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Abstract: We address the following problem: given a fixed regulator that insures closed-loop stability for a partially known plant, 
design a mechanism to adaptively tune the controller parameters in order to improve performance. Our main concern is to insure that 
global Z-"~-stability of the overall system is preserved. The proposed parameter update law includes a signal normalization [1] and a 
o-modification [2]. The condition for global LPoo-stability relates the margin of stability of the closed-loop linear system, the speed of 
adaptation and the size of the residual set for the tracking error. 
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1. Introduction and problem formulation 

In  this paper  we are interested in the following problem: given a linear time invariant plant  and a 
known fixed stabilizing regulator, desing a mechanism to adaptively tune the controller parameters in 
order  to improve performance retaining global stability of the overall system. The motivat ion to address 
this problem stems from the fact that  stringent closed-loop performance demands  require very accurate 
models. Since the actual dynamics are likely to differ f rom the available model, it is of  practical 
importance to be able to tune the controller on-line. Fur thermore  a fairly complete theory is available for 
the design of  stabilizing controllers for partially known systems, see e.g. [6]. The adaptive tuning procedure 
will therefore search a controller parametrizat ion with improved performance.  The main  contr ibut ion of  
the paper is the establishment of  a condit ion under which global Zaoo-stability is preserved. 

Al though we use the term tuning to refer to the proposed control  design, we are of  course really 
discussing an adaptive controller. In  this case, we consider cont inuous controller adjustments,  however the 
theory developed here applies also mutatis mutandi  to the practically impor tant  case of  infrequent 
parameter  update  [7]. 

The system to be adaptively tuned is the s ingle-input-single-output  LTI  plant  described by 

y ( t )  = C ( p ) u ( t )  + v( t )  (1) 

where p = d / d t ,  G ( p )  is the process transfer function, u( t )  and y ( t )  are the process input  and output  
respectively and v ( t )  represents the effect of bounded  disturbances as seen at the output.  The input to the 
plant  is taken as 

u ( t )  = f f r ( t ) ~ ( t )  (2) 
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where q~(t) ~ R" is an auxiliary vector, possibly containing filtered input, output and reference, ~(t) ~ R" 
is the control parameter vector to be adjusted on-line. The controller structure may, for instance, be taken 
such that a model reference objective is attained. In that case n is determined by the apriori estimate of the 
process order. Details on this structure can be found elsewhere, e.g. [3]. 

In this paper we will pursue a model following objective, that is we will require the process output to 
track the output of a reference model as close as possible. The design involves two steps: the first is the 
determination of a vector 0 0 such that for ~ ( t ) =  0 0 the closed-loop system is stable. This step evidently 
requires some prior knowledge of the plant, as described for instance in [6]. Notice that we do not require 
this controller to attain a good tracking error, but just to stabilize the plant. The second step is to design 
an estimator which will search in a neighborhood of 0 0 in the parameter space for the best available 
regulator. Our objective in this paper is to propose an estimator which guarantees that the on-line tuning 
does not upset the overall stability and eventually will lead to performance improvement. 

To this end, we propose the following update law for the parameters: 

~ ( t ) = - t r ~ ( / ) "  yq~(t)e(---t)+trOo, ~ ( 0 ) = 0  o, a , y > 0 ,  (3) 
p( t )  2 

where e(t) is the tracking error and O(t) is a normalizing factor satisfying 

p ( t )  > e  forsome ~>0,  (3a) 

#(t)>-l~O(t), /~>0,  (3b) 

1 (3c) - -  max I q~,(t) I < mp. 
p( t )  , 

We need the following assumption: 

A.1. The plant (1) with the controller 

u(t) = 00T*(t) 

has closed-loop poles ?`,. such that 

Re{?,;} < -t~. 

Remark 1. Notice that if 8 0 is a 'good' estimate for the controller, i.e. e(t) is small, then t~(t) will remain 
close to 8 0. Otherwise it will depart from 8 0 at a speed essentially determined by y. 

Remark 2. A normalizing factor that satisfies (3a)-(3c) is given in [4] for a model reference controller. 
Similarly to [5], to insure property (3c) with rnp = 1 the frequency content of the reference and process 
output must be restricted by means of low pass filters. The procedure is shown in the example of Section 4. 
We will assume in the sequel that mp = 1. This without loss of generality, since as will be seen in the proof 
the result applies without modification to the standard case without filters, i.e. mp 4: 1. 

