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A 
Robustness of Discrete-Time Direct Adaptive 

Controllers 

ROMEO ORTEGA,  LAURENT  PRALY, AND IOAN  D.  LANDAU 

Abstract-The  problem  of  preserving  stability  of  discrete-time  adaptive 
controllers  in  spite of reduced-order  modeling  and  output  disturbances is 
addressed  in  this  paper.  Conditions  for  global  stability  (convergence of 
the  tracking  error  with  bounded  signals)  are  derived  for  a  discrete-time 
pole-zero  placement  adaptive  controller  where  the  parameter  estimator is 
modified  in  terms  of  normalized  signals. Following an input-output 
perpective,  the  overall  system  is  decomposed  into  two  subsystems 
reflecting  the  parameter  estimation  and  modeling  errors,  respectively,  and 
its  stability  is  studied  using  the  sector  stability  and passivity theorems. 
First  the  analysis is carried  for  the  class  of  disturbances  and  reference 
inputs  that  are  either  decaying or can  be  exactly  nulled by a  linear 
controller of the  chosen  structure. In this d: 2-framework, it is shown  that 
the  only  substantive  assumption to assure  stability is the  existence  of a 
linear  controller  such  that  the  closed-loop  transfer  function  verifies 
certain  conicity  conditions.  The  convergence  speed  and  alertness  proper- 
ties  of  various  parameter  adaptation  algorithms  regarding  this  condition 
are  discussed.  The  results  are  further  extended  to  a  broader  class  of E, 
disturbances  and  reference  inputs. 

I. IKTRODUCTIOK 

T HE fundamental  practical  issue which motivates  the entire 
body  of feedback  design is  how to achieve  desired levels of 

performance in  the face of plant  uncertainties.  Two  aspects of  the 
problem must  be distinguished:  choosing  a  mathematically  con- 
venient  representation of  the modeling  error  [generically  referred 
to as  model-process  mismatch (MPM)] and  capturing both the 
uncertainty and performance  aspects in a  single  problem state- 
ment.  These  constitute  the essential difficulty of a  successful 
design  technique. 

In a very general  way, we can  distinguish  three  specific  classes 
of MPM  leading to different  mathematical  problems.  Optimal 
control of stochastic models when  disturbances arise from  small 
independent linearly combined fluctuations. Adaptive  control, 
where  MPM is represented in terms of a set membership 
statement for  the parameters of  a  suitably  choosen  structure, 
e.g., an otherwise  known  linear  time-invariant  (LTI)  system. 
Robust  control  theory which characterizes  uncertainty by a set 
membership  statement for  the  input-output (110) operator, 
e.g., the  process  transfer  function. 

Intense  research activity has been devoted to the  control of 
stochastic  models with parametric  uncertainty.  Single-stage opti- 
mization schemes  for  scalar LTI invertible  systems have been 
shown to  be globally stable under fairly reasonable  assumptions 
provided  the  system  noise  dynamics verifies a positivity condition 
and the  underlying model structure  has been  suitably chosen. 
Equivalence of single-stage  optimal  stochastic and pole-zero 
placement  deterministic  adaptive  controllers is  now  well estab- 
lished; see,  e.g., [ l l ] .  It has  been  shown in 1251 that  bounded 
output  disturbances  (BOD),  and  more  recently in [4], [21], that 
reduced-order  modeling  (ROM)  could  make  the  closed-loop 
adaptive  system  unstable.  Since  such  violations are the  rule  and 
not the  exception in practice,  these results raised  the interest of 
studying  the  controllers ability to retain adequate  performance 
when  faced  with other classes of MPM besides parametric 
uncertainty. We will refer to this case  as  the  mismatched  case in 
contrast to the matched case where  no  disturbances are present 
and an upper bound on the  process  order is known. 

Since in the  mismatched  case it is  no longer  possible to ensure 
convergence to zero of the  tracking error for all  BOD  and 
reference  sequences,  a  revised  notion of acceutable uerformance 
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dynamics, gain decreasing  estimation  schemes should  be dis- 
carded.  Convergence to a  constant  value of the  estimated 
parameters and the  capability of reflecting the MPM level in the 
stability conditions  are  further  desirable  properties. 

A .  Background 

Robusmess results of adaptive  controllers  were first available 
for  the  output  disturbance  problem [25]. [ 181. [ 191. Fairly 
complete results in a  state-space setting were obtained in 1211 for 
the  case when the  reduced-order model residuals  are  a parasitic 
system. Ad hoc modifications to the adaptation  laws  were 
presented in [IS], [ 191, [21]. Although  in the latter the  MPM is 
characterized by a  well-defined  scalar  parameter (the ratio of the 
dominant  versus parasitic frequencies) in  none  of the  aforemen- 
tioned schemes is it straightforward to establish the  validity  of the 
prior  information  required  nor to incorporate a priori knowledge 
about  the  process. Any attempt to treat "less  structured" 
uncertainties  from  a state-space approach seems doomed from 
the  outset not to yield  useful results. 

In contrast to adaptive  control  theory,  research in robust  control 
[I], [2], [ 171 has  preceded  from  an operator model formulation. 
This  allows  natural  accommodation of uncertain model order and 
provides an adequate  framework to incorporate a priori know4- 
edge to quantify  the  MPM.  Conic bounded transfer  functions to 
deal with coarsely  defined  systems  are used  to characterize 
uncertainty. In this approach  the  input-output map is assumed to 
be in a ball in the  frequency  domain,  whose  center is the plant 
parametric model and  the  radius  defines, by a known frequency 
function,  the error induced by the  unstructured  uncertainty. 

The  key  to  the successful  application of the  powerful I/O 
stability theorems [9] in an adaptive  context is to find, as was done 
for the  nominal stability analysis of model-reference  adaptive 
controllers [6], a  suitable  operator-theoretic  description  of  the 
systems isolating the  parametric error.  To treat robustness 
problems.  the effects of the modeling andparameter estimation 
error must be effectively isolated. This was first clearly stated in 
[ 101 for  a class of continuous-time  adaptive  controllers  leading to 
stability conditions  given in terms of passivity  requirements of an 
MPM-related  operator. Stabilizability of the  process by a fixed 
gain  regulator (with the  same  structure  as  the  adaptive  one), which 
is  an obvious  requirement, is used  in [ 101 to ensure  boundedness 
of the  regressor  vector.  The first discrete-time  robustness results 
using  an I/O approach  were  reported in [SI. There,  a  small  gain 
formulation is proposed to study the  robustness of the  self-tuning 
controller. Unfortunately, the results are incomplete,  since 
besides  the  small gain requirement an intricately signal-dependent 
assumption  has to  be made, specifically, it was assumed that  the 
regressor  signals are a priori known to  be  bounded. The same 
flaw is present in [5], [ 151 where sectoricity theory was proposed 
for  robustness  analysis.  The 62 results of [8] have been translated 
to an 6, framework in [23]; however,  the  signal-dependent 
assumption  remained  unsolved. 

