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Decentralized indirect adaptive control 

L. PRAL Y ('), E. TRULSSON CZ) 

Abstract/Resunne ________________________________________ __ 

We prove that a decentralized adaptive controller based on a completely decoupled 
reduced order model can stabilize a complex system subject to structure uncertaintes. 
OUf study is done for an indirect scheme assuming that the stabilizability problem is 
solved. The important aspects are : 

- the adaptation law which incorporates robustifying mechanisms such as signal 
normalization and guarentees parameter boundedncss, 

- the techniques of proof we have used which apply to many other robustness 
problems of adaptive schemes. 

Nalls etablissolls qu'ull cOl/lrateur adaprallj decentralise confu a partir d'WI modele 
d'ordre reduit suppose decouple, pelll stabiliseI' WI systeme complexe sl/jet d des illcer­
tillldes de struclllre. Notre etude est jaite pour WI schema indirect en supposalll resolu 
Ie probleme de la stabilisabilite. Les aspects importaJlls sollf : 

- /'Illilisation d'lIne loi d'adaptatioll modifiee garafllissaJIt la bOl'llitude des para­
metres adaptes et utilisant des signaux normalises, 

- les iller/lOdes uti!isees dalls nos demonstrations qui s' appliclue1ll d de nombrellX 
mitres problemes de rabUSlesse des sc/u?l1Ias adaptatifs. 

Keywords/ Mots c/es 

Adaptive control, decentralized control, robustness, indirect schemes. 

COl1llllande adaptative, cOlllmande decelllralisee, robllstesse, sche,na indirect. 

1. Introduction 

Classically, adaptive controllers are designed from the assumption tha~ 
though parametrically unknown, the plant has some known structure 
properties. It is now well established that such controllers, in this nominal 
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situation, meet their objective (Goodwin, Sin, 1984). But one can justely 
question the behavior in presence of Dot only parametric but also structure 
uncertainty, i.e. possible changes for which the adaptation process is not 
a priori designed. For this problem to be well posed, both the adaptive con­
troller (corresponding to the nominal structure) and the structure uncer­
tainty have to be precised. 

Such a situation is encountered in the decentralized control of intercon­
nected systems with reduced order models. The nominal structure of the 
plant is that of a collection of M decoupled subsystems and the structure 
uncertainty is due to the actual presence of coupling terms, neglected local 
dynamic elfects and external disturbances. Isolation and quantification of 
these uncertainties require a precise knowledge of the nominal structure 
parameters. This is a strong requirement since the operating conditions of 
large scale systems are often such that the parameters are poorly known. 
This is a typical case where adaptive schemes could be very helpful. Unfor­
tunately, their study in this context has not received so much attention. The 
more complete results have been given by Ioannou and Kokotovic (1985) 
for the continuous time case. They have shown that classical adaptive con­
trollers can lead to instability, and, introducing the so called cr-modification, 
they have derived sufficient conditions which guarentee the existence of a 
region of attraction to a reference signal dependent residual set. These results, 
however, have been obtained only if each isolated subsystem dominant part 
has relative degree one. 

The reference signal dependence mentionned above has been more deeply 
understood and written as a frequency dependent positivity condition by 
Ortega and Kelly (1985). They have obtained this condition for a very sim­
ple controller by applying the local analysis technique introduced by Riedle 
and Kokotovic (1984). 

To see how the results depend on the structure uncertainty, we can com­
pare the above results with those of Gavel and Siljak (1985). They have 
established that unmodified adaptive controllers lead to global stability 
if the only structure uncertainty is due to the possible presence of coupling 
terms which are within the range of control variables and accessible to the 
measured outputs. 

As far as the discrete time case is concerned, (and as far as we are aware 
of) no such results are available. Let us mention however the paper by Yang 
and Papavassilopoulos (1985) about a partially decentralized adaptive con­
troller where all the outputs, but not the inputs, are available to each con­
troller. 

