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Iv. ILLusfRAnVE EX.4hPLE.s 

Example I :  Let the  system 

k = xu + zu, €2 = 2xu + zu (0 < e < 0.1). 

One observes that condition  (22) cannot be  satisfied  for any Pl > 0 and 
P2 > 0.  Hence, Steps 1,2, and 4  must  be  applied. 

i) Choose PI =1 and P2 =l. 
ii) Solve  (18a) to obtain P3 = -3/(l+ L). 

Now, using  (20) 

K 1 = 1 - 6 / ( 1 + < ) = ( ~ - 5 ) / ( 1 + € )  

K 2 = - 3 r / ( l + c ) + l = ( l - 2 ~ ) / ( 1 + ~ )  

and so by  (19) 

Note  that  one could  compute uo directly  from (5) with P being  replaced 
by P, which here is 

Clearly, 

d e t P , = c - 9 c 2 / ( 1 + c ) 2 = c ( c 2 - 7 c + 1 ) / ( 1 + c ) 2 > 0  forO<r<O.l  

Example 2: Let  the system 

k = 3xu +4zu 
€2 = -2xu + zu, 0 < c < 0.2. 

One observes that for Pl = 1 and P2 = 2  the  condition  (22) is satisfied. 
Hence,  the policy (5) with 

PC=[’ “ 1  de tPC=2c>O  forc>O 0 2c ’ 

stabilizes the system, and can be written in the  form (19) as 

u o =  -(3x2+222). 

Exomple 3: Consider  the system X = NXu  with 

It is easily  seen that condition (22) cannot be  satisfied nith any 

positive  definite. 
However,  using the transformation  (29a) 

we find [see  (25)] 

ICT=T;’(€)NT,(e) = [; 30/c] 

and the condition &&P1 + i)2fi21 = 0 is satisfied for, say, Pl = P 2  = 1. 
The corresponding stabilizing  policy is given  by  (26b), Le., 

. ~ = - ( 4 ~ ( I C T ~ P 1 ) ~ + + i ~ ( ~ ~ P 2 ) t }  
= -(24’+3?2). 

To express this policy in terms of the  original state variables x and z 
we first find 

Then 

l + €  - E(ZC - 3) 

-c(2c-3) ~ ( 2 c - 3 ) ~  

det P = E > 0 for E > 0. 

(26 -3) 
+3z2 - - 

2~ -3 

V. CONCLUSIONS 

We  have studied the  problem of stabilizing  strictly  bilinear  singularly 
perturbed systems,  by  using state feedback  control  policies. Our aim was 
to design reduced-order controllers  requiring  less computational effort 
compared  to  the overall  controllers of the form (5). We  have seen that, 
under the conditions of Theorem 1, it suffices to choose an n-dimensional 
symmetric positive  definite  matrix Pl in  order to stabilize our (n + m)-  
dimensional system (1). Alternatively,  choosing P I ,  P2, and P3 as in 
Theorem 2, one  can construct a stabilizing  matrix gain as is shown in (11). 
If condition (22) is satisfied,  then can be  constructed  in  the  simpler 
form (21). Note  that we gain  a  considerable computational effort  in both 
checking the positive  definitness of the  gain  matrices  involved and carry- 
ing out the required  algebraic  matrix  computations. 

The results of the  paper can easily be used  when the system at  hand 
involves  a linear  control term Bu. The class of fully  bilinear  systems of 
the  form X = A X  + N X u  + Bu is treated  in [8], and the  class of c-coupled 
bilinear systems in [7].  We  close  by  remarking that in the strictly  bilinear 
case one can always  determine  the  reduced  model upon which  the 
controller is based. In the fully  bilinear  case th~s is possible  only under 
certain  conditions [2]. 
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identification of input and output prediction  models. This leads to a bilinear 
parameter estimation problem for which a least-squares criterion minimiza- 
tion is  proposed. This framework  makes it possible to establish global 
convergence without any extra condition.  We give an example to illustrate 
the practical features. 

