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SELF-TUNING TRACKERS*

P. R. KUMARf AND L. PRALY:I:

Abstract. We examine the problem of obtaining adaptive control laws which tune themselves to control
laws minimizing the variance of the tracking error between the output of the linear ARMAX system and a
specified reference trajectory. If the reference trajectory is sufficiently rich of order greater than or equal to
the sum of the degrees of the control and noise polynomials in the ARMAX system, then an adaptive
controller is exhibited for which the parameter estimates are strongly consistent. For the linear model
following problem where the trajectory to be tracked is generated as the output of a linear system, it is
enough for the order of sufficient richness to be greater than the degree of the noise polynomial alone.
Further, if the order of sufficient richness is even smaller, as is often the case, then a lower dimensional
adaptive controller which does not attempt to estimate all the coefficients ofthe noise polynomial is self-tuning.
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1. Introduction. The problem of stochastic adaptive control of linear ARMAX
systems has received considerable attention over the past decade. The notable pioneer-
ing contributions are due to Astr6m and Wittenmark [1] and Ljung [2], [3]. Sub-
sequently, Goodwin, Ramadge and Caines [4] and Goodwin and Sin [5] have proved
the self-optimality ofsome adaptive control algorithms for minimum variance regulation
and tracking. By self-optimality it is meant that the cost, the time average of the square
of the tracking error, is minimal.

Recently a stochastic gradient algorithm has been proved to be self-tuning for the
regulation problem (see [6]). (Recall that in the regulation problem one wants the
output of the system to stay as close as possible to zero, whereas in the tracking problem
one wants to track a given arbitrary trajectory.) By "self-tuning" it is meant that the
adaptive control law converges to the optimal control law. This is clearly a property
of fundamental interest since it implies that the adaptive controller can be used as a
mechanism for tuning to the parameters of an optimal control law.

In this paper we examine the problem of minimum variance tracking where the
goal is to ensure that the output of the system tracks a specified reference trajectory
with minimal average squared tracking error.

From a purely technical viewpoint the analysis of the tracking problem along the
lines of [6] has until now been stymied by the fact that a key geometric property of
the adaptive control algorithm, which renders the regression and parameter estimate
vectors orthogonal, holds only in the regulation problem and not in the case of tracking.
Our first contribution here is to show how to overcome this difficulty by enlarging the
dimension of the regression vector.
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Another well-known difficulty with the tracking problem is that when the reference
trajectory to be tracked is a general nonzero trajectory (we call this the general tracking
problem), then the control law which allows the trajectory to be tracked with minimum
variance does require explicit knowledge of the coefficients of the colored noise
polynomial, see [4], [6], 12]. This is another feature distinguishing the tracking problem
from the regulation problem. Consequently, it is necessary to identify some additional
parameters pertaining to the colored noise polynomial in order to obtain self-tuning.
Such identification is established in this paper under the natural assumption that the
reference trajectory is sufficiently rich of appropriate order.

The second essential contribution of this paper is the examination of how one
may obtain self-tuning when the reference trajectory is not so rich as to allow one to
identify all the coefficients of the colored noise polynomial. For example, in an
important class of practical problems, called set-point problems, the output ofthe system
is required to stay as close as possible to a certain specified level. Thus the reference
trajectory is a nonzero constant, which is sufficiently rich of order one only. We examine
such problems, which violate the richness assumptions of the general tracking problem,
by examining the problem of following trajectories which are generated by linear
models. We call these the linear modelfollowing problems. (The set-point problem is a
special case of the linear model following problem.) Our second class of main results
is to show how one may adjust the dimension of the regression vector to the degree
of excitation present in the reference trajectory. We then provide a proof of self-tuning
of the resulting reduced dimension adaptive controllers.

Our main results are therefore the following:
(i) The adaptive control laws in both the general tracking problem as well as

the linear model following problem are self-optimal, i.e., the average squared tracking
error is minimal (Theorem 3).

(ii) In the general tracking problem, if the reference trajectory is sufficiently rich
of order at least equal to the sum of the degrees of the control and noise polynomials
in the ARMAX representation of the system, then the parameter estimates are strongly
consistent, i.e., they converge to the true values almost surely (Theorems 6 and 7).
This result also implies that the adaptive controller is self-tuning, i.e., the adaptive
control law converges to the optimal control almost surely (Theorem 7).

(iii) For the parameter estimates to be strongly consistent in the linear model
following problem it is enough for the order of sufficient richness of the reference
trajectory to be equal to the degree of the noise polynomial alone (Theorems 6 and
7). This again implies self-tuning (Theorem 7).

(iv) Often, the degree of sufficient richness is even smaller than the degree of the
noise polynomial (e.g. the set-point problem). In such linear model following problems,
a lower dimensional adaptive controller can be used. This lower dimensional adaptiver
controller is self-tuning (Theorem 7). The parameter estimates also converge (Theorem
6). However, since no attempt is made at estimating all the coefficients of the noise
polynomial, the parameter estimates do not converge to the true values (i.e. we are
using a direct adaptive control law).

Some comments on the nature of these results in comparison with the results in
deterministic adaptive control are useful. In deterministic adaptive control, where there
is no noise in the system, one can asymptotically obtain zero tracking error. However
in stochastic adaptive control there is noise and one wants to reject as much of the
noise as possible. Clearly optimal noise rejection will depend critically on the knowledge
of the correlations inherent in the possibly colored noise. This is where the central
problem of estimating the colored noise coefficients enters into the stochastic adaptive
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control problem. Indeed, in the present paper, the need for richness in the reference
trajectory is intimately related precisely to the need for estimating the model of the
colored noise.