In this paper, we treat the discrete time counterpart of the problem studied 
by Ioannou and Kokotovic. Unfortunately, their technique is too particular 
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to the relative degree one continuous time case and we have 'not been able 
to extend it here. We have preferred to extend the results of (Praly. 1983) 
for a single input-single output plant to the multi input-multi output decen­
tralized case (see also the extensions given by Samson (1983)). In particular. 
besides a parameter projection somehow equivalent to the a-modification, 
we have incorporated the normalization procedure used in (Praly. 1983). 
Though our analysis applies similarly to tbe direct scheme 'case. we present 
bere an indirect decentralized adaptive controller based on a pole place­
ment design. Tbis allows us to get rid of the minimum phase assumption 
whicb is so critical for discrete time systems. However. inherent with an 
indirect approacb, is the estimated model stabilizability problem. This 
question is the theme of very interesting research and some important results 
have been obtained by de Larminat (1984) and Lozano and Goodwin (1985). 
To simplify this paper. we concentrate our attention on the robustness 
problem and we assume the stabilizability problem to be solved 

In section 2. we design a decentralized adaptive controller from tile data 
of a nominal structure and a pole placement objective. We study this algo­
rithm in section 3. This motivates the assumptions about the structure uncer­
tainty given in section 4 wbere our main result is presented. Finally. in sec­
tion 5, we give our conclusion. 

2. A decentralized adaptive controller based on pole placement 
design 

Our objective is to design local adaptive controllers for a plant whose 
nominal structure is assumed to be a collection of M decoupled single input­
single output time invariant linear rational subsystems. Each of them is 
represented by : 

A"(q- l )y"(k) = B"(q-l)lf(k - I) (1 = I .... . M . (2.1) 

where I/"(k), yOlk) are the input and output respectively of the (1'th subsys­
tem. with zero initial conditions. and A"(q-l). B"(q-l) are coprime poly­
nomials in the unit delay operator q- l. with known degree Ill" but unknown 
coefficients. Collecting all the coefficients of A"(q - '). B"(q-l) in a vector e' 
and introducing the vector <lJ"(k) as : 

<lJ'(k), = (y"(k - I) ... yOlk - Ill") 'f(I< - I) ... I/'(k - ",")). (2 .2) 

we can rewri te (2. I) in : 

y"(k) = e"'<lJ"(k) (1 = I, ... . M. (2.3) 
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For each subsystem, the information available to its local controller is 
its own input-output signals. Its control criterion is to place the closed loop 
poles as defined by a polynomial A:(q-l) of degree 2111"-1 , and to follow 
" as well as possible" a reference output yd(k). 

We remark that for any vector 8" (with the coprime ness assumption), 
we can define a vector 1jI" as the solution of the following linear system 
(equivalent to a Bezout identity) : 

12(8") 'I'" = m" , (2.4) 

where m" is a vector collecting the coefficients ofAX(q - l) : 

(2.5) 

and12(8") is a matrix collecting the coefficients of8" or equivalently of A "(q-l), 
B"(q - l) : 

0 

b" 1 a" 1 

0 
12(8") = 

b~l~ b" a~J:1 a" 
(2.6) 

1 1 

b~l~ a~J:1 

With these notations, we can now introduce a decentralized adaptive 
controller which would achieve our control objective if the plant would 
actually satisfy (2.1). It is a modified version of the algorithm proposed by 
Goodwin and Sin (1984). In particular, it incorporates a least squares para­
meter estimation, with parameter projection, signal nonnalization and 
covariance matrix regularization (for more details, see (Praly, 1983)) : 

e"(k) = ;I'(k) - 8"(k - I)' <I>"(k) 

Ift(k)2 = fl2 ,ft(k - Ij2 + Max [II <I>"(k) 11 2
, (raj2] 

1"(") 
Ift(kf + <I>"(k)' P"(k - I) <I>"(k) 

~"(k) = 8"(k - 1) + 1"(k) pOCk - 1) <I>"(k) e"(k) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

!:,"(k) = pOCk - 1) - 1"(k) pOCk - 1) <I>"(k) <I>"(k)' P"Ck - 1) (2.11) 

[ 
R"(A"jA")'12 ] 

8"(k) = 8~ + Min 1, II ~"(k; _0 8~ II (~"(k) - 8~) (2.12) 
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P'(k) = (1 - ~~) .!:"(k) + Ao J (2,13) 

1jI'(k) = 0(6'(k)t I (0' (2.14) 

1jI'(k)' <!J'(k + 1) = E'(k) A%(q-I) y,(k) (2.15) 

{ 

1 . I I 
E'(k) = B'(k, 1) If B'(k, 1) > E (2.16) 

1 if not 

where, with b~(k) the Ill' last components of 6'(k) : 

B'(k, I) = L: b~(k). (2. 17) 
i=l 

The design of this controller consists in choosing values for the following 
parameters (omitting the superscript Ci) : 

III = subsystem model order, defines the number of parameters. 
o '" ~ < I, 1'0 characterize the normalization factor r(k) whose magnitude 

influences the speed of adaptation. 
R, 60 are the radius and center of the projection sphere S(R, 60 ) which 

defines the area in which the true parameter vector is assumed to lie. 
o < Ao < Al fix lower and upper bounds for the P-matrix which defines 

the geometrical weighing of the parameter vector and influences t~e speed 
of adaptation. 