I. INTRODUCTION 

Recently, there has been considerable interest in the problem of direct 
adaptive  control  for nonminimum phase systems. A common characteris- 
tic of these control schemes  is  the estimation of more parameters than 
those effectively  needed for control. In 111 or 121, these extra parameters 
are those of the model.  However, this leads to parameter estimation based 
on a bilinear observation equation. This estimation problem is  solved  by 
classical linear model parameter estimation the result of which  is used in  a 
second  step  to linearize the bilinear observation equation. This is, in  fact, 
very close to  indirect schemes. These schemes can fail if the estimated 
model loses stabilizability. In [3] the extra parameters are those of a 
partial  state  predictor. The observation of the parameters is linear. But 
without  a persistency of excitation assumption, only local stability may  be 
established. 

Here we introduce  an  input prediction model  which together with an 
output  prediction model defines an implicit model  which is bilinear in the 
parameters. To solve this estimation problem a least-squares criterion 
minimization is proposed. 

In Section 11,  we present the controller structure. In Section I11 we 
study the bilinear estimation problem and we mention a global  conver- 
gence result. In Section Iv, a simulation study is presented demonstrating 
the feasibility of controlling unstable nonminimum phase systems. 

11. DIRECT ADAPTIVE CONTROL SCHEhiE 

Assumptions: Consider a system  with y ( t ) ,  u ( t )  as scalar output  and 

AO: There exists (unknown) scalar polynomials in the unit delay 
input, respectively. The  following assumptions will  be  used. 

operator 4-l  such  that the system can be represented by 

A ( q - ' ) y ( t ) = B ( q - ' ) u ( t )  (1) 
with 

A (  q - l )  =I+ a,q-' + . . . + " A  q - " ~  ( 2 )  

B(  4-1) =bo + blq-' + . . ' + bnBq-"B. (3) 

A l :  n 2 m a {  nA, n e }  is known. 
A2: An upper  bound (which does not need  to  be small) of the 

coefficients of A (  q - ' ) ,  B( 4-l)  is known. 

A3: Given  an (known) exponentially stable polynomial R ( 4 - I )  

~ ( q - ~ ) = ~ + r , q - ' +  . - .  +rnRq-", ,  n , < n .  (4) 

There exists (unknown) polynomials C ( q - l ) ,  D ( q - ' )  of degree n,(n -l), 
respectively, with C(0) = 1, such that: 

A ( q - ' ) C ( q - ' ) + q - ' B ( q - ' ) D ( q - ' ) = R ( q - ' ) .  (5) 

Moreover, an upper bound of the coefficients of C(q-'), D ( 4 - l )  is 
know. 

System Reparametrization: Using  Assumption A3, let 

A ( q - ' ) = l + q - ' X ( q - ' )  

c( 4-1) =1+ q-'C( q-1)  

R (4-1) = 1 + 4-13 (4 -1 ) .  

From (l), (5) we get the  following: 

- 
~ ( q - ' ) y ( t ) = ~ ( q - ' ) [ u ( t ) + C ( q - ' ) u ( t - 1 ) + ~ ( q - ' ) y ( r - 1 ) ] .  

(7.b) 

Given A(q-l), B ( q - ' ) , C ( q - I ) ,  D(q- ' ) ,  R ( q - ' ) ,  this is  an implicit in- 
put-output  prediction model.  Given R ( ~ 7 - ~ ) , { u ( f ) } , { y ( r ) } ,  this is a 
bilinear  observation equation in the  coefficients of A ( q - ' ) ,  B ( q - ' ) ,  

Feedback Contra[ Law: If the  input u ( t )  is generated by the causal 
C(q-'),  D ( q - ' ) .  

feedback  control law 

u ( t + l ) = - ~ ( q - ' ) u ( t ) - D ( q - ' ) y ( t ) + E R ( q - ' ) y M ( t )  ( 8 )  

where { y M ( t ) }  is an arbitrary bounded set point sequence and E is a 
scalar, then the resulting closed loop is 

R ( q - l ) [ u ( t ) - A ( q - l ) E y M ( r - l ) ] = ~  (9) 

R( q- ' ) [  y ( r ) -  B (  q-1 )  EyM(t -I)]  = 0. (10) 

It is exponentially stable since R ( 9 - I )  is exponentially stable  and achieves 
zero tracking error if 

1 = B ( 1 )  E .  (11) 

Adaptive Conrrof Scheme: When A(q-'), B(4-l) are  unknown, at each 
time t ,  we proceed  in the following two steps. 