2. The adaptive control laws. We consider the ARMAX system

(1) y(t)= aiy(t-i)+ biu(t-i)+ ciw(t-i)+w(t)
i=l i=1 i=l

where y, u and w are, respectively, the output, input and white noise. The parameters
(al,""" ap, hi,’", bq,l,"" ", es) are unknown. The goal is to design an adaptive
control law which ensures that the output follows a given bounded reference trajectory
(y*(t) with minimal average squared tracking error, and such that the adaptive control
law asymptotically self-tunes to the optimal control law. It is an added bonus if the
true parameters (al," ", ap, hi,... bq, 1," ", Cs) can also be asymptotically
identified.

If the reference trajectory is arbitrary, we shall refer to this problem as the general
tracking problem. In many problems however the reference trajectory is generated as
the output of a linear model. We shall refer to such a special case as the linear model
following problem. The special properties of a reference trajectory generated as the
output of a linear model can be usefully exploited, as we will see in the sequel. We
now discuss separately the general tracking problem and the linear model following
problem.

2.1. The general tracking problem. In this case {y*(t)} is just a reference trajectory
to be tracked with no special properties. We will use the following adaptive controller
(with the notation p v s := max (p, s)).

(2) O( + 1) O( t) + b(t)
.(r(t) [y(t+l)-y t/l)]

where, for the time being, 0 </ < 2 is an arbitrary constant (but see the remark at the
end of 4).

t+l

(3) r(t/l):= 1/ bT(k)4(k),
k=0

(4) b(t):= (y(t),’’’,y(t-p v s+ 1), u(t),’’’, u(t-q+ 1),
-y*(t+ 1),’’’,-y*(t-s+ 1)),

(5) u(t):= tli(t)y(t-i+l)+ fli(t)u(t-i+l)- yi(t)y*(t-i+l)
ill(t) I.i:l i:2 i:o

where

(6) (al(t),. apvs(t), fll(t), flq(t), To(t),’’’, )’s(t))’:= O(t).
Note that (5) can equivalently be written as

(7) dpr(t)O(t) =O.
The motivation behind this adaptive controller is the following. Rewrite the system

(1) as,

y(t+l)-y*(t+l)= ay(t+l-i)+ b,u(t+l-i)+ c,w(t+l-i)-y*(+l)
i=l i=l i=1

+w(t+l).
If one could observe the past of w(. at each time t, then an optimal controller would



1056 P.R. KUMAR AND L. PRALY

choose u(t) so that the term in [.. on the right-hand side above is zero, i.e.

-1
2 ay(t+l-i)+ 2 b,u(t+l-i)+ c,w(t+l-i)-y*(t+l)/,/(t) =--1 i=1 i=2 i=1

for this would result in y(t + 1) y*(t + 1) + w(t / 1), clearly yielding the best possible
tracking error. However, the sequence w(.) is not observed, and so let us replace it
by y(. )- y*(. ), which is what we hope it would be, at least asymptotically. This gives
the implementable control law,

-1
(a,+c,)y(t+l-i)+ b,u(t+l-i)- ctv*(t+l-i)-y*(t+l)u(t)’’-l Li=l i=2 i=1

It can be shown that this control law is actually optimal with respect to the long run
average of the square of the tracking error; for more details, see [12]. Let us define,

(8) O:=(al+ cl, apvs/ Cpvs, bl, bq, 1, Cl,’’’, cs) T

(where, for convenience, we define c, := 0 for i> s and ai := 0 for i> p in (8)), and,
under optimal control, the system (1) can be represented as

y(t+ 1)-y*(t+l)= bT(t)0 + w(t+ l),

while the optimal control law can be written as one which chooses u(t) to satisfy,

b T(t)O =O.

Our adaptive control scheme (2)-(6) can be interpreted as trying to estimate 0 when
the system is being optimally controlled.

Remark. Note that the (p v s + q + 1)th component of 0 is 1, and hence is a known
quantity. However, the estimator ignores this knowledge and estimates it anyway by
3’o(t). We can therefore regard (2, 3) an an unnormalized parameter estimator. It follows
that this parameter estimator is one dimension larger than that considered in Goodwin,
Ramadge and Caines [4]. In this connection, it is also of interest to note that recently
Wei [7] has proposed an estimator for the regulation problem which is one dimension
less than [4], [6].

2.2. The linear model following problem. In many situations of interest the refer-
ence trajectory is generated, at least asymptotically, as the output of a linear model.
We shall suppose that there is a sequence {y,,(t)} such that

(9) ym(t) E hiYm(t- i)
i=1

and the trajectory to be tracked y*(t) is asymptotically close to ym(t) in that

(10) E (Y*(t)-Y,,(t))2<+.
t=l

Without loss of generality we can make the following two assumptions:

(ll)(i) There is no lower c;rder difference equation satisfied by {y,,(t)}, i.e., there
is no nontrivial polynomial H(z) of degree strictly less than such that
H(z)y,,(t)=O for all t. (z is the backward shift operator.)