Departing  from  the  operator-theoretic  approach,  a signal-to- 
noise ratio formulation of the  robustness  problem was introduced 
in [28]. It allows  one to derive results for both ROM and BOD 
[24] using a  modified  version of the  adaptation law introduced in 
[25]. The results obtained  are  however  more of a qualitative rather 
than quantitative  nature. 

Some local stability conditions  have  been  reported in [22]. This 
type of approach, which  may  lead to more practical results. 
complements  the  global  one  where  the  goal is to define  the limits 
of the  adaptive  schemes in its widest possible  formulation. 

B. Contributions of the Paper 

The  purpose of our  robustness  studies is to determine  a class of 
modeling errors (besides  parameter  uncertainty)  for which the 
adaptive  scheme  retains  acceptable  performance (as defined 
above). 

The framework proposed in this paper.  largely  inspired by 
[lo], is of the  system  theoretic  type and is based on conic sectors. 
Our main technical  device is  the sector stability theorem 121. [17] 
which states that the  feedback  interconnection of two  conic 
bounded operators is globally stable if one is strictly inside  a  cone 
and the  inverse of  the other  one  outside it. This  theorem is applied 
to the  error model derived in [5] which is similar to the  ones in 
[SI, [IO]. The  operator  representing  the  parameter  adaptation 
algorithm  (PAA) is  in feedback  interconnection with an LTI 
operator.  The latter operator is the  transfer  function  from the 
delayed  reference  sequence to the  system  output. 

In order to apply  the conic  sector  theory.  conic  sector 
conditions must  be established  for the PAA. In [7]. [14] these 
tools were  applied to analyze  the stability of the  self-tuning 
controller. The  conic  sectors  derived in those  papers  are critically 
dependent on the 6, norm of the regressor  vector.  The 
assumption of a bounded regressor  vector  leaves  the results 
incomplete. To remove this defect we use, as in [25], normalized 
signals in the  PAA and  following  the  approach of [24]. we  modify 
the least squares  algorithm by regularizing the covariance  matrix. 
In this way. signal-independent  conic  sectors  are  established  for 
constant gain (CG) and regularized least squares  (RLS)  estimation 
schemes. It  is worth mentioning that  the regularization in the least 
squares  algorithm is required only for the  &,-stability analysis. 
For the Cz-stability analysis of the weighted  least squares  PAA, 
see [31]. 

&-stability, that is tracking  error  cancellation, may be ensured 
for  reference  inputs and disturbances that are either C 2  signals  or 
such  that linear  robust  servobehavior is possible. To treat the 
more realistic situation of arbitrary  reference  inputs and BODI an 
6, formulation is required.  Analogously to [23], we  use 
exponentially weighted techniques 191 to extend  the L2 result to a 
C ,  framework. In both cases  a  tradeoff between altertness of the 
PAA  and robustness  arises. 

Direct  application of the  sector stability theorem to the 
normalized  error model allows us to derive  conditions  for  the 
stability of  the normalized signals. To be able to conclude stability 
of the adaptive  scheme  from stability of  the normalized  error 
modell hvo additional results are  needed. First. the  conditions 
ensuring stability of the  normalized  scheme, which are  given in 
terms of normalized  operators, must  be translated to the  original 
operators.  Second.  conditions  under which stability of  the 
normalized  scheme  implies stability of  the original one must be 
established.  This is done by referring to multiplier  theory  [9, p. 
2021. The  problem basically reduces to proving that the  regressor 
vector is bounded,  which  ensures that the  normalization  factor 
qualifies as  a multiplier. Arguments  similar to the  ones in [24] are 
used for this part of the  proof. 

The main contributions of the paper are  the  following. 1) An 
extension of the 110 approach  pioneered in [7], [X], [ 101 for 
analyzing the effects of ROM  and BOD in discrete-time  adaptive 
controllers. 2) Establishment of a  well-defined class of ROM 
errors and BOD for which robust stability is ensured. 3) Use of a 
normalized  approach to parameter  estimation  for  improved 
robustness.  The latter completes  the results of [5], [SI, [23]. 

The  paper is organized as follows.  The  type of MPM and the 
regulator  structure  studied are presented in Section I1 together 
with the error equations.  The  implications of  the presence of 
MPM in the PAA selection and the I/O properties of a class of 
PAA's  are  discussed in Section 111. In Section IV the need to 
normalize  the PAA signals is motivated. The  main stability 
theorems  are  given in Section V. Some  concluding  remarks are 
presented in Section VI. 

n. PROBLEM  FORMULATION 

In order to carry  out  the  objective  presented in Section I-B we 
must isolate the effects of the  modeling and parameter  estimation 
errors.  This is done by reconfiguring  the  adaptive  system into two 
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subsystems:  the  parameter  adaptation  algorithm  (PAA) and an 
LTI  subsystem  independent of the  parametric  error. 

In this section we  will first define  the MPM representation 
considered in the  paper.  A  standard  pole-zero  placement  adaptive 
controller is introduced later. Before  proceeding to describe  the 
PAA, which  is left to Section 111, error equations suitable to the 
robust stability analysis are then  established. Assuming linear 
stabilizability of the  process,  the stability problem of the  adaptive 
case is reduced to the  analysis of a  feedback  arrangement  around 
the  PAA; this arrangement is suitable to the  application of I/O 
stability theorems  [2], [9], [17]. 

A .  The  Plant 

It is assumed that the  plant to be  controlled is described by 

A ( q - 1 ) Y , = q - d B ( q - 1 ) U , + 5 ,  (2.1) 

where A ,  B are  polynomials in q - I. A is monic, U,, Y,, 4,  are  the 
input, output, and disturbance  sequences: and d is  known. The 
order of each  polynomial and its coefficients  are unknown  and 5,  
is bounded, i.e., 6, E a,. 