Aiq-I) defines the desired closed loop poles. We choose this polynomiol 
sZlch that its spectral radius is strictly smaller than ~. 

E(k) is chosen to obtain a unit tracking dc-gain. More generally E can be 
be any polynomial in q-I with bounded time varying coefficients. 

The study of the feedback system will allow us to precise the effective role 
of some of these parameters. 

Remark: Since the matrix 0(6'(k)) has to be inverted, this algorithm needs 
some monitoring to guarentee its invertibility or equivalently to guarenlee 
the controllability of the identified model given by 6'(k) (see de Larminat, 
1984, for example). There is no difficulty if all the models given by 6 in the 
sphere with radius R(AI/Ao)I!2 and center 60 are controllable. In any case, 
as mentionned in introduction, we assume that this problem is solved and 
in particular that we have : 

ASSUMPTION A I : For all i, j, 

. 111jI'U) - 1jI'0J II '" 9 II S'U) - 6'0J II . (2.18) 
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3. Properties of the adaptive controller 

In this section, we deal only with one subcontroller. To simplify the nota­
tions, we omit the superscript r:J.. 

A first property is given by the adaptation law (2.7)-(2.13) : 

LEMMA I : The parameter estimate satisJy,for all " : 

with 

II a(k) II " T 

II a(k) - a(k - I) II " s I e(k) I, 
r(k) 

ProoJ: See (Pra1y, 1983). 

COROLLARY I : Under assumption A I , lI'e hal'e also,for all k : 

II \j1(k) II " P 

II \j1(k) - \j1(k - I) II " gs I ;iz~ I. 

(3 . 1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

These very elementary properties are sufficient to prove the following 
lemma: 

LEMMA 2 : Under assumptioll Al : 

(i) there exist positive constants r , /l such that. Jar all k alld Ko. lI'e have: 

' -1 
~-2' r(k)2 .;;; n(Ko) ~ - 'K, r(Ko)' + /l~-" + r 2: ~-'" e(II)' (3.6) 

,,=Ko+l 

where, with r Ia constant given in the proof, we have: 

[
e(/()J' 

n(Ko) = I + r 1 Max -:--(1) 
ke (O,Kol 1 <: 

(ii) there exists a positive cOllstant r 2 slleh that: 

In-I 

I e,(k) I " r, 2: I e(k - 1/) I 
n=O 

(3.7) 

(3.8) 
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w" ere e,(k} is defined as I"e following « Irackil/g» error: 

'" e,(k) = Ad(q-'} y(k} - L bi(k} E(k - i) A,(q-'} yik - i). (3. 9) 
1=1 

Proof: see Appendix A. 

We remark that this lemma is established without any assumption on the 
actual plant or subsystem. Therefore, it establishes a property of the adaptive 
controller only. 

Property ii explains why by reducing the estimation error e(k}, we also 
reduce the « tracking» error elk}. Note that we use tracking in quotes since 
ideally a tracking error would involve the exact parameters bi' E instead 
of the estimated ones b.(k}, E(k}. 

Property i proves that the I,(~}-norm of the input-output signals on the 
interval [Ko, "1 is essentially proportionnal to the I,(~}-norm of the esti­
mation error on the same interval. Taking Ko = 0, this can also be seen as a 
proof of the existence of a (2, ~)-exponentially stable operator with input 
e(k) and output r(k). Referring to (praly, 1985b), we know that boundedness 
will follow from a sufficient smallness in the mean of the ratio I e(k} I/r(k) 
(the normalized estimation error). 

Let us now state that this ratio is related to a normalized error obtained 
by using a fixed (non adapted) parameter vector: To each vector e, we asso­
ciate the error 1I'0(k) defined as : 

wo(k) = y(k} - 9' <D(k) . (3.1O) 

We have: 

LEMMA 3 : T"ere exisls a positive definite qlladralic form in 9(k) - 9 
del/oled Vo(k} SIIC" t"at for all vector 9 in I"e sp"ere wil" radius R and center 
90, and for all k : 

[;g?]' ~ Ve(k - I} - Vo(k) + y ['~(~iT (3. II) 

Vo(k) ~ W (3. 12) 

with 

y = 1 + A, 
,(I + 1.,)1., 

W = 4R- , . 
1.-o 

(3.13) 

Proof: See (Praly, 1983). 