(ll)(ii) The roots of H(z):= 1-Y. hiz are exactly on the unit circle and therei=1

are no repeated roots.
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Assumption (11)(i) is without loss of generality since otherwise we could simply replace
H(z) in (9) by H(z). Note that this also means that the initial conditions on (9) are
sufficient to excite all the modes of H(z). Assumption (ll)(ii) is also without loss of
generality due to the following reasons. First, since we intend to work only with bounded
{y*(t)}, and since all the modes of H(z) are excited, we have to assume that H(z)
has roots on or outside the unit circle, and also that the roots on the unit circle are
not repeated. However, since we are only interested in the asymptotic behavior of
{y*(t)}, we can eliminate all the modes corresponding to roots of H(z) which are
strictly outside the unit circle, since they decay geometrically to 0. This leaves us with
(ll)(ii).

It is worth noting that (11)(i) and (11)(ii) together imply that

ym(t)=do+dl(-1) +E d, sin (to,t + 6,).

Depending on how large is, we will use adaptive controllers with parameter
estimators of different dimensions.

Case 1. <= s. Recall that s is the degree of the noise polynomial in (1). When
-< s, we will reduce the dimension of the parameter estimator by (s + 1 l) components

by replacing (4)-(6) by the following:

(12)

(13)

and

th(t):= (y(t), y(t-p v s+ l), u(t), u(t-q+ l),

y*(t + l), -y*(t + 2- l)) ,
O(t) := (al(t), aps(t), fll(t), flq(t), To(t),’’’, Y/-l(t)) r,

-1
a,(t)y(t i+l)+ fl,(t)u(t i+l) r,(t)y*(t i+l)(14) u(t) 1"(t) Li=I i=2 i=0

or equivalently by (7).
The idea underlying the above adaptive control law is the following. If the

parameters were known, the minimum variance adaptive control law would be,

-1
(ai+ci)y(t-i+l)+ , biu(t-i+l)-y*(t+l)- cy*(t-i+l)(t)= i=1 i=2 i=1

see [12] for details. In this control law the only terms featuring y* are y*(t+ 1)+
y*(t- i+ 1)= C(z)y*(t + 1). Thus the control law really only requires knowledgei=1

of C(z)y*(t). Let
l-1

(15) G(z):= Z giz’
i=0

be a polynomial satisfying,

(16)

for some

C(z) F(z)H(z)+ O(z)

s-l

(17) F(z) := 2 fzi.
i=0

Such polynomials G(z) and F(z) are the remainder and quotient, respectively, when
the polynomial C(z) is divided by the polynomial H(z). Then, asymptotically at least,

C(z)y*( t) [F(z)H(z) + O(z)]y*( t) F(z)H(z)y*( t) + O(z)y*( t) O(z)y*( t),
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since by (9.10), H(z)y*(t)=0 holds asymptotically. Thus we only need knowledge of
G(z)y*(t) in order to implement the true minimum variance control law. We can
therefore interpret the parameter estimate (13) as trying to estimate

(18) 0:= (al + Cl," ", apvs + Cpvs, bl, ", bq, go, gl," ", gl-1) T

Remarks. (i) The adaptive controller need not be provided with the precise
information about what the polynomial H(z) is. It only needs knowledge of the degree
of H(z).

(ii) It should be noted that the parameter estimator is no more "unnormalized,"
since the coefficients go,’", g-i are all unknown.

Case 2: -> s + 1. Since (s + 1 l) =< 0 when => s + 1, no savings in dimensionality
can be achieved. Hence we will use the same adaptive control law as (2)-(7). For this
case also we define 0 as in (8).

3. Sufficient richness. In the sequel we will prove that all the coefficients
(al, , ap, b , bq, c , cs) can be asymptotically identified when the reference
trajectory {y*(t)} is "sufficiently rich" in an appropriate sense. We have the following
definition.

DEFINITION. We shall say that a scalar sequence {y*(t)} is strongly sufficiently
rich of order if is the largest nonnegative integer for which there exists an n and an
e > 0 such that
t+n

(y*(k 1),. ., y*(k l)) r(y,(k 1),..., y*(k- l)) >= ell for all large enough.
k-t+l

I here is the x identity matrix.
The following property of {ym(t)}, and also {y*(t)}, generated by the linear model

(9), (10), (11)(i), (ii) should be noted.
LEMMA 1. Suppose {y*(t)} and {ym(t)} satisfy (9)-(11). Then both {y*(t)} and

{ym( t)} are strongly sufficiently rich of order I.
Proof. We will show that there exists e > 0 such that

t+l, Y(k 1) >- elI for all large enough
k=t+l

where

Y(k- 1):= (ym(k- 1),..., y,,(k- l))T(ym(k 1),""", ym(k- l)).

Suppose this is not true. Then there exists a sequence of vectors {x(tn)}, with each
IIx(t )ll- 1 and x( tn)=: (Xl(tn), -, x(tn)) T such that

xr(t,) Yl(k-1)x(t,) <--
k= tn+ rl

We can also assume without loss of generality that lim, x(t,)=: x exists with I[xl[ 1,
x:=(x,...,Xl) T. Moreover, since {ym(t)} is bounded, {(k-1)} is also bounded
and so

+!

limxr " Y(k -1)x O.
k= tn+l

Let X(z) := i--1 xiz. Interpreting z as the backward shift operator, we have

tn+l
lim [X(z)ym(k)]2--O.

k=tn+l
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This implies that

limX(z)ym(tn+i)=O for i=1,2,. .,/.