We will find it convenient to write the estimator in the equivalent operator form: 

O(t) = Hi(p) qJ(t)e(t) 
p(t)  2 

where 

Ha( ) ~  - r  # ( t ) & # ( t ) - O  0. P p + o '  

(4a) 
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Note that 0(t) denotes the deviation of the actual controller parameter with respect to the stabilizing 
parameters. 

Writing (2) in terms of #(t), replacing in (1) and arranging terms we obtain the standard structure for 
the error model [3], 

e(t) = H2(p)O-r(t)ep(t) + eo(t ), (4b) 

q~(t) = H3(p)O(t)T q~(t) + ePo(t ), (4c) 

where H2(p)  E R(p) ,  H3(p)  E R " ( p )  are the transfer functions, u(t) ~ y ( t )  and u(t) ~ ep(t) respec- 
tively, when ~(t) is held fixed at 0 o. As seen from (4b), (4c), eo(t ) and @o(t) are the resulting tracking 
error and regressor for the fixed controller. In view of assumption A.1, H2(p)  is stable and eo(t ) ~.~eoo. 

The conditions to insure stability of H3(p)  and @0(t) depend on the particular structure of the 
controller (2). 

For model reference controllers the transfer function vector H3(p)  is of the form (see e.g. [3,4]) 

H3(p)=[O, A__~p) G(p)_  1 p,,/Z-2A(p) G ( P ) - I  a 1 p, , /2-2] 'r  . . . . . .  p + a '  A ( p )  . . . . .  A ( p )  H2(P) 

where G(p), A(p)  and a / (p  + a) are the transfer functions of the process, filter signal generator and 
low-pass output filter respectively. It is clear then that the condition of stability of H3(p)  imposes a 
restriction of process stable invertibility. 

Notice that since Ha(p),  H2(p)  and Ha(p)  are stable operators, the effect of its initial conditions will 
decay exponentially and will not upset the stability. 

In Section 2 we present a preliminary lemma, then in Section 3 our main result, namely a condition for 
global .Saoo-stability of (4) is derived. In Section 4 the theorem's applicability is illustrated with an example 
of a model reference adaptive controller. 

2. A preliminary iemma 

The following preliminary lemma will be useful in the derivation of the main result. 

Lemma. Assume 1-12( p - t~) is stable and let h~(t) denote its impulse response, that is 

and 

3m, X > 0: I h~(t)  I < m e - x t .  (5) 

Then, for all functions p(t)  satisfying (3a), (3b), the .~oo-gain of the operator p-l(  t )H2( p )p( t) satisfies 

7oo(p-a(t)n2(p)p(t)}  < m / k .  (6) 

Proof. Let Y(t) = H2(p)u(t). Then from (5), 

e ~ ' l y ( t )  [ < f0'lh (t- )I I I d~ <mfote-X(t-¢)e ~ I u(~') [ d~" 

which implies that 

]p- l ( t )y ( t )  ] ~< mf0te-X('-¢) eP(:-t)p(t)-lp(~) [ p(~')-Xu(~') [ d~'. (7) 

From (3b) we have 

eV¢p(~)<e~tp(t), V~ <t, 
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which together with (7) gives 

fote_h(t_~;) -1 I P-I(t)Y( t) l ~ m  I P(~) u (~) ld~ .  

This completes the proof. O 

3. Main result 

We are in position to present our main result. 

Theorem. Consider the adaptioe system (1), (2), (3). Assume A.1 holds, H3(p) is stable and epo(t ) is 
bounded. Then there always exists "t/o > 0 sufficiently small such that the overall adaptive system is globally 
£a,~-stable, that is 

e( t ) ,  ~(t) ,  g(t)  E~e~. 

Proof. The proof proceeds as follows. First we find, using (4a), (4b) and the 1emma above, an upperbound 
for II #( t )  II ,~. Then replacing in (4c) we use a small-gain argument to show that ~(t) is bounded. Finally 
e(t) is shown also to be bounded appealing to stability of H2(p) and (4b). 