This emphasizes the adaptation property of our algorithm : the estimated 
parameter vector is able to do better than any fixed vector, in the sense of 
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the following mean squares normalized estimation error criterion: for all k, 

. I k+ K [e(Il)J2 .. I k+K [IVO(Il)J2 
hm sup - L: -. - ,;; y Mm hm sup - L: -.-

K- CIJ K n=k + l 1(11) OeS(R,Oo) K- CIJ K n=k + l 1(1l) 
(3. 14) 

However, we have to be very careful in interpreting this inequality. The signals, 
involved here, depend on the estimated parameter vector. Unfortunately 
it is possible that the only solution for the adaptive controller to minimize 
this criterion, is to create unbounded signals. This phenomenon has been 
very well described by Ioannou and Kokotovic (1984). Hence, to exploit this 
resul~ we need first to prove at least the boundedness of the input-output 
signals. 

We remark also that for each subsystem which would satisfy (2. I) or (2.3), 
the corresponding normalized estimation error would be square summable. 
Consequently, as mentioned above, the corresponding input-output signals 
would be bounded 

4. Main result 

Though our adaptive controller is designed for a collection of completely 
decoupled subsystems, we assume that the actual plant is multi input-multi­
ouput and admits the following representation: 

A'(q- ')y'(k) = B'(q - ')u'(k - I) + 1V'(k) (J. = 1, ... , M, (4.1) 

or equivalently 

y'(k) = e" <I>'(k) + 1V'(k) (J. = I, .. . , M , (4.2) 

where 1V'(k) results from the structure uncertainty associated with the nominal 
structure defined by (2 . I), Le. it represents all the effects which have not been 
taken into account in the models used for the controller design. We assume: 

AsSUMPTION A2 : e' belollgs to the sphere lVith radius RO alld cell tel' e~. 

AsSUMPTION A3 : Characterization of the structure uncertaillt)' : 

1V'(k) = v'(k) + W[<I>'(I), ... , <I>M(i) ; O ';; i ,;; k, k], (4.3) 

where v'(k) is a boullded sequellce (Olltput disturballces + illitial cOllditiolls) : 

v'(k)2 ,;; V (4.4) 

and H a is all operator with a fi1lite (2, 1l)-expollelltial gain, i. e. : 

M 

I W[<I> '(i), ... , <l>M(i); 0 ,;; i ,;; k, kl 12 ,;; £ L: rO(k}' . (4.5) 
a=l 
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Technically this assumption is motivated by lemma 3 and the comments 
following lemma 2. However, it is also practically interesting since, in par­
ticular, it allows H" to represent all the linear (or non-linear) coupling terms 
if they are defined by operators which are jl-exponentially stable with a gain 
smaller than o. 

We remark that H" does depend on the choice of S". It is interesting to 
think ofS" as being given by the following minimization problem: 

. 1IV,(k) 12 
Mm Max. L: ' aaa a .a_ 

o eS(R '00) {k,u (.),)1 (.le ll<,.(flll 1 (k) 
(4.6) 

" 
Since, in a global stability analysis, we have no a priori informations about 
the signals, we have used the worst case in this definition. However, we know 
that the adaptive controller, with its adaptation property (3.14), would 
allow us to minimize using the actual input output signals. Since the optimal 
value of this criterion is nothing but an expression for e as introduced in (4.5), 
we can guess that this definition (4.6) will lead to very conservative bounds. 
Conversely, in a local analysis, one could replace the complete 12Jjl) space 
by the actual signals of the solution about which the analysis is done and the 
criterion (4.6) being smaller than e could be written as a signal (or frequency) 
dependent condition (see Ortega, Kelly, 1985). 

For the decentralized adaptive controller of section 2, implemented in 
feedback with the plant defined by (4.1) (or (4.2», we have the following 
properties: 

THEOREM: Under assumptions Al 10 A3, there exists e. such that for all E, 

o « E « e., the signals u'(k), y'(k) generated by the feedback system are 

bounded, i.e. : 

Ai 

L: 1~(k)2 « S Vk. (4.7) 
00: =1 

Proof: See Appendix B. 

Comments: 

(i) With in mind property ii of lemma 2, we are also interested in the 
behavior of the estimation error. 