Now note that H(z)X(z)ym(t)=X(z)H(z)ym(t)=O and so

X(z)ym(t)= 8kAk
k=l

where {Ak} is the set of roots of H(z).Hence we have

lim 8kAn+i=0 fori=l,..-,/.
k=l

This can also be written as

The first matrix on the left-hand side above is the Vandermonde matrix which is
nonsingular since all the Ak’S are distinct. Moreover IAkl 1 for all k, and so it follows
that 8k =0 for k 1,. , I. This however implies that X(Z)ym(t) =0 for all t. However
X(z) is a polynomial of degree l-1 or less, and by (ll)(i), it follows that X(z) =0,
i.e., Ilxll- 0. This is a contradiction to Ilxll-- 1, proving that {ym(t)} is indeed strongly
sufficiently rich of order /. By (10) it follows trivially that {y*(t)} is also strongly
sufficiently rich of order/. (Actually it is enough that limt (ym(t)--y*(t))=0).

For future reference, we also have the following result.
Suppose {si t)} is boundedfor 0,. .,j andLEMMA 2. Let S( t, z) := Xi=o si( t) zi

limt Is,(t) si( 1)l 0 for 0,. j. Suppose also that for some sequence {x(t)},

lim
1 tv -- IS(t, 2)ym(t)]2=O and lim

1 N

rv X x2(t) =0.
t=l

Then there exists a common subsequence {lk} with limk X(tk) 0 and limk S(tk, Z)
K(z)H(z) for some polynomial K(z). (By S(t, Z)ym(t) we mean =o s,(t)ym(t- i).)

Proof. Since limt]s.i(t)-si(t+ n)l=0 for every n and {ym(t)} is bounded, it is also
true that limrv 1/N,= [S(t+n,z)y,,(t)]2=O for every n. Hence we can sum over n
and also add x2(t) to get- x2(t)+ [S(t,Z)ym(t-n)]2 =0.

t=l n=l

Hence there is a subsequence {tk} such that

limS(tk, Z)ym(tk-n)=O forn=l,...,/, likmX(tk)=O.k

Further we can also assume without loss of generality that

lim S( tk, z)=: S(z)
k
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exists, by which we mean that limk si(tk)=: Si exists for i= 0, ,j and S(z):= Y=o sz.
Further, since {Ym(t)} is bounded, it follows that

lim S(z)yr(tk-- n) =0 for n 1," ",/.
k

Note that H(z)S(z)ym(t)=0 for all t, and so

S(z)ym(t) tnAt
n=l

where {An} is the set of roots of H(z). Proceeding just as in the proof of Lemma 1, it
follows that

S(z)y,,(t) 0 for all t.

Now let U(z) be the greatest common divisor of S(z) and H(z). Then there exist
polynomials R(z) and T(z) such that R(z)S(z)+T(z)H(z)=U(z). Hence
U(z)ym(t)=O for all t. However, since the degree of U(z) is less than or equal to l,
it follows from (ll)(i) that U(z)=H(z) for some scalar :, and so the lemma is
proved.

4. Assumptions. Define the polynomials
p

A(z):= 1- 2 aiz,
i=1

q

B(z):= E b,z’-’,
i=1

C(z) := 1 + ciz .
i=1

Throughout this paper we employ the following assumptions only.

(19)(i) All the roots of B(z) and C(z) are strictly outside the unit circle.

(19)(ii) Re [C(eO)-] > 0 for 0=< to < 2r.

(19)(iii)

(19)(iv)

(19)(v)

(19)(vi)

bl0.

z-l[C(z)-A(z)] and B(z) are polynomials of degrees respectively equal
to (p v s- 1) and (q- 1), which have no common factors.

{w(t)} is a sequence of scalar random variables on a probability space
{f, F, P}, whose distributions are all mutually absolutely continuous with
respect to Lebesgue measure.

Let Ft:=tr{w(1), w(t)} be the sub-it-algebra of F generated by
{w(1),. ., w(t)}. We assume that there are irE>0 and t>0 such that

E[w(t)lF,_,]=O a.s.,

E[w2(t) lFt_l] tr
2 a.s.,
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(19)(vii) II0(0)11 >0.

(19)(viii) {y*(t)} is bounded.

It should be noted that the condition (19)(v) guarantees that the controls are well
defined a.s. through (5.14) since the event {ill(t)=0} is a null event, see Caines and
Meyn [9].

Remark. Let us consider a different constant/xl in place of/z in (2). It is. easy to
verify, see [12], that the resulting adaptive control algorithm produces parameter
estimates 01(t) (/zl//z)0(t) and identical inputs and outputs as the original algorithm
using/x, provided 01(0) is chosen as 01(0):= (/Xl//X)0(0). This property relies on the
fact that the control input u(t) is invariant with respect to scaling of 0(t) in (7). Making
use of this observation, it follows that one need not restrict /z to lie in (0, 2); it is
enough to have/z rs 0. Further, one only needs the assumption

(19)(ii) ReC(ei)>0 for0-<to<2cr

in place of (19)(ii).

5. Self-optimality. In this section we will prove the following theorem which
asserts, among other things, that in all cases the adaptive controller minimizes the
average squared tracking error.

THEOREM 3.

1 N

(20)(i) lim- [y( t) y*( t)]2 tr
2 a.s.,

N t=l

(20)(ii) lim
1 N

rv - (E[y(t+ l)-y*(t+ l)lFt])2=O
t=l

1 N

(20)(iii) limsup- u2(t)< + a.s.,
N t=l

(20)(iv) lim IIo(t)-oll exists and is finite a.s.

