and inertia I~, turning in a vertical plane 
around an horizontal axis with angle 01. The joint 
is controlled by a motor. This link is topped with 
a stick of mass m 2, length 212 and inertia 12, 
turning freely at its extremity, with an angle 0 z. 
This system can be described by: 

= + 

- Q V R Z x z  + Fo(X,) + Qu),  

(23) 

x, (01, 02)' , = )' (0)  (24) --" x2 (#,,#2 , Q =  1 " 

J is the motor inertia, V its viscous friction coeffi- 
cient, R its reduction ratio, Fl(x l )  is the inertia 
matrix, the vector x~Fzx z represents the centri- 
fugal and Coriolis torques and the vector F 0 the 
gravity torques. 

We have m--. 1, n--4.  The largest feedback 
linearizable subsystem from (23) with the feed- 
back (6) has dimension n x = 2 with 0 - 1  (see 
D'Andrea and Levine [5,6]). It can be obtained for 
example by taking h a function in the angular 
variables, but independent of the velocities. 

Hence in a first step let us choose h ( x )  as 
h(x l ) .  In this case H is of the form 

H - - [ a  b 0 0]. (25) 

To get also stability this H should solve (20) with 
the zeros of R(s )  in the left half complex plane. 

Let us consider an equilibrium point x c such 
that the stick is stabilized in its upper vertical 

position: 

Of= -0f, 
0[ /~ = 0. (26) 

The linearized system (L) around x c is given by 

(0 0 11/ (/ 0 0 0 1 0 

F =  /31 /3z /33 , G-- gl " 

f41 /42 /43 g2 

(27) 

Let n(s)  be the numerator of ( s l -  F) -~G,  apply- 
ing the Routh criterion to H n ( s )  gives the follow- 
ing conditions on the components a and b of H: 

ag + bg 2 > O, 

b (g ,  f43 - g2f33) > 0, 

a(g2f32 - g, f42) + b(glf41 - g2J;1) > 0. 

This system has no solution in a and b if 

I gl(glAa-g2A3) 
g1(glf41 -- g2Al) ' - -  g2(g2A2 -- glA2) < O, 

(gl/42 -- g2fa2)(glf43- g2f33) < O. 
g,(glf41 -- g2f31) - g2(g2f32 -- glf42) -- 

Hence, for a non-zero Lebesgue measure set of 
(g,, fo), stability cannot be obtained. 

This leads us to look for h as functions of the 
whole state. 

To minimize the dimension of the unobservable 
part or equivalently, to maximize the dimension of 
the linear system obtained after feedback, h must  
satisfy 

L h(x) (2s) 

Since the input vector field is of the form 

0 
f--" g i ( 0 2 ) ~  1 + g2(02) a-~2' (29) 

(28) is satisfied by 

h ( x )  -- aO l + bO 2 + cg2(02)~ 1 _ cg1(02)~2, 

where a, b, c are arbitrary constants. 
For such a function, weobtain 

(30) 

H = [ a b cg 2 - cgl ] . (31) 
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Then, the Roulh criterion applied to Hn(s) gives, 

l agl + bg2 > O, 
C g 2 ( g 2 f 3 2 -  glf42) > 0, 

(g2f32 - g l f 4 2 ) ( a  -- b + cg l )  + c g l g  2 > O. 

These inequalities have a solution in a, b and c if 

g2(g2f32- glf42)2(gl + g2) 4:0. 

Hence, except may be for a set of zero Lebesgue 
measure of (g~, f~j), one Can solve the stabilization 
problem. 

This example points out the fact that it is 
possible both to stabilize the equilibrium and to 
obtain by feedback the largest linear system. 
However, this requires to find solutions of the 
partial differential equations: 

L hhi (x)  - 0, i, j ffi 1 , . . . ,  m. (32) 

These solutions must have a sufficient degree of 
freedom to allow satisfaction of the stability con- 
straints. 
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