From (3. II), assumptions A2, A3 and this boundedness result, we obtain: 
for all k, CJ. : 

1 e'(k) 1 « [Max (0, V,o(k - I) - V,o(k»]' 12 rOCk) + 
+ (I + A.~)1 12 (v 112 + EI12 S1/2) (4.8) 
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Hence, given a small 0, for each time k such that: 

V:.(k - I) - V:.(k) ,;; 0 (4.9) 

i.e. fo r each time for which vg (k) is not too much decreasing, the correspon­
ding subsystem satisfies : 

I e'(k) I ,;; (I + A~)1/2 vl12 + (0 1/2 + (I + A~)1/2 E1/2) S 1/2). (4.10) 

This is exactly what could be expected from a non adaptive decentralized 
controller. Namely, the error is proportionnal to the external disturbances 
(i.e. v) and to the unmodelled dynamics e!Tecls (i.e. ES). The interesting fact is 
that the gain is (I + AD1 /2 and therefore decreases as :\.~ decreases, i.e. as 
the speed of adaptation decreases. 

Unfortunately, this result is not always true since it depends on (4.9). How 
often is this inequality satisfied? 

Assume that for aliI! in [k + I, k + Kj, we have : 

v:.(1! - I) - V:.(Il) ;;. 0 . (4.11) 

Summation in I! and (3.12) yield: 

(I + A') A" 
4 R'2 A'; 1;;. V~.(k) - V~.(k + K) ;;. oK. 

o 
(4.12) 

. . . ,(I + A~) A~ . 
ThiS Implies that(4 . 9) happens at least once for each 4 R' - 2 times. 

OA~ 
This establishes that bad behavior of the error can only appear by an oscilla­
tory phenomenon. In particular, referring to the local theory of(Praly, 1985a) 
and (Praly, 1985c), we can conjecture that this will be the case if the assump­
tions of our theorem hold but the system has only locally unstable bounded 
solutions whose estimated parameter vectors are stationary. 

(ii) This analysis gives us the following informations about the parameters 
described in section 2 : 

A~ allow us to trade off the rate of convergence verslls the reduction of error 

gain. . 
8~ has to be chosen as the best a priori known model of the ",'th subsystem 

according to the criterion (4.6). Then R' allows us to trade off the confidence 
we have in this model and the « period » of the possible oscillations of the 
estimation error e'(k). 

The role of!l is more difficult to analyze as it appears only in the proof of 
the theorem. Our simulation experience shows that there exists some optimal 
value to which corresponds a smaller bound S for the signals. 
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5. Conclnsion 

We have proposed a decentralized adaptive controller based on a pole 
placement design and on the assumption that the plant is a collection of 
decoupled single input-single output time invariant rational subsystems with 
known order but unknown coefficients. This algorithm incorporates estima­
ted parameter vector projection and signal normalization as the robustifying 
modifications proposed by Praly (1983). We have studied the stability of this 
controller in feedback with a plant which departs from the nominal structure 
described above by structure uncertainty such as the possible presence of 
coupling terms, neglected local dynamics or external disturbances. 

The ratio of the error, induced on the subsystem equation by these unex­
pected effects, to an exponentially weighted 12-norm of all the input-output 
signals, is used to quantify this structure uncertainty. Though accounting for 
a wide class of structure uncertainty eiTects, this ratio may lead to conser­
vative robustness result ifno extra informations are known about the signals. 

We have established that ifall these error to signal ratios, attached to each 
subsystem, are sufficiently small then all the input-output signals are bounded. 
Moreover, each local estimation error is proportional to its corresponding 
ratio, at least once for each K times. This gain increases as the speed of 
adaptation is increased, and K increases as the uncertainty about the sub­
system model a priori parameters is increased. 

Hence it is established that discrete time adaptive control can be used for 
the decentralized control of interconnected systems with simplified models. 
However this result depends very deeply on our choice of the nominal plant 
structure and the structure uncertainty. This choice corresponds to the 
minimal requirements for a decentralized controller. It is an interesting, 
practically motivated topic of research to extend this study to other types of 
nominal structure and structure uncertainty. 

APPENDIX A 

Proof of lemma 2 

Part (i) : Let us define 1'](k) as the a posteriori estimation error, i.e. 

1'](1<) = y(k) - 8(k)' $(k) = e(k) - (8(k) - 8(k - I)), $(k) . (A. I) 

Clearly, since : 

II $(k) II ",; r(k) , (A.2) 
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we have with (3.2) : 

I '1(k) I '" (I + s) I e(k) I . (A.3) 

Let us decompose the vectors 8(k), l\I(k) as follows : 

8(k)' = (- al(k), "', - am(k), bl(k), b2(k), ... , b",(k») (A.4) 

l\I(k)' = (do(k), "', dm _ l (k), I, C l (k), "', Cm _ 1 (k»). (A. S) 

We denote by A(k, q-l), B(k, q-l), CCk, q-l), D(k, q- l) the polynomials 
with coefficients a,(k), bi(k), ci(k) , dirk) respectively. From (2.14), it follows 
that : 