1) IdenMlcation of both system and controller polynomials using 
prediction  model (7). This gives time  varying  polynomials 
A(t, 4-l). B( t ,  q-'), C(t, q- l ) ,  ~ ( t ,  4-l). 

2) Computation of the control as 

u(r+l)=~(t,q-')u(t)-D(t,q-')y(t)+E(r)R(q-')yM(r) 

(12) 

with 

1 if lB(r , l ) l>  c 

if not. 

111. BILINEAR DTIMATION AND STABILITY 

Let p, 8* be  the true system and controller parameter vector, respec- 
tively, 

For some  other value of these vectors  say +, 8 we may defiie from (7) the 
following prediction  error vector 

E( f ,8 ,+)=z( t ) -H( t ) 'F (B ,$J )  (16) 

where 

H (  t )  = 

F( 81, $J) is  a  vector whose entries are the coefficients of 
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U 

-.3237r*cI 

~ ( 4 - ' ) ~ ( ~ - 1 ) , A ( 4 - ' ) C ( ~ - 1 ) , B ( q - " ) , B ( 4 - 1 ) c ( ~ - 1 ) .  

Let J( t ,  e,$) be the least-squares  criterion  with  forgetting factor defined 
recursively as follows: 

J ( t , 8 , $ ) = p J ( t - 1 , e , $ ) + c ( t , e , $ ) ' Q c ( t , e , $ ) . o < ~ < 1  

(19) 

J(o ,e ,$)= I~(~,~)-F(~(O),$(O))I'~,IF(~,~)-F(~(O),$(O))I 
(20) 

where Q, Po are positive  definite  matrices, ( @ ( O ) , $ ( O ) )  is CI priori esti- 
mates. 

Let J, be a  positive  scalar  given  by  boundedness  assumption in A 2 ,  A3. 
such  that 

~ ( o ,  e*, < J,. (21) 

Let M, be the  set defined as follows: 

~ = { ( e , $ ) l ~ ( t , s , ~ ) < p ~ ~ } .  (22) 

Then  at time r we take the estimates (e(t), $ ( I ) )  as the element of M, 
that minimizes 116 - B ( t  -1)11*,  i.e., ( e ( ? ) , $ ( ? ) )  is given  by  solving: 

( e ( t ) , + ( t ) ) E B T g ~ e , ~ M , I I ~ - ~ ( ~ - - 1 ) 1 1 2 .  (23) 

With this estimation procedure,  the  following  global  convergence  may be 
proved (see [4]). 

Global Stability Theorem: Subject to Assumptions AO, AI, A 2 ,  A 3 ,  let 
e ( ? ) ,  $ ( I )  be given by (22),  (23), and let u ( t  +1) be  given  by  (12). 

Then we have the following: 

i) u( t ) ,  y (  r) remain  bounded 
ii) l im, , ,R(q- ' )y ( t ) -B( t ,q- ' )y* ( r -1 )=O (24) 

with 

Y * ( t )  = E ( r ) R ( 4 - ' ) y M ( t ) .  (25) 

-. J962nc.2 
Fig. 1 .  

C W A  

m. TOWARDS AN IhPLEMENTABLE ALGORITHM 

The algorithm  presented in the previous  section is conceptual. At each 
time t ,  it requires the minimization of a quadratic criterion  over an 
implicitly  defined  nonconvex set. However, it should  be  noted  that,  given 
0 (respectively, $), min, ,J( t ,  e,$) [respectively, min,J(r, e,$)] is a 
classical quadratic minimization  problem.  Consequently, an alternate 
minimization in 8.4 is  a  candidate  for an efficient  descent algorithm. 
This leads to the following  estimation  algorithm. 