Proof. We will abbreviate those details of the .proof which are similar to those of
Goodwin, Ramadge and Caines [4] or [6]. Let O(t):= O(t)-O and define V(t):=
Ilff(t)ll =. Using r(t)>=dpr(t)dp(t) and dpr(t)g(t)=-Cbr(t)O, we can get

2/z{ r(E[ V( + I )IFt] <= V( t) -(- b t)O
2

E[y(t+ 1)-y*(t+

Ely(t+ 1)-y*(t+ 1)[F]-__-S-S,(E[y(t+ 1)-y*(t + 1) F’])2

rtt)

2 qb (t)dp(t)
tr

2+/x r2(t

for all . Choose >0 so small that [C(z)-(/x +$)/2] is strictly positive real. Let us
first consider the following case.
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Case 1. General trackingproblem or the linear modelfollowingproblem with >- s + 1.

C(z)E[y(t + 1)-y*(t + 1)lFt] C(z)[y(t + 1)-y*(t + 1)- w(t + 1)]

=[y(t+l)-y*(t+l)-w(t+l)]

+ [C(z)- 1][y(t + 1)-y*(t + 1)- w(t + 1)]

=[y(t+l)-y*(t+l)-w(t+l)]

+ ci[y(t-i+l)-y*(t-i+l)-w(t-i+l)]
i=1

(21) -[y(t+l)-w(t+l)-
i=1

ciw(t-i+l)l-y*(t+l)
+ c,[y(t-i+l)-y*(t-i+l)]

i=1

pvs q, (a,+c,)y(t-i+l)+ , b,u(t-i+l)
i=1 i=1

-y*(t+l)- c,y*(t-i+l)
i=1

dT t)O.
By the strict positive realness of [C(z) -( +/)/2] it therefore follows that

S(n):= 21
t= { dpT(t)O-I 2

+---- E[y(t + l)-y*(t+ 1)lFt]}E[y(t + 1)-y*(t+ 1)[Ft]

-> K a.s. for all n, for some K.

Defining M(t) := V(t) + S(t 1)/r(t 1), and using r(t) -> r(t 1) > 0, it follows that
T t)dp( t)

,[M(t / 1)[ F]_-< M(t)-- ([y(t / 1)-y*(t 4-1) F])/ o-2"rE(t)
The last term above is summable a.s., and so using the Positive Near Supermartingale
Convergence Theorem we can get:

(i) {M(t)} converges a.s.,

(ii) 1’ F]’2
<+ a.s.

(E[y(t+ 1)-y*(t+
t-1 r(t)

Now we claim that lira, r(t)=+ a.s. Otherwise rt 1 + ,’ T(= b k)4,(k) would lead
to lim, 4’(t)= 0 on a set of positive probability. This in turn would imply lim, yt- 0
and lim, u, 0, and from the system equation (1) it would then have to follow that
lim, C(z)w(t)=0 on a set of positive probability, which we will now contradict as
follows. First note that (C(z)w(t))2 a linear combination ofterms ofthe form wE(t i)
and w(t i)w(t -j). Let us first examine the first set of square terms. As a consequence
of (19)(vi) and Jcnscn’s and Minkowski’s inequalities, it follows that sup, E[IwE(t)

a.s, Chow’s Theorem [10, Thm. 3.3.1] is therefore appli-
w:(t) rcable, and shows that limN 1/N t=l a.s. Now we turn to the cross terms.

Since ,= wE(t- i) a.s., an appeal to the Local Convergence Theorem for Martin-
v wE(t_i)) a.s. Hence2w(t i)w(t) o(]t:gales [11, Lemma 2.3] shows that ]t=
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limv 1/NY,=I w(t-i)w(t)=O a.s. Adding up the contributions, we get
2limv 1/N__ (C(z)w(t))Z=l+,i= ci>0 a.s. This provides the required contra-

diction.
Since limt r(t)= +o a.s., Kronecker’s Lemma is applicable and gives

1 N

limu r(N) ,=1

(E[y(t+ 1)-y*(t+ 1)IF,])-=O aoSo

Utilizing the strictly minimum phase property of B(z) it follows that {r(N)/N} is
bounded a.s., which.proves (20)(iii)and (20)(ii). The same arguments as in Lemma 7
and Lemma 9 of [6] yield (20)(i) and (20)(iv).

Case 2. Linear model following problem with <-_ s. Just as in (21) we still get
pvs q

C(z)E[y(t+l)-y*(t+l)lFt]= , (a+c,)y(t-i+l)+ b,u(t-i+l)
i=1 i=1

-C(z)y*(t+l).

Let ( t) := ym( t)- y*( t). Then from (9) and (16) we get

C(z)y*(t+ 1)=C(z)y,(t+ 1)-C(z)f(t+ i)

Hence

G(z)ym(t + 1)-C(z)(t + 1)

G(z)y*(t+ 1)+[G(z)-C(z)]f(t+ 1).

pvs q

C(z)E[y(t+l)-y*(t+l)lFt]= (a,+ci)y(t-i-1)+ b,u(t-i+l)
i=1 i=1

G(z)y*( + 1) + C(z) G(z)]fi(t + 1)

dp 7"(t)Oo + C(z) G(z)]fi(t + 1).

By the strict positive realness property of [C(z)- (/z //)/2], it follows that

S(n):=2/x
,=1

($r(t)O+[C(z)-G(z)](t+l)-+E[y(t + 1)-y*(t + 1)IF, I]
2 J

Ely(t+ 1)-y*(t+ 1) Ft]

K a.s. for all n, for some K.

Defining M(t):= V( t) + S( t-1)/ r( t-1), we get

6 2 (t)$(t) 2E[M(t+l)lFt]M(t)-(E[y(t+l)-y*(t+l) F])2+ r2(t)

2+E[y(t + 1)-y*(t + 1)lF,][C(z)- G(z)]5(t + 1).