B. The  Controller  Structure 

We will pursue  a  pole-placement  all-zero  canceling  objective 
with the  desired  closed-loop  poles  being the roots of a  polynomial 
C R .  Defining  a filtered tracking  error 

e, 4 C, Y, - w, (2.2) 

our  objective is to ensure that e, tends to 0 as t tends to infinity. 
Choosing two integers ns and nR we use  the  regulator  structure 

~ ~ u u , = W y ; d - f f ( Y f  

where 9, and R ,  are  polynomial  functions in q of degrees ns and 
nR, respectively, with time-varying  coefficients and of is the 
reference  signal  assumed  known d steps  ahead.  In  compact 
notation  the  control law  may be  written  as 

Wt+d=e:@f (2.3) 

with 

61 & [Ut, Ut- , ,  Ur-ns; Yr, Yr-19 Yr-nRIT- (2.4) 

Before  proceeding with  the process  reparameterization, let us 
introduce  the  following stabilizability assumption that will justify 
the  choice of the  regulator  given  above. 

Assumption A.1: Let S,, R ,  be  polynomials of given  orders 
ns,  nR. Let p E (0, 1)  be  a scalar. Define  the  polynomial 
coefficients  vector 

0 2 [so*, ST, . e . ,  sfs, rg ,  r:, * -  9 ‘ ;R lT  

and the  polynomial 

C 4 S,A  +q-dR,B. (2.5) 

With these  notations, we assume that there exists a nonempty set 
BLS defined  as 

eLs 6 {e,Ew : c(q)#o, v q E C ,  l q l > p l i z ) # O  

where n A ns + nR + 2 .  0 
Remark 2.1: The set OLs defines the fixed gain regulators 

which ensure that the  systems  closed-loop poles are  within  a disk 
of radius p where p is a  designer  chosen  parameter to be 
defined later. The  elements of this set, which we will call the 
linear stabilizing set,  the  corresponding  polynomials and associ- 
ated  signals will  be denoted with  an asterisk. Notice that for p = 1 

this assumption  simply states that the  system may be stabilized by 
a linear regulator of the  chosen structure. If eLS is empty  the plant 
cannot be stabilized even when it is perfectly known. 

C .  Error  Equations 

Combining (2.5) with (2.1) and  using (2.4) 

C Y l = B 6 ~ @ , - d + S , ~ ,  (2.6a) 

CUr=A0:4,-R.Jf.  (2.6b) 

Define 

$1 2 ($z-d-e.+)T4[-d 2 8 T - d b l - d  (2.7) 

where 8, is the  difference  behveen  the  actual  parameters  [see 
(2.3)] and  a  vector of stabilizing parameters.  From (2.2), (2.3), 
(2.6), and (2.7) we see that the  error model  may be  expressed as 

e,=  -ki2+,+e; (2.8) 

where 

e: 2 (Hz - l)w, + CR C-lS,,$, (2.9a) 

H2 gCRC-IB. (2.9b) 

The  regressor  vector  can  analogously  be  written as 

dr-d= - WI$r++:-d (2.10) 

where 

6 F - d  4 wlw,+ Wz(1 (2.11a) 

w, p c-’ [ A ,  q-’A,  e.., q p A ;  

q - d B ,   q d - ’ B ,  . . ., a-d-nsB] (2.1 lb) 

w2 2 C-l[-q- dR*, _q-d- lR *’ . . . , - q - d - n ~ R , ;  

q-dS,, q - d - l S , ,  -.., q-d-”SS*]. (2.11c) 

Remark 2.2: Notice that  in the matched case  there exists S, 
and R ,  such that C ,  = CRB, see (2.5), so that H2 = 1. 
Furthermore,  since E, = 0, then e:‘ = 0. It is reasonable to expect 
that the stability conditions in the  mismatched  case will require 
“Hz close to 1 ”  and  “small” e,*. Our problem is to formalize 
these  notions  and to provide  conditions to ensure its verification. 

In Fig. 1 the  complete  error model is depicted. H I  denotes  a 
relation defined by the  PAA.  One  important  difference arises with 
respect to the  continuous-time  error model developed in [lo], 
namely that defining $, in terms of the  delayed  signals  [see (2.7)], 
allows us to obtain  a  transfer  function Hz of relative degree  zero, 
i.e.,  proper.  This will prove to be of fundamental  importance in 
the  analysis of the stability conditions  implications. 

Remark 2.3: It is easy to show that H2 = c ~ y ; / ~ , + d ;  that 
is, H2 represents  the  transfer  function of the process in closed- 
loop with a stabilizing regulator. e; and q5; are the corresponding 
tracking error and regressor  signals for that linear scheme.  Notice 
that  they  can  be interpreted as inputs to the  error model [ 101 which 
are bounded  in  view  of Assumption A.l. Henceforth,  the 
establishment of tracking error convergence  conditions  for  the 
overall  system  reduces to ensuring stability for the feedback 
interconnection of the  blocks H I ,  Hz. Boundedness  of @, will 
follow if the  former  conditions are +,-independent. 

III. THE PARAMETER  ADAPTATION  ALGORITHMS 

We  intend to obtain stability conditions in terms of conic 
bounds  in the  presence of MPM. In addition, we  will attempt to 
satisfy performance  requirements. Our key  technical device to 
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study the  feedback  interconnection is the  conic  sector stability 
theorem [17] (see  also  [2]). It is required  then to choose  a PAA 
such  that sector  conditions may  be established  for the relation 
HI:e, --f $,. 

It  will  be shown below that to obtain +,-independent properties 
for  the PAA (see  Remark  2.3)  normalization of e, and 4, are 
compulsory. In the  following (:) will be used to denote 
normalized variables and corresponding  operators and are 
defined as: 

2 p,- l '2+l-d,  g, ~p,-"2e,;  $ , = p;"'$, (3.0a) 

Hi - G * P ,  - l / 2 H i , , 1 / 2  .]; i =  1, 2. (3.0b) 

The  normalization  factor p, is introduced in Section V. 
To gain some  insight into the  problem of the  selection of the 

PAA we  will consider first the  approaches  and  motivations of the 
matched case, that is when no  ROM or BOD are  present.  A class 
of  PAA for  which  suitable 110 properties  have been established is 
later presented  and its properties stated and  proved. 