Also we can rewrite the equations (A. 1), (2 . I S) in : 

A(k, q- l) y(k) = B(k, q-l) u(k - I) + '1(k) (A. 7) 

CCk, q-l) I/(k) + D(k, q-l) y(k) = z(k) , (A.8) 

with: 
(A.9) 

which is bounded : 

I z(k) I '" z . (A. 10) 

(A.7), (A. 8) can be rewritten in a state space form with <I>(k) as state 
vector: 

where: 
<I>(k + 1) = F(k) <I>(k) + G.(k) '1(k) + G, z(k) 

- a ,(k) -a._ I(k) 

I 0 

o 0 

o 

- a.(k) 

o 

o 

b,lk) 
o 

o 

(A. II) 

_ b.{k) 

o 

o 
F(k) - ---.,.---,---------t----------

-d,Ck) . -dm_l(k) I- c,(k). - cm_ l(k) 

+ d,(k) a , (k) + d,(k) am_ I (k) + d,(k) am(k)i - d,(k) &, (k) - d,(k) b._, (k) -d,(k) b.(k) 

o 0 I I 0 0 

1
00 

! 
DO! 0 0 

G.(k), = (1 , 0, "', 0 I - doCk), 0, ... ,0) 

G; = (0, 0, "', 0 II , 0, "', 0) . 

(A .13) 

(A. 14) 
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The identity (A. 6) yields : 

det (I - q-I F(k») = A.cq-I) (A. IS) 

and the inequalities (3.1), (3.4) implies the following boundedness result: 

II F(k) II ,;; F. (A .16) 

Hence, as a consequence of theorem S of (Fuchs, 1982), there existJ, p such 
that: 

II F(k)' II ,;; Jp' (A.17) 

and, with the choice of A,(q-'), p can be chosen as : 

O ';; P < fI· (A .1 8) 

Finally from (3.2), (3. S), it follows that, for all k 

II F(k) - F(k - I) II ,;; G I ;i~j I. (A.19) 

Let us now apply the variation of constants formula to (A . 11). Using our 
above inequalities, we get, with the boundedness of G.(k) and the zero 
initial conditions of <l>(k) : 

k 

II <l>(k + I) II ,;; J L pk-o[1I F(k) - F(Il) II II <!J(Il) II + pi T](Il) I + z] . 
n=O 

(A. 20) 

From inequality (A. 19), we know: 

k leU)1 II F(k) - F(Il) II ,;; G ,J+ I --;:v). (A .21) 

Hence: 

± p'-' II F(k)-F(Il) IIII <l>(Il) II ,;; G ± pk-'+ l I eU) I 'I.' p'-I-, II <l>(Il) II. 
n = O 1= 1 r(l} n""O 

(A. 22) 

Applying the Schwarz inequality and using (2.8), we get: 

'I.' p'-I-, II <l>(Il) II,;; ['f [£J2('-I-,lJI/2 X 
n=O n=O ~ 

[
'-I Jla 

x ,~o fl2li - I -,l Max (II <l>(Il) 112, r~) (A.23) 
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(A .24) 

I 
,;; ( , ')1 /' r(i) . W - p- -

(A.25) 

This allows us to rewrite (A. 22) in : 

k G k 

L: pk - u II F(k) - F(n) IIII <D(n) II ,;; 2 ' 11' L: pk-i+ l I e(i) I· 
,=0 (Il - p-) - i=i 

(A.26) 

Introducing this relation in (A. 20) and using (A. 3) lead to : 

II <D(k + I) II ,;; 1 t pk-n[ (1l2 ~~2)1/' + p(1 + s)) I e(n) 1+ zJ. 
(A.27) 

This proves that the operator : e(k) --+ <D(k) is (1 , p)-exponentially stable. 

Now from the Schwarz inequality, we have (since p < Il) 

L: pk-n I e(n) I ,;; _Il_ L: (IlP)k - , e(llf . 
[ 

k J2 k 

11=0 ~ - P 11=0 
(A .28) 

To simplify the notations, let r 0 ' llo be the following constants: 

212 Il [GP J' r 0 = Il _ P (1l2 _ p')1 /2 + p(I + s) (A.29) 

(A. 30) 

With (A. 27), (A. 28) we have established : 

k- l 
1l- 2k Max (II <D(k) II', rJ) ,;; ro 1l - 2k L: (IlP)k-l - , e(n)2 + llo 1l- 2k . 