Define (t):=[C(z)-G(z)]fi(t+ 1), and note that by (10), t fiE(t) <+. For any
p > 0, we have

2E[y(t+l)-y*(t+l)lF,]fi(t)o2(E[y(t+l)-y*(t+l)lF,])+
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Hence, choose p so small that (6--2/zpE) > 0, and note that

E[M(t+I)IF,] M(t)
(/Z6--2/zpE)

<--_ (Ely(t+ 1) -y*(t + 1) Ft])E
r(t)

t.[l,E( T(t)ck(t) or2 + 2/-t,)72(t)
rE(t) pEr(t)"

Now both of the last two terms are summable, and so we can again use the Positive
Near Supermartingale Convergence Theorem. The rest of the proof is similar to the
previous case.

By (20)(i) of the above theorem, we see that usage of the adaptive controller leads
to a value of O"2 for the average of the square of the tracking error. In order to justify
our claim at the beginning of this section that the adaptive controller minimizes the
average ofthe square ofthe tracking error, we need to show that no other nonanticipative
controller, including possibly controllers which utilize knowledge of the parameters
(ai, bi, ci), can realize a smaller value than cr2 for the average squared tracking error
on any set of sample paths of positive measure. This is provided in the following lemma.

LEMMA 4. Consider the ARMAX system (1). Let Ft := cr( ws for s <-_ and y, u for
<-_ O) be the or-algebra generated by the past, and let { ut} be any control sequence chosen
so that ut F, i.e. ut is Ft-measurable for each >-O. Then,

1
lim inf - (y( t) y*( t))2 >_- cr2 a.s.
N t=l

Proof. Define

g(t-1):= 2 ay(t-i)+ b,u(t-i)+ ci(t-i)

and note that g(t 1) e F,_. Rewrite the system equation (1) as y(t) g(t 1) + (t)
and get

1 v [ "tN=l 2g(t-1)w(t)] +1__yE(t)= t--
gE(t-1) 1 + ---i 5i- 1) N ,=1" wE(t)"

Appealing to the Local Convergence Theorem for Martingales [12, Lemma 2.3], we
know that except on a null set,

, 2g(t- 1)w(t)= o 2 g2( t- 1) if ’. gE(t)=O,
t=l t=l t=l

In either case, therefore, it follows that

liminf 2 gE( 1) 1 +
t-----1

Hence,

N

if gE(t)<c.
t=l

Zt=2g(t-1)w(t)
y= gZ(t_ 1)

>--0 aoS.

N

liminf
1 u

im
1 wE(t

v ,= yE(t)-->l

0-2 a.s.
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The last equality has been proved in the course of the proof of Theorem 3. [3

6. Self-tuning and convergence. In this section we address the self-tuning and
convergence properties of the adaptive controllers.

First due to (2.7) we have the same geometrical properties as in [6]. This gives
us the following lemma, see [6].

LEMMA 5.

(22)(i) lim O(t)II exists and is finite a.s.

(22)(ii) For every n, lim IlO(t)-o(t-n)ll =0 a.s.

(22)(iii)

(22)(iv)

then

IIo(t + 1)11-> o(t)ll.
If there is a random scalar se and a random subsequence { tk} such that

lim O(tk) 0 a.s.
k

lim O( t) O a.s.

So in order to prove that limt 0(t)= so0 it is sufficient to show that there is just
one subsequence for almost every sample path along which such a limit exists.

THEOREM 6. (i) Suppose that {y*(t)} in the general tracking problem is strongly
sufficiently rich of order s + q ). Then

(23) lim 0(t) :0 a.s.

for some a.s. finite nonzero scalar random variable .
(ii) The result (23) holds in the linear model following problem irrespective of the

order of strong sufficient richness of {y*(t)} (using the appropriate definition of 0 as in
(8) or (17)).

Proof. We start with (20)(ii) which can be written as

1 N

(24) lim- {[1-A(z)]y(t+l)+zB(z)u(t+l)+[C(z)-l]w(t+l)-y*(t+l)}2=O.
t=l

Define the time varying polynomials
pvs

P( t, z):= E t,( t)z i-1,
i=1

q

Q(t, z):= E fl,(t) z’-l,
i=1

[tl yi(t)z in the linear model following problem with l_-< s,

R(t,z):=li:i= yi( t)z otherwise.

We shall interpret z as the backward shift operator. Thus, to illustrate the notation,
q q q

Q(t, z)x(t):= E fli(t)x(t-i+l): Q(t, z)B(z)x(t):= i(t) bjx(t-i-j+2),
i=1 i=1 j=l

q q

B(z)Q(t, z)x(t):= bj , fli(t-j+l)x(t-i-j+2).
j= i=
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Though Q(t, z)B(z)x(t) B(z)Q(t, z)x(t), it should be noted that if {1/Nt=l

is bounded, then it is true that

lira
1

N -- 2 [Q(t, z)B(z)x(t)-B(z)Q(t, z)x(t)]2=O.

To verify this, one needs to use the facts that limt IlO(t)-O(t-n)ll=O a.s. and {0(t)}
is bounded a.s.

Multiplying inside the summation in (24) by Q(t, ), we have

N

lira
1

Y {Q(t, )[1-A()]y(t+ 1)+ O(t, )B()u(t+ 1)
N Nt=l

+Q(t,z)[C(z)-l]w(t+l)-Q(t,z)y*(t+l)}2=o a.s.