A .  The Matched Case 

Most adaptive  schemes  reported in the literature use an integral 
PAA of the  form 

8 , = 8 , - 1 + F , 4 , - d e ;  (3.1) 

where F, is a  time-varying  matrix (the matrix gain)  and e; is an 
estimate of the  prediction error. The  increasing  complexity of the 
treated  cases  required  increasing  information  fed  through e; into 
the  PAA.  Therefore,  the  choice of e; may  be  thought  of as 
reflecting  the  evolution of the  adaptive  control  theory. It was 
initially taken  equal to the  tracking  error to solve the unitary  delay 
case.  Later it was  shown that using this same error,  a physically 
realizable  globally stab!e solution was still possible  for = 2, by 
proper  replacement of  8,  by the  multiplier  operator PL(8,). I .  This 
last modification was required to ensure  the  positive real condition 
of  the error model.  The  ingenious  inclusion of the  augmented 
error model allowed  proof of convergence of the  tracking  error by 
taking 

+(cR Y I - ~ T - I ' # ' I - ~ ) / ( ~  +d' : -dFrd l -d ) .  (3 .2) 

However, this new form of e; posed the new stability problem of 
ensuring boundedness of the  auxiliary signal, which  was later 

' This section's discussion, although restricted to discrete-time systems. is 
further simplified b] choosing the following structure for the operator: 
PL:Pr(!,) 2 qded- (see [13]) so that the operator retains the basic concepts 
of contmuous and hybrid schemes. 

proved for invertible systems  [I31 by showing that A8, E O e 2 .  

Similar results were  obtained in [25], [26]. 
The  introduction of  the CI posteriori error  representation [6], 

[ 1 I] allows  a  clear-cut  interpretation of  the stability proofs,  either 
Lyapunov or Popov based,  available in  the literature. Due to the 
structure of  the integral PAA it is easy  to_spow  that in the matched 
case e; as given in (3.2) is equal to TO, i $ - d ,  the a posteriori 
error. Since  the  operator H,:e: + is  passive (for a 
constant gain matrix), even for unbounded +,,-direct  application 
of the passivity theorem  leads tcthe stability of 8 ' 4 1 - d .  The proof 
is completed by showing that 8:&d + 0 impfies e, + 0 with 
bounded 4,. A  similar  procedure will  be required below  when we 
will seek to prove stability of the  adaptive  scheme  from the 
stability of the normalized signals. 

Remark 3.1: It can also be shown that  when d > 1 an 
interlaced  version of (3.1) avoids  the necessity  of using the 
augmented  error in (3.2)  since  for that scheme 

B. PAA Sector Conditions 

Given our objective of uniform  asymptotic stability we disre- 
gard  proportional  components in the  PAA. In addition, gain 
decreasing PAA are  discarded to preserve the alertness of  the 
adaptive  scheme.  Extrapolating  from  current usage  we consider 
integral interlaced PAA of the  form 

where 5 takes  one of the  following  forms. 
1) Constant gain (CG)  PAA: 5 is a  scalar 

5 2 f>O. (3.4a) 

2) Regularized least squares  (RLS)  PAA: 5 is a  time-varying 

5 2 F, (3 Ab) 
matrix 

where  (see  [24]  for  further details) 

and X, < XI, X are strictly positive scalars. 

[b, A l l .  

The  eigenvalues of F, are all contained in the  chosen interval 

Equations  (3.3)  and (3.4) define an operator RI:P, + 6, (see 
Fig.  2). Besides this operator we  will  con_sider for th_e RLS/PAA, 
its exponentially weighted counterpart HY:Cp + $; where  the 
superscript a denotes 

x; P a'X, : a>o. 

The I/O properties of the  two  operators  are  summarized in the 
following  lemma.  Similar results were  obtained earlier in [ 7 ] ,  
[ 141, [ 151, [24]. Notice that A;. = A, when a = 1. 

Lemma 3.1 (I/O Properties of the PAA): 
1) CG/PAA: If 5 is given by (3.4a), then 

for all 6CG such that 

2 )  RLS/PAA: If 3 is given by (3.4b).  (3.4c), then 

is  outside CONE ( - 1, v'l - cRLS) 
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for CY verifying 

and all SRU satisfying 

(3.7) 

Proof: The  proof is given in two parts. The passivity 
property  for  the  CG/PAA is first established.  The  conic  sector  for 
the  RLSlPAA is later derived. 

1) Consider  the  quadratic  function 

VI p p ' f  -T  - I $  I 

direct manipulation of (3.3) and  (3.4a)  gives 

1 -  
2 VI-  vr-d=$[(?[+-  $:-df&l-d((?[)'. 

It  can be readily seen that 

which completes  the first part of the  proof. 
2) Let  the  matrix Fr' and  the  scalars VI,  VI' be defined as 

We have (see the  Appendix) 

Vl:sh max (F; 'F ; )  . V ;  

and after some  algebra  (see  [30]  for  example). 

x 
V;  - V t - d = ( $ t + c l ) 2 -  c; . 

x + 6 ; - d F r - & d  

Now from  (3.4c),  (3.6) it follows that: 

f f M k  mFiX ( F [ ' F ; ) S l ,  6 : - d F [ - d & c - d 5 h l d : _ d ~ l - d .  

Hence, 

Summing  from 0 to N leads to the result 

Remark 3.2: From  (3.5), (3.7) we see that the  PAA's 
properties are critically dependent  on  the  boundedness of 6,. This 
indicates that the no-rmalization factor p l  in (3.0) should  ensure  a 
finite $,-norm for 6,. We will assume  from now  on  that p l  is such 
that 

l l & r l l m 5 1 .  (3.9) 

A sequence p, giving this property will be  presented in Section V. 

vanish. It is exactly  at this point  that our result differs from  [5], 
[81,  U51, W I .  

Remark 3.3: Another  interesting  property  for  our study  would 
be to have CY > 1 in (3.6). Clearly  from ( 3 . 4 ~ )  we  have 

F , r F ; .  

Therefore, in any case 

.cy2 1. (3.10) 

In some  circumstances,  the  stronger  grbperty "CY > 1" is also 
satisfied. In the  Appendjx we  show that, in the  case d = 1, this is 
achieved at least for persistently spanning in the  following 
sense:  there exist 0 < fl < 1, E > 0, No such that: 

fi,'8-r&j:>~i tl NZNo.  (3.1 1) 
N 

1 = O  

Unfortunately this is a  signal-dependent  condition.  However, it is 
usually satisfied for X lacge enough  (slow  adaptation) and for all 
period of time  such that 8, E eLs provided  the  reference input is 
persistently exciting. 