11=0 

(A.31) 

But by definition of r(k), we have: 

K 

1l- 2K r(Kf - 1l- 2K, r(Ko)2 = L: 1l - 2k Max (II <D(k) 112, rJ). (A.32) 
k= 1..':0+ I 
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Hence 

~ - 2A r(K)' _ ~ - 'A, r(Ko)' ~ 
K k-l K 

~ L ro~-2k L (~pl'-I-"e(II)2 + L ~0~-2k (A . 33) 
k = Ko +1 n=O k=Ko+l 

Ko K 
+ L (~p) - "- I e(II)2 L 

n=O k= Ko+ I 

~ 2 0 L ~ - 2" e(lI)' + £: L (~p) - " e(lI)' + ~ ~-'A r [A-I [ ]A' A, ] ~ 
J-1 - J..1P II=Ko + 1 J-1 n=O 1 - J-1 

(A.35) 

~ 2 0 L ~-'" e(II)2+ £: e(Ko) L (~p) -" r(lI)' + _ 0_, ~-2K r [A-I [ ]A" A, ] ~ 
J-1 -J-1P "=Ko + 1 J-1 - 11=0 l-J-l-

where !!.(Ko) is defined as : 

[
e(k) ]' !!.(Ko) ~ Max - . 

'e IO.K. 1 r(k) 

Now we remark that, since J-l- 2n l'(n)2 is increasing, we have: 

Hence we get our conclusion : 

(A.36) 

(A .37) 

(A.38) 

(A.39) 

r K-I 
+ 2 0 L ~ - 2" e(II)2. (A.40) 

J-1 - J-1P ,..""Ko+ l 

vol. 20, nf) 3, 1986 



DECENTRALIZED INDIRECT ADAPTIVE CONTROL 310 ____________________________________________ _ 

APPENDIX B 

Proof of Iheorem 

To simplify the notations, let: 

11 = Max 11" , 1 = Max 1", y = Max y" , W = Max W" , 

"0 = Min rg . (B .1) 
" 

We proceed by induction. Let us assume that 

" 2.: r"(k)2 '" S, '1k '" K - 1 . (B .2) 
IX = 1 

We want to prove that the same property holds for k = K, with an appro­
priate choice of S. 

From assumption A.2, we can apply lemma 3 with e = S'. Hence, with 
assumption A. 3 and induction assumption (B. 2), we have for all k '" K -I : 

- '" VO' (k - 1) - Vo.(k) + 2 y ---, [
e'(k)J2 v + oS 
r'(k) r'(k)-

(B.3) 

with for al1 CJ., k : 

o '" VO' (k) '" W. (B.4) 

In particular, since 

"0 '" r'(k) (B.S) 

we have: 

[
e'(k)J2 W ? v + oS 
-- '" +-y--, 
r'(k) r~ 

'1k '" K - 1 . (B.6) 

Hence, letting : 

Il(S, 0) = I + 1 { W + 2 y v ~~ oSJ (B.7) 

we obtain the following bound for Il"(Ko) (defined in (3.7») with Ko < K : 

Il"(Ko) '" Il(S, 0) . (B.8) 

In the fol1owing we omitt the arguments S, 0 when they are not necessary. 
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This inequality allows us to rewrite (3.6) of lemma 2 for all k in [Ko, K] 
in : 

k-1 

11 - 2 ... '(k)2 .; !!/l -n, .. '(Ko)2 + fill-2' + r I 
n=Ko + I 

[
e'(II)J2 11- 2 ... '(11)2 . 
.. '(II) 

(B.9) 

Let us now choose Ko. The idea is to obtain an interval [Ko , K] on which 
the signals (given by r'(k)) dominates the external disturbances (given by 
u(k)). We define Ko as the largest integer, smaller than K, such that: 

.. '(k)' .; K (B. 10) 

where 0 is a threshold (to be precised later) such that: 

(B. 11) 

We meet our objective since this choice implies for all k in [Ko + 1, K] : 

u 
--,<0 . 
.. '(k)-

(B. 12) 

This defines one Ko for each ct.. We have to distinguish three cases for Ko : 

Casel:K~=K: 

Then we have : 

Case2:K~=K-I: 

Then from (B. 9) we have: 

Case 3 : K~ .; K - 2 : 

U 
.. '(K)2 .;; 13' 

Then (B. 3) and (B. 12) imply for all k in [Ko , K - 2] 

Kf [e:«")J2.; W + 2 YO(1 + ES) (K - 1 - k) . 
n=k+l r II) v 

(case . 1) 

(case. 2) 

(B .1 3) 