Since

Z y2(t) Z u2(t) Z w2(t) Z y,2(t)
t=l t--1 t=l t=l

are all bounded, we can interchange the polynomials above to get

lim
1 s

tEl= {z-l[1 -A(z)]Q(t, z)y(t)+ B(z)Q(t, z)u(t)
N

(25)
+z-l[C(z)-l]Q(t,z)w(t)-Q(t,z)y*(t+l)}2=o a.s.

Now note that the control laws (5) and (14) can be written as

(26) Q( t, z)u( t) -P( t, z)y( t) + g( t, z)y*( + l ).

Substituting (26) in (25) gives

lim {{z 1-A(z)]Q(t,z)-B(z)P(t,z)}y(t)
N Nt=l

+ z-l[ C(z) l]Q( t, z)w( t)

+{B(z)g(t, z)-Q(t, z)}y*(t+l)}2=o a.s.

Now y(t)= w(t)+y*(t)+ E[y(t)-y*(t)lFt_l], and so substituting for y(t) gives

lim
1

1[{{z- C(z)-A(z)]Q(t, z)-B(z)P(t, z)}w(t)
t=l

+ {B(z)R( t, z) zB(z)P( t, z) A(z)Q( t, z)}y*( + 1)

+{z-[1-A(z)]Q(t, z)-B(z)P(t, z)}E[y(t)-y*(t)lFt]}=O a.s.

Due to (20)(ii) and the fact that {0(t)} is bounded, we can drop the .last term above
and write

lim
1 [{{z- C(z)-A(z)]Q(t,z)-B(z)P(t,z)}w(t)

t=l

+{B(z)g(t, z)-zB(z)P(t, z)-A(z)O(t, z)}y*(t+ 1)}2=0 a.s.
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Since lim, IIo(t)-o(t-1)ll=o a.s., and since (y*(t+ 1)} is bounded, we can replace
R(t, z), P(t, z) and Q(t, z) above by R(t- n, z), P(t- n, z) and Q(t- n, z), respectively,
for any n. Thus

lim
1 N

N -- {{z-l[C(z)-A(z)]O(t-n’z)-B(z)P(t-n’z)}w(t)
t=l

+{B(z)R(t-n,z)-zB(z)P(t-n,z)-A(z)Q(t-n,z)}y*(t+ 1)}2=0 a.s.

Choose n larger than (p+ q+ s), and then we can apply Lemma 11 of[6] to deduce that

(27) lim
1 N-- {z-l[C(z)-A(z)]Q(t-n,z)-B(z)P(t-n,z)}2=O a.s.

t=l

by which we mean that the average of the square of each coefficient of the polynomial
in z is 0; and also

(28) lim
1 N

N "- {{B(z)R(t-n,z)-zB(z)P(t-n,z)
t=l

-A(z)Q(t-n,z)}y*(t+l)}2=O a.s.

Furthermore since {y*(t)} is bounded, (27) also implies that

(29) lim
1 N

N -- E {{[C(z)-A(z)]Q(t-n,z)-zB(z)P(t-n,z)}Y*(t+l)}2=0
t=l

a,So

Subtracting (28) appropriately from (29), we get

(30) lim
1 N

u - E {[C(z)O(t-n,z)-B(z)R(t-n,z)]Y*(t+l)}2=O
t=l

a.So

Changing t-n back to in (27) and (30), we arrive at

(31) lim
N

E {z-l[C(z)-A(z)]Q( t, z)-B(z)P(t, z)}2=0
t=l

(32) lim
1 N

E {[C(z)Q(t, z)-B(z)g(t, z)]y*(t+l)}2=O
t=l

aoSo

Now let us treat the cases separately.
Case 1. Strong sufficient richness of order greater than or equal to (q + s). This

case includes the general tracking problem as well as the linear model following
problem with the order of sufficient richness as shown. Since {y*(t)} is strongly
sufficiently rich of order greater than or equal to (q+ s), there exist n and e >0 such
that for all large t,

1 t+n

(33) En k=t+l
(y*(k+ l), y*(k-q-s+2))(y*(k+ l),

y*(k- q- s + 2)) " >- eI+q.

Define

So(t) + s,( t)z +... + Sq+_( t)zq+s- := S( t, z):= C(z)Q( t, z) B(z)R( t, z).
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Then (32) can also be written as

lim
1 {-ln [S(k, z)y*(k+ l)]2 =0 a.s.
m j=l k=jn+l

Since limt IIo(t)-o(t-1)ll =0, we can replace S(k, z) by S(jn, z) to get

Y [S(jn, z)y*(k+l)]2 =0 a.s.
m j=l k=jn+l

q+s- si(t) and (33) implies thatDefine

1
E [S(jn, z)y*(k+l)]2_->  llS(jn, z)ll = for all large j.

l’l k=jn+

From (34) it follows that

(35) lim
I s(jn, z)ll = 0 a.s.
mj=

Again, since lim, llO(t)-O(t-1)ll =0 a.s., (35) implies that

N

(36) lim
1
E IIS(t, z)ll=-0 a.s.