IV.  STABILITY OF THE NORMALIZED ERROR MODEL 

SZ and $,-stability results for  the  normalized  system  are  given 
below.  Discussion on the stability conditions is deferred to the 
following  section,  where stability of the  adaptively  controlled 
system is derived  from  the stability of the  normalized  error  model. 

A .  C2-Stability 

Combining  Lemma  3.1  and  the  sector stability theorem we  get 

Lemma 4.1: Consider  the  feedback  interconnection 
the  following Cz result for  the  normalized  system. 

lJ[=H]e'[ (4.la) 
- _  

P I =  -H2$,+C;. (4.lb) 

If H 2  is strictly inside a & CONE (CA, RA),  where 

(1 /&~,  l/Scc) for  the  CG/PAA (4.2a) 

(l/&LS, v'l - cRLs/cRRLs) for  the RLS/PAA (4.2b) 
( C A ,  

for any 

6 ~ ~ 2  f and 6RU>- 
x1 

X+h, (4.3) 

then 
el, $,E& for dl P T E X ~ .  

Proof: This is a  straightforward  application of [17,  Theorem 
2a p. 2341. E. 

B. $,-Stability 

The 2, extension of the  previous result using the  RLS/PAA 
follows  below. 

Lemma 4.2: Consider  the  feedback  system  (4.1)  for  the RLY 
PAA.  Assume pr is  bounded  away from  zero.  Under  these 
conditions, if 

H; 2  CY'^^[^-'] . is strictly  inside Q [with @. as in (4.2b)l 

with CY > 1 satisfying  (3.b), then there exists a  scalar K2 such  that 

WithA(3.9), ' the radius of the  cone  for  the  RLS/PAA  does not 
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Proof: &stability of  the  map (e,*)" --* $; (see Fig.  2) is 
ensured  from  Lemma  3.1 and the sector stability theorem.  That  is, 
3 K2 < 03 such that 

lllt~l,t...K*ll(et)~ll;~, v NrO. (4.4) 

\ ~ $ ~ ] ~ + ( O 1 ~ ~ $ : v ) ~  (4.5) 

Notice  that 

and 
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since CY > 1 .  Combining  (4.4)-(4.6) we can conclude that 
uniformly  in N 

(4.7) 

where 

p minp,>O. ti (4.8) 

Remark 4. I: The  same  types of arguments  were used  in [23] to 
prove  the  boundedness of e, assuming a priori constraints in the 
regressor  vector. 

I 

VI. MAIN RESULTS 

In  this section we  will determine  the  conditions under  which 
stability is preserved for the  plant (2.1) in closed loop with  the 
time-varying  regulator  (2.3)  and  adaptive law (3.3). (3.4). For 
this purpose we  will introduce the following  normalization factor: 

P r = w - l + m a x  (I+r-d12, P ) ,  P>O, P E ( O ,  1) (5.1) 

which together with (3.0) completes the description of the  PAA. 
Remark 5.1: This  type of multiplier was introduced in [25 ] .  

and  its importance  for  robustness  established in [24], [30]. p is a 
small positive constant that defines  a  lower bound  to p,. The 
choice of the  time  constant ,u will prove to be a  compromise 
between PAA alertness and robustness. 

The  problem is solved by analyzing  the  error models depicted 
in Figs. 1 and 2. It should be recalled  (see  Remark 2.3) that  under 
the stabilizability Assumption A . l  the key  point  is proving 
stability of $[ [see (2.8). (2. IO)]. The  proof  proceeds  as  follows. 
First we prove using the  Bellman-Gronwall  lemma that &- 
stability of $I (given by Lemma  4.1) implies 3, E 2,. This in its 
turn assures that the  regressor  vector is bounded. As a  conse- 
quence, the normalizing  factor p, is  bounded  and proceeding  from 
the  multiplier  theory  &-stability of the  normalized  error model 
implies  &-stability of the  adaptive  system. For the &,-stability 
proof,  boundedness of $,, as  shown in Lemma 4.2, is  used to 
establish  boundedness of $,. 

The stability conditions  derived in L e m a  4.1 and 4.2 are 
translated in terms of the  designer  chosen  parameters (os, n,, C,, 
p) and the  MPM ( H z ,  t , ) .  

A. &-Stability 

Theorem 5. I :  Consider $, given in (3.0), (5.1) and 41 as in 
(2.10).  (2.1 1). Under  these  conditions if Assumption A.l  of 
Section 11-B is verified, then 

$IE.e2=)$r€Oe.r .  

Proof: Define  the  exponentially weighted signals [9. p.  25 1 J 

Fig. 2 .  

where we have  used the fact that PO, p ,  w, { $,}zo, {, E to 
bound them by 6 K 1 p  -.v. 

Applying  the Bellman-Gronwall  lemma to (5.6) 

which  may also be written  as 

. (5.7) 
,=o 

The  term  inside  the  brackets is smaller  than  1 and the series is 
convergent,  therefore, we can  conclude that $, E C,. 0 

Corollary 5. I :  If $, E 22, a,, 4, E Sm and A. 1 holds,  then 4, 
E C ,  and consequently p ,  E 2,. 

Proof: Follows  immediately  from  Theorem 5.1 ~ (2. lo), and 
(5.1). 0 

The  following  lemma will help us  to find  the coniciry 
conditions  over Hz ensuring the ones  required in Lemma 4.1. 

Lemma 5.1: Let us consider  the  operator H: y, + q,.  If 
t i [ (p ' '2q)  - I ]  is inside  the CONE (C, R ) ,  then H 2 p;I'*Hp:/' 
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(i.e., H:y, + VI) with p r  as in  (5.1) is inside the same CONE (C, 
R )  . 

Proof: See  also [ 141. Define 

2 2  
I =(rr - - (RrlIY 

2, ~ ( ~ / - C ~ , ) ~ - ( ( R ~ l ) ~ = p ; ~ Z / .  