Algorithm At each  time t :  

i = o , O , = ~ ( t - 1 ) , $ , = ~ ( t - 1 )  

.l.l-e,+l=  argmin.r(t,o,$,) 

1.2-+,+~=  argminr(t,e,+,,$) 

e 

rb 

2-if i>im,  thenB(r)=Oi+l,$(t)=$i+l end 

-if not i = i + l r e t u m t o l .  

The computational  complexity of this algorithm consists in 1.1 and 1.2. 
A  positive  symmetric  linear  system has to be  computed  (order of n2 
operations)  and solved. 

This algorithm  does  not  solve  (22),  (23).  However, our simulation 
experience indicates  that it gives  good  performance. In  particular, let us 
consider a  very  difficult  example  presented in [SI. 

The following  system is considered: 

~ ( q - ' ) = 1 . 0 - 1 . 2 q - ~  

B ( 4 - l )  =1.0-3.lq-'  +2.2q-2. 

The objectives are 

R ( q - 1 )  =1.0 

yM(t)=l .O l < t < : 6 0 .  
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It follows that  the controller is defined  by 

C ( q - ’ )  =1.0+22.8q-’-39.6q-2 

D(q-’) = -21.6. 

Note the large  coefficients.  This is due to the proximity of roots of 
A (  q- ’), B( q- I). We  use  the  following  conditions: 

p = 0.85, i,, = 14, initial signals = 0 

Initial  parameters: 

A ( q - 1 )  =1.0-1.0q-1 

B( q-’) = -2.Oq-’ +3.0q-2 

C ( q - ’ )  =1.0+1.0q-1+3.0q-2 

D ( q - 1 )  =1.0. 

Po is obtained by  simulating  the  closed-loop  plant  given  by initial 
parameters  with y M ( t )  a  white  noise and by  taking 

T 

P,= , P r H ( r )  H(r)’ .  
r = O  

The  optimization is worked  out  only  when the a priori output error 
prediction is greater  than 0.01. 

Fig. 1 shows the  output  and  input signals and  the estimated  parameters. 
We  can see that  the  output  and the  parameters  converge to their true 
values. 

V. CONCLUSION 

An adaptive  direct control  scheme is obtained  with  a  pole  placement as 

i) estimation of both model and controller  parameters, 
ii) an estimation procedure  which  is  bilinear  in  these  parameters and 

which is obtained from both  an  input  and  output prediction  error  model. 
A conceptual least-squares  criterion  minimization  allows one  to  estab- 

lish global convergence with very  weak  assumptions:  stabilizability of the 
system,  knowledge of an upper  bound of the parameters and of the  system 
order. This is only a  theoretical  existence  result.  Nevertheless,  a  more 
implementable algorithm  leads to encouraging  simulation  results. 

underlying design  method. The characteristics of this  technique  are: 
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ARMA Spectra 
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computing such decompositions is given. Contrary to some other methods, 
the proposed algorithm is based on purely rational operations. In particular, 
knowledge of the poles of the spectrum is not  required. 

I. INTRODUCTION 

Stationary random processes  whose  power  spectra are rational  play an 
important role in  many engineering and statistics  applications. For dis- 
crete-time  processes, the most  general  rational  model is the so-called 
autoregressive  moving  average (ARMA) model.  A  vector random process 
{ yr } of dimension m is said to be  a ( p ,  q )  ARMA process if it satisfies 
the difference equation 

P 4 

yr+ Akyr-k= Bk‘r-k (1) 
k =1 k = O  

where { u, } is an m-dimensional  zero-mean  unit-variance  white  noise, and 
{ A , ,  A , ;  . ., A,  }, { B o ,  B,;  . ., B,} are  constant  m X ))I matrices. AU the 
roots of the  polynomial 

det z p  + z P - ~ A ~ )  

are required to be strictly  inside  the  unit  circle. The I t h  lag covariance of 
{ yr } is defined  by 

( k = l  

R / = R ? / = E ~ ~ ~ , ? / ;  - C O < I < C O .  (2) 

The spectrum of the ARMA process  given in (1) is defined as 
m 

S ( z ) =  R / z - ‘ .  (3