N -t=l
Adding (31) and (36) gives

lim
1

N - {z-l[C(z)-A(z)]Q(t’z)-B(z)P(t’z)}2
t=l

+{C(z)Q(t, z)-B(z)R(t, z)}2 0

Hence there is a common subsequence {tk} such that

(37) lim {z-l[c(z)-A(z)]Q(tk, z)--S(z)P(tk, z)}=O a.s.
k

a.So

and

(38) lim{C(z)Q(tk, Z)-B(z)R(tk, Z)}=O a.s.
k

Since { 0(t)} is bounded, we can also assume without loss of generality that

(39) likm Q(tk, z)=: Q(z)’, limk P(tk, z)=: P(z); limk R(tk, Z)=: R(z) a.s

exist. Hence (37) and (38) imply

(40) z-l[C(z)-A(z)]Q(z)-B(z)P(z)=O a.s.,

(41) C(z)Q(z)-B(z)R(z)=O a.s.

However, O(z) and P(z) are polynomials of degrees less than or equal to (q-1) and
(p v s- 1), respectively. Hence (40) and our assumption (19)(iv) imply that

(42) Q(z) $B(z) and P(z) z-[C(z)-A(z)]
for some random scalar :. Then (41) also shows that R(z) C(z). Moreover : cannot
be 0, since otherwise limk 0(tk) 0, which is ruled out by (22)(iii) and (19)(vii). From
(22)(iv) we obtain the desired result.
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Case 2. Linear model following problem with < (q + s). Since limt (y,, (t)
y*(t))=0, we can replace y*(t+l) by ym(t+l) in (32). If s+ l <--l < q+ s, we shall
henceforth define G(z):--C(z), while if l<-_s, G(z) is defined as previously by (15),
(16). In the latter case also, from (9) and (16) we have C(z)ym(t+ 1)= G(z)ym(t+ 1).
Hence in any case,

(43) lim
1 N

rv - E {[G(z)Q(t,z)-B(z)R(t,z)]ym(t+l)}2=0 a.s.

Applying Lemma 2 to (43) and (31), we obtain that there is a subsequence {tk} such
that (37) holds and also

lim[G(z)Q(tk, Z)-B(z)R(tk, Z)]= K(z)H(z) a.s.
k

Without loss of generality we can also suppose that the limits in (39) exist. Hence

(44) G(z)Q(z)-B(z)R(z) K(z)H(z) a.s.

Also through (31), (40) gives (42). Substituting (42) in (44) yields

B(z)[G(z)-R(z)]= K(z)H(z) a.s.

Now note that by (ll)(ii) all the roots of H(z) are exactly on the unit circle, while
all the roots of B(z) are strictly outside the unit circle by (19)(i). Hence

G(z)- R(z) J(z)H(z) a.s.

for some polynomial J(z). However [G(z)-R(z)] is a polynomial of degree less
than or equal to 1-1, while H(z) is a polynomial of degree exactly/. Hence

(45) G(z)-R(z) =0 a.s.

(42) and (45) now yield the theorem. [3

It is of interest to note that Caines and Lafortune [8] have suggested an adaptive
controller which tracks y*(t) perturbed by white noise. Such a perturbed reference
trajectory is strongly sufficiently rich of arbitrary large order (effectively o).

Having proved convergence of the parameters to so0 under the conditions of
Theorem 6, we now have the following results.

THEOREM 7. (i) In the general tracking problem suppose {y*(t)} is strongly
sufficiently rich of order greater than or equal to q + s). Then

(46)

1
litm To(t) (al(t)-’yl(t), tp(t)-%,(t), fl(t), flq(t), 3q(t), "ys(t))

(al,’" ", ap, bl,’", bq, cl,. Cs) a.s. with %(t) := 0 for > s).

Thus the parameter estimates are strongly consistent. Also

(47)

1
litm fl(t)

(ce(t), apvs(t), fiE(t),’’" flq(t), /o(t), , /s(t))

b
(al + cl, ", apvs q- Cpvs, b2, bq, 1, c, ", cs) ao s.

setting ai := 0 for > p and ci := 0 for > s. Hence the adaptive control law (5) self-tunes
to the optimal control law a.s.
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(ii) In the linear model following problem with l> s the results (46) and (47)
continue to hold.

(iii) In the linear modelfollowing problem with <-_ s we have,

lim
1

(Ol(t), Opvs(t), f12(/),""", [3q(t), To(t),’’’, )’/-l(t))
fl,(t)

1

b]
(al + c], apv, + Cpv,, b2, , be, go, g-l)

setting ai := 0 for > p and ci := 0 for > s. Here {go,. ", g-1} are defined by (15), (16).
Hence the adaptive control law self-tunes to the optimal control law a.s.

7. Concluding remarks. We have proved the convergence of the parameter esti-
mates and the self-tuning property for the adaptive tracking problem, justifying the
name of self-tuning trackers.

For the general trackingproblem, the convergence depends on whether the reference
trajectory is sufficiently rich of appropriate order, as shown in Theorem 7. In the
important case of reference trajectories which are not so rich, we have examined the
linear modelingproblem, and shown how one can adjust the dimension of the parameter
estimator to the order of sufficient richness so as to obtain a self-tuning tracker. It is
worth noting that the adaptive controller need not be provided with precise information
such as amplitude, frequency or phases of the sinusoids in the reference trajectory. It
is enough to know only the number of such components.

An important application, which is a special case of these results, is the problem
of.maintaining the output at a constant level, i.e., the set-point problem. The constant
trajectory is sufficiently rich of only order 1, and only one parameter need be estimated
to compensate for the colored noise and reject it optimally.

Among the outstanding problems still left unresolved are the following:
(i) Does the least squares based parameter estimation algorithm also possess the

above properties? This is of vital interest because the rate of convergence of least
squares based algorithms has been observed to be superior to the type of parameter
estimation algorithm considered here.

(ii) What robustness properties do these types of self-tuning adaptive control laws
possess?
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