Taking the sum 
6 .v .I' 2 ",=E p l P l - l p - l ~ / = P : % + l  - 1  P.v+ I P-lzl 

f = o  /=0 ,=o 

1185 

1 
The proof is completed noting  that plp; '  is decreasing since 

p - ( l + I ) P r + l = p - I p I + p - - I ~ + I )  max [ ~ , l + ~ - d + l l ' ]  

and the  implications 

H[(p"'g)-']€CONE (C, R ) -  [ ~ ~ " z ~ r - c p - " 2 ~ ~ l ) 2  
N 

/=0 

-(Rp-"'yr)2]<0 * p-'Z,<O. 
1% 

r = O  

We establish  that Z, < 0, and consequently H E CONE (C, 
R)  . 0 

We  are now in  position to present our main  &-result. 
Theorem 5.2: Consider the process (2.1) in  closed  loop  with 

the  adaptive regulator  (2.3),  (2.4). whose parameters are updated 
according to (2.2),  (3.3).  (3.4) with  the  normalization (3.0), 
(5.1). If for given ns, n R  and p.  Assumption A. 1 holds and 

i) H2[(p I1'q) - '1 is strictly  inside A (as  defined  in Lemma 4.1) 
ii) w f ,  4 ,  E 2, are such that e,* E then 

$r,  e ,€& and +,EC,. 

Proof: Condition i) and Lemma  5.1 ensure the stability  of 
the  normalized error model (Lemma 4.1). Stability of  the adaptive 
system (Fig. 1) may be concluded using  multiplier theory [9] if pr 
qualifies  as a multiplier, e.g., P, E L ,  (Fig. 2  with a = 1). This 
is ensured by  condition ii) _and Corollary 5.1 since e,* E L2 * e* 
E L2, and consequently GI E L:. 6 

Discussion: 
1) Theorem 5.2 may  be stated in  the following way.  Given  an 

LTI process of  known delay, choosen ns, nR, p and desired 
closed-loop  poles. the adaptive system  will  exactly  cancel the 
tracking error if there  exists a  value for  the  regulator parameters 
(an element of eLS) such  that for this linear scheme. a)  The 
Nyquist  locus  of the closed-loop transfer function ( Y , * / w , + ~ )  is 
"sufficiently close" to the  desired  one (l/cR). b) Robust 
servobehavior is possible. The notion  of  "sufficiently  close"  is 
precisely  defined  in terms of  disks in the complex plane for the 
locus  of the  transfer function evaluated at 141 = 

2) The  key  modification to the PAA used  in  this paper is the 
normalization. One of  the  main stumbling blocks to establish 
robust  stability  results for the RLYPAA was the  impossibility of 
proving that uRLS. in  Lemma 3.1, is  strictly smaller than 1 (see. 
e.g., [25],  [14], [8], [23],  [15]). This is necessary to disallow a 
vanishing radius  for the cone. Normalization removes this defect, 
but  then the error model is only  in terms of normalized  signals. 

3) Notice that the cone Q. depends only on designer chosen 
parameters [u,-- and uRLs in  (4.2)]. In  the limit  the conicity 
condition i) coincides with a positivity  condition. Thus 
robustness enhancement occurs at the expense of  reducing  the 
speed of convergence of  the PAA 

4)  The coefficient p establishes an alertness-robustness tru- 
deoff. Its robustness  effects appear in the conicity conditions. 

PAA alertness is directly  affected  since p is the normalization 
filter time constant (5.1). See [24] for further discussion. 

5) The restriction on the tuned tracking  error: e )  E Oe2 imposes 
requirements on Hz - 1, wl,  and 4,. If  the nature of  the reference 
and disturbance signals is known, incorporating an internal  model 
in the design [16] allows one  to ensure that  this  condition is met. 
In  particular, it is verified for constant reference input and BOD if 
the  open-loop system is  type-1 . In the following  section we carry 
the analysis for the more interesting and practical case of e,* E 
a,. 
B. gm-Stability 

The 6, result is given for the RLS/PAA  (3.4b), (3.4~).  
Theorem 5.3: Consider the adaptive system analyzed  in 

If for nS, nR, A, ho, A I ,  and p.  

i) Condition i) of Theorem 5.2 holds 
ii) (AmakFI-l Ff')2 I pd 

Theorem 5.2  with  a RLS/PAA. 

then there always exists a p (5.1) such that 

e,, h € C ,  for  all w r ,  I.,€=%. 

Proof: Consider the normalized exponentially  weighted 
feedback  interconnection  of Fig.  2. Notice that for a2 = p - I  i) 
and ii) above imply the conditions of  Lemma 4.2. Hence, 

( 5 . 8 )  

The Bellman-Gronwall lemma may be now applied as in Theorem 
5.1 proceeding from (5.5) with 6 substituted by the right-hand side 
of (5.8). It becomes clear that the condition ensuring the 
boundedness  of $, becomes 

which  may  be rewritten  as 

Since all the terms in the numerator of the right-hand side are 
bounded and p ranges in (0, l),  there  exists a p which  will make 
(5.9) true.  This completes the proof. 3 

Discussion: 
1) Condition ii) has been discussed in Remark 3.3.  We know 

that  it is met if a persistence  of excitation  condition  is satisfied. 
2) Inequality (5.9) defines  the  class of (non-2,) disturbances 

under which  2,-stability is preserved. Notice that K2 quantifies 
the  stability margin of the H I ,  Hz feedback  interconnection (4.7). 
y2 is the gain of the  map t r  -+ d,*-d (2.11). (5.4b): that  is, it 
measures the  effect of  the BOD on the regressor in  the linear 
scheme. The conicity condition and (5.9) impose contradictory 
requirements in the choice of p .  The  scalar p defines a lower 
bound for the normalization factor, hence directly affects  the gain 
of the PAA. From (5.9) it appears to be  interesting to have slow 
adaptation. A contradictory requirement would  be given in case of 
a  time-varying  plant. 

3) In  a  recent paper [29] 2,-stability  of the error model  has 
been  established incorporating into  the PAA a parameter projec- 
tion operation analogous to the one in  [25]. This requires 
additional prior knowledge but allows one to extend the stability 
analysis  without  condition ii) and without the restriction (5.9) on 
the 2,-norm of e,": 

VI. CONCLUDING  DISCUSSIO~- AND FURTHER RESEARCH 

To conclude let us summarize the  results reported in the  paper. 
A  proof  of robust stability for a discrete-time adaptive controller 
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with a  normalized  estimator  has been presented.  Systems with 
arbitrary relative degree may  be considered (in contrast to the 
continuous-time  robustness  studies [lo], [21])  however we re- 
quire the latter to be known.  The stability conditions  reduce  to  the 
existence of a linear regulator (of  the chosen  structure)  such that: 
1) +e closed-loop  tracking  transfer  function  "approaches" the 
desired  closed-loop  behavior; 2) "good"  disturbance  rejection 
properties  are attainable. Increasing  the  speed of adaptation 
renders  these  requirements  more stringent. 