From (4a), 

I1 #( t ) I I ,~< 3'.~{ Hz (P)} I ep(t)e(t)p(t) 2. ,o = T__O I¢(t)e(t)o(t)2 (8) 

Using (4b) we can write 

rk(t)e(t) =~ ( t )  [p_~H2(p)p(t)]  , ~,T~(t)]  

Taking the ~'~-norm, 

eO(t)e(t) + eo(t) , 
< ~ II # ( t ) I I  (9) 

p ( t )  ~ ~ p ( t )  

where we have used the previous lemma and (3c), i.e. II ¢k(t)/p(t)II ,~ -< 1. 
SubstitUting (9) in (8) gives 

+ eo( t )  
' [ ' ( t )  l l , ~ < ~ ( - ~ l l O ( t ) " ~  p(t) ~)" 

"Choosing 7/o  such that (7/a)(m/)Q < 1 we can write 

I I#( t )  ll < v / o  C o ( t )  , 
v m p ( t )  1-~-f 

which proves that' ~(t) is bounded. 
On the other hand, from (3b), 

II +(t)  II ~ < 3'.o( Ha (P)  } II # ( t )  II ,~ II +(t)  II ~ + II % ( t )  II 
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and consequently q~(t) is bounded if 

Y e°(t) / ( 1  Y 
Yoo(H3(p)) 

which is verified for sufficiently small y /o .  
The proof is completed with (4b), stability of H2(p) and boundedness of (( t) ,  ~(t)  and eo(t ). [] 

Remark 3. The stability analysis does not rely on any of the following assumptions on the process: 
knowledge of the high-frequency gain and relative degree, finite dimensionality or strict separation of time 
scales. Neither we assume almost periodic or persistently exciting inputs nor rely on the inclusion of 
probing signals, parameter projections or dead zones. 

Remark 4. The stability theorem relates the following properties of the estimator: adaptation speed (V), 
size of the residual set for the error (o) and 'memory' of the normalizing factor (/~) with the relative 
stability of the linear system (m/X) and the size of the linear system error (%). 

4. An example: A model reference adaptive controler 

An example is provided in this section to illustrate the application of the stability theorem. 
Consider the process described by 

Kp 
y ( t ) =  ( P + P , ) ( P + p 2 )  U(t) 

with Kp, Pa and Pz unknown constants. The reference model is 

ym(t) gm - - r r  ( t) ,  ym(O)=rr(O)=r(O), 
P +Pro 

a 
rf( t)  = _----y---st(t), a <<Pro" /J -r- u 

The control is of the form 

u(t) = t~l(t)rr(t ) + l~2(t)yr(t ) = t~(t)T~b(t), 
a 

y f ( t )=  P + a Y ( t  ), y r ( 0 ) = y ( 0 ) .  

Let the parameter update law be 

d(t) = -a~ ( t )  +'t ep(t)e(t) + OOo, t~(O) = 0o, 
p( t )  2 

t S ( t ) = - - ~ p ( t ) + a [ l y ( t ) l + l r ( t ) l ] + l ,  p ( 0 ) = l r ( 0 ) l + l y ( 0 ) l ,  0 < / ~ < a ,  

e(t) = y ( / )  --ym(t),  

where 8 0 is such that A.1 holds. 
Notice that without the low-pass filters we can not ensure (3c) with rnp = 1 for all values of y(t) and 

r(t). Take for instance a step change in both signals. 
It can be easily shown that for this example 

K p ( p + a )  
H2(P)  = (p + a)(p  + P I ) ( P  +P2) - 02oakp' 

n3(p) = [0,/¢2(p)] T, 

eo(t) = [01on2(P) 

 o(t) = [1, 01oH2(p)]Xrr(t). 

P+Pm rt(t)'  
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The conditions for .Z~o-stability may be therefore easily derived from an analysis of the transfer function 
H2(p). 

5. Concluding remarks 

Conditions have been presented for global .Z~o-stability of an adaptive tuning mechanism intended to 
improve performance of a plant stabiliTable with a fixed known controller. 

The estimator (4a) contains a leakage and signal normalization. The input-output formalism is used to 
derive the results. The allows us to treat the problem with wide generality and still provide interpretative 
stability conditions. It is the authors' belief that the results may be extended to treat discrete-time, 
multivariable or time-varying systems. Current research is under way on that direction. 

The modifications to the estimator are essential for the analysis. Namely, the normalization is used to 
insure boundedness of cb(t)/p(t) and y~{p-a(t)Hz(p)p(t)}. Also the leakage is required to have a finite 
.~,-galn of H~(p). 
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