Hence referring to (Praly, 1985b), we can guess that the result should follow 
from the smallness of Ii and E. To establish this statement let us apply the 
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Bellman-Gronwall lemma (see Desoer, Vidyasagar, 1975) to the following 
inequality, obtained from (B. 9) using (B .10) : 

k - l 

J.l- 1k r'(k)2 .;; IlJ.l- 2Ko .". + I'.1l- 2k + r 2: 
- 8 II=Ko+l 

--- J-l - 211 1'°(11)2 . [
e'(II)J2 
1"(11) 

(B.14) 
We get: 

IIJ-l- 2Ko !::. 111 
- 0 k=Ko+l (

1 + r[e'(k)J2) 
r'(k) 

J-l- 2K rO(K)2::::; + L\J-l-2K (B.15) 
K-l 

+ I'.r 2: 
k=Ko+l 

[e'(k)J2 -2k Yr' 
r'(k) 11 o=k+l (

1 + r[e'(II)J2) . 
,.'(11) 

But, since: 

1 + x ::::; exp x (B .16) 

we have (with (B. 13)) : 

K-l 

Il 
lI=k+1 

( [e'(II)J2) (K-l [e'(Il)J2) 1 + r - .;; exp r 2: ---
r!l(n) Il=k+ 1 I'°(n) 

(B.17) 

[ ( ( 
S))J"K-k-l) .;; exp rw exp ry8 1 + e
v 

- .. (B.18) 

For the time being, let us assume that we can find 8, e, S such that: 

v(8, e, S) ~ 11 exp(rY8( 1 + en) < 1 . (I.l) 

With (B.15), this yields (with U ~ exp rW) : 

rO(K)2 ::::; ., y2(K-Ko) + /).. + r .6..~2 U L y2(K-l-k) ~ IlVJ.l2 U K-l [ '(k)J2 
8v- k=Ko+ 1 ,. (k) 

(B .19) 

or with (B. 3), (B. 12) and (I. 1) : 

raCK)' .;; 

1 

IlVJ.l2 U V 2 (K - Ko) + I'. + I'.J.l2 U 2 Log v/J.l 
Oy2 1 _ y2 

+ r I'.J.l2 U k=K~~ 1 V2'K- l - k)[V~,(k - 1) - V~,(k)]' 
(B .20) 
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But summation by part and uniform boundedness of V:. (k) lead to : 

K- l 
L V'(K - l-k)[V:. (k - I) - VHk)] ~ W. (B.2I) 

k = Ko + 1 

Hence, under assumption (I. I), we have obtained : 

r'(K)' ~ D(S, e) ~fl' U + I'!.(I + rWfl' U + fl' U 2 LOgV!fl). (case. 3) 
W I-r 

Clearly, since fl < v, this last inequality covers cases 1 and 2. 

Summing in ct, our result will be established if 8, e, S satisfy also: 

D(S, e) MVfl' U + M I'!.[I + rw ' U + 'u 2 Log V/fl] "'- S 
B v2 J1 1..1. i-v:!-":::; (1.2) 

with v the function of 8, E, S defined in (J. 1). 

Therefore, our proof relies on the existence of positive 8, E, S satisfying 
(I. 1), (1.2). Choosing arbitrarily v in (fl, 1), we denote by"" ",,"3 the 
following constants : 

(B.22) 

", = 2 r"y MVfl,' U 
"0 v-

(B.23) 

"3 = M I'!. I + r w U + W U ,. ( W ' ,2 Log V/fl) 
I - V-

(B .24) 

We notice that: 

(B.25) 

and tbat, with (B . 7), (I. 2) can be rewritten in 

ill eS 
Ii + ", Ii + "3 ~ S. (B.26) 

From (1 . 1), we see tha t we can take any e satisfying: 

Log V/fl - ry8 
e ~ ry8S v. (B.27) 
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And, from (I. 2), it is sufficient to take S as : 

- ii, V ii, v Log vii! 
o - + ryo' + ii, . (B.28) 

Therefore, let us define O. as an argument of the following maximization 
problem: 

with 

Max J(o) 
O~o:!Evlr5 

vo(Log vii! - ryo) 
J (0) = :::-:----;:-;----,::,.:.7,=-=.:.!f-~-'.::..!.;---=----:­

ryil, 0' + rY(/11 - ii, v) 0 + ii, v Log vii! . 
(B .29) 

This maximum is finite since we have (B . 25) and O. is strictly positive. 
Then we can choose S as given by (B .28) with 0 = O. and 

0,,; & ,,; &. = J(o.). (B.30) 
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