Although  the  two previous  conditions  preserve the essence of 
the usual performance (in the sense of pole-placement) and 
disturbance  rejection  design  objectives, they unfortunately do not 
offer any engineering  design  guidelines.  The  primary culprit here 
is  the  notion of transfer  function vicinity (as stated in 1)  above) 
which requires that the phase:shift  between the  attainable  and  the 
desired  transfer  functions  should not exceed go", at all frequen- 
cies. This has  been referred to in the literature as the  positive real 
condition (of Hz). 

One fundamental  difference arises at this point  between 
continuous and discrete-lime  robustness results. In the latter the 
assumption of  known delay  permits us to obtain  a  parametrization 
where H2 has  the relative degree  zero. In terms of  the  Nyquist 
locus this  implies that for all stably invertible processes  the  overall 
phase shift contribution is zero,  i.e.,  the  locus starts and ends in 
the  same side of the  complex  plane.  Therefore,  since phase 
modification  (usually  phase  lead) is  only required  over  a  limited 
frequency  range. it  will always be possible by proper filtering to 
satisfy the positivity condition. TWO important  questions  remain 
however to be solved. How should we incorporate the available 
prior  knowledge to convert  the  conicity  conditions into tests for 
robustness?  The  second  question is more  disturbing. How should 
we  deal  with  nonstably invertible process, very  likely to appear in 
a  discrete-time  context? 

APPENDIX 

From (3.4c), (3.8), (3.9). d = 1, we have the following 

Lemma: If there exist E > 0 and No such that 
property. 

N 

with 

then  we have 

Proof.. Let us remark  some facts. 
i) Ff', F, are invertible for  any finite I and 

F ' - I - F - , + d , i :  
, + I -  f X '  

114/11~ 1. 

Hence, by induction, if  we choose Fo such that 

X max Fo<hl 

Therefore XI F;l - I is positive definite for any finite t. 

we have 
ii) F,' has  a  symmetric  positive definite square  root Fl'1/2 and 

y = Fr' '/?x 
we  have 

This  proves that: 

max-= A max F ;  IF; 
x TF; 'x  

x xTFr'-'x 

iii) If A is a  symmetric  positive definite matrix, then 

x T A x ~ ( 1  + X  max A)xTA((I+A)-Ix,  v x.  

This is  proved by noticing that we can  choose  a  symmetric 
positive definite square  root A which  commutes with ( I  + 
A )  - I .  Then with 

= A  I/2 X .  

The inequality  becomes  simply 

yTy<yT( I+A- ' ) y .  ( l + X  max A ) ,  v y .  

Let us  now  study the  matrix  G,  defined as 

Gr=Z-Ff-'F;. 

From fact ii), GI is symmetric, with eigenvalues  smaller  than 1 
[see (A.2)]. With (A.2), we  have 

Ff- '=-  I+-  1-- G,. b(  ?) 
Hence,  from fact i), G, is positive definite. We  have  also 

Therefore,  since 

we  have 

Ff'Ll 'Ff+l=I+ ( : p >  1-- G l + - + f + ~ - ( I - G r + l ) .  :-- 
This  proves that 

We remark that, with  the properties of G, and  (A.3), we have 

then  we have  for any  finite t 

X max F,<Xl. 
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Then with fact iii), it follows that (in the  sense of quadratic  form) 

1187 

This  implies 

The  conclusion  follows  from  the  assumption  and  the  prop6rties of 
Gr. 0 

ACKNOWLEDGMENT 

The  authors  are  grateful to C. E. Rohrs  and  the  anonymous 
reviewers  for many valuable  suggestions. 

r11 

r21 

I31 

r41 

r61 

REFERENCES 

J.  C. Doyle and G.  Stein,  “Multivariable feedback design: Concepts 
for a modern/classical synthesis,” ZEEE Trans. Automat.  Contr., 
vol. AC-26, pp.  4-17,  Feb.  1981. 
M.  C.  Safonov, Stability  Robustness of Multivariable Feedback 
Systems. Cambridge, MA: M.I.T.  Press, 1980. 
R.  L.  Kosut,  “Analysis of performance robustness for uncertain 
multivariable systems,” in Proc. 21st Conf. Decision Contr., 

C.  E.  Rohrs, “Adaptive control in the presence of unmodeled 
Orlando,  FL,  Dec. 8-10, 1982. 

dynamics,”  Mass. Inst. Technol.,  Cambridge,  MA,  Rep. LIDS-TH- 
1254, Nov. 1982. 
R. Ortega  and I. Landau,  “On the design of robustly performing 
adaptive controllers  for partially modeled system,’’ in Proc. 22nd 

I. D. Landau and  H.  M.  Silveira,  “A stability theorem with 
ZEEE Conf. Decision Contr., San Antonio,  TX,  Dec. 14-16, 1983. 

applications to adaptive control,” ZEEE Trans. Automat.  Contr., 

P.  J.  Gawthrop,  “On the stability and convergence of a self-tuning 
controller,” Int.  J.  Contr., vol. 31,  pp. 973-998, 1980. 
P. J .  Gawthrop  and  K.  W.  Lim, “Robustness of self-tuning control- 
lers,” IEEE Proc., vol. 129, pp. 21-29, Jan. 1982. 
C. A. Desoer and M.  Vidyasagar, Feedback Systems:  Input-Output 
Properties New York: Academic,  1975. 
R. L. Kosut and B. Friedlander,  “Performance robustness properties  of 

Orlando,  FL,  Dec. 8-10, 1982;  also in “Robust adaptive control 
adaptive control  systems,” in Proc.  21sf  Conf. Decision Contr., 

conditions for global stability,” in IEEE Trans. Automat.  Contr., 

I .  D.  Landau,  “MRAC and stochastic STR-a unified approach,” 
vol. AC-30,  no. 7, pp. 610-624, July 1985. 

Trans. ASME J.  Dynam.  Syst.  Meas.  Contr., Dec. 1981. 
R. Ortega, “Assessment of stability robustness for adaptive control- 
lers,” IEEE Trans. Automat.  Contr., vol. AC-28, p.  1106, 1983. 
K. S. Narendra, “Stable adaptive controller design: proof of stability,” 
ZEEE Trans. Automat.  Contr., vol. AC-25, June 1980. 
P.  J.  Gawthrop,  “Some  properties of discrete adaptive controllers,” in 
Self-Tuning & Adaptive  Control, Harris and Billings. Eds. New 

VOI. AC-24,  pp. 305-311, 1979. 

York:  Peregrinus, 1981. 
R.  Ortega and I. D.  Landau,  “On the MPM tolerance of various  PAA: 
A sectoricity approach,” ZFAC WorkshoD AdaDt.  Syst., San 
Francisco,  CA, j ine  20-22, 1983. 
S. Shah,  “Internal model adaptive control,” Stanford Univ., Stan- 

G. Zames,  “On the I/O stability of time varying nonlinear feed-back 
ford,  CA,  Rep. 63-81-2, Aug.  1981. 

systems Part I & 11,” ZEEE Trans. Automat.  Contr., vol. AC-11, 

- .  

1366. 
[18] B. Peterson and K. S. Narendra, “Bounded Error adaptive control,” 

[I91  G. Kreisselmeier and K. S. Narendra, “Stable MRAC in the presence 
ZEEE Trans. Automat.  Contr., vol. AC-27, Dec. 1982. 

of bounded disturbances,” IEEE Trans. Automat.  Confr., vol. AC- 
27, Dec. 1982. 

[20] M.  J. Balas and C.  R. Johnson, “Adaptive identification and  control 
using reduced-order models,’’ Yale Adapt.  Confr.  Conf., 1981. 

[21] P. Ioannou and P.  W. Kokotovic, Adaptive  Systems with Reduced 
Models. New York: Springer-Verlag,  1983. 

[22] R. Kosut and C.  Johnson,  “An input-output view of robustness in 
adaptive control,” Automatica, (Special Issue on Adaptive Control), 
1984. 

[3 11 

K. W. Lim,  “Robustness of self-tuning controllers,”  Ph.D. disserta- 
tion, Hertford  Coll.,  Oxford,  England,  1982. 
L.  Praly,  “Robustness of model reference adaptive control,” in Proc. 

B. Egardt, Stability of Adaptive  Controllers. New York: Springer- 
3rd Yale Workshop, New Haven,  CT,  June 15-17, 1983. 

Verlag, 1979. 
G. Goodwin, P. Ramadge and  P.  Caines,  “Discrete  time multivariable 
adaptive control,” ZEEE Trans. Automat.  Contr., vol. AC-25, June 
1980. 
T. Hagglund, New  Estimation Techniques for  Adaptive  Control. 
Coden: LUTFD2/(TFRT-1025)/1-20/1983. Lund University. 
L.  Praly,  “Commande adaptive indirecte multivariable,” Coll;  Nat. 
du  CNRS., Belle IIe,  Sept. 1982. 
-, “Robust MRAC: Stability analysis,” in Proc. 23rd ZEEE 
Conf. Decision Contr., Dec. 1984. 
-, “Robustness of mdlrect adaptive control based on pole place- 
ment design,” in Proc. ZFAC Workshop on Adaptive  Syst. in 
Contr. and Signal Processing., June  1983. 
R.  Ortega,  “Robustness enhancement of adaptive controllers by 

4,  pp. 135-141, May 1984; see  also  “Correction,” ibid. vol. 4, Oct. 
incorporation of process apriori knowledge,” Syst.  Contr.  Lett., vol. 

1984. 

of Engineering, Nation 
are in the development 
systems. 

Romeo Ortega was born in Mexico, on March  12, 
1954.  He received the B.S. degree in mechanical 
and  .electrical engineering from  the National 
University of Mexico in 1975,  the  M.on  E.  degree 
(with honors) in control theory from the Leningrad 
Polytechnical Institute, USSR, and the “Doctorat 
d’Etat-es-Sciences” degree  from the Polytechnical 
Institute of Grenoble,  Grenoble,  France. 

He  has held teaching and research positions at the 
National University and Polytechnical Institute of 
Mexico.  He is currently a Professor in the Faculty 

al University of Mexico.  His main research interests 
of analysis and design techniques for reliable control 

Urbana-Champaign. H 
contribution to adaptive 

Laurent Praly was born in 1954.  He graduated 
from  Ecole Nationale Superieure des Mines de 
Paris,  Paris,  France, in 1976. 

After working as Engineer in a private laboratory 
for  three  years, in 1980 he joined the Centre 
d’Automatique et  Informatique, Ecole Nationale 
Superieure  des Mines de  Paris, Fontainebleau, 
France.  From July 1984 to June  1985, he spent a 
sabbatical year  as Visiting Assistant Professor in the 
Department of Electrical  and  Computer 
Engineering,  University of Illinois, 

is main interest is in automatic control with 
systems. 

Ioan D. Landau received the Docteur-es-Sciences 
Physiques degree  from  the University of Grenoble, 
Grenoble,  France. 

He was an Associate Professor at the Institut 
National Poytechnique de Grenoble from  1973 to 
1976 and a Senior Post-Doctoral Research 
Associate at NASA-Ames Research Center  from 
1971 to 1972. At present he is Research Director at 
the Centre National de  la Recherche Scientifique 
(C.N.R.S.).  He is also  Director of a national 
coordinated research group at the Laboratoire 

de’Automatique, Institut National Polytechnique de Grenoble.  He is the 
author of the book. Adaptive  Control-The  Model Reference Approach 
(New York: Marcel Dekker, 1979) and coauthor (with M. Tomizuka) of the 
book Adaptive  Control-Theory and Practice in Japanese (Ohm,  1981). 

Dr. Landau is the Chairman of the I.F.A.C. Working Group on Adaptive 
Systems in Control  and Signal Processing. He received the Great Gold Medal 
at the Invention Exhibition, Vienna in 1968, the C.N.R.S. Silver Medal in 
1982 and the “Best Review Paper Award (1981-1984) for his paper “Model 
reference adaptive controllers and stochastic self-tuning regulators-A unified 
approach” published in the ASME Journal of Dynamical Systems 
Measurement and Control. 

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on November 28, 2009 at 12:57 from IEEE Xplore.  Restrictions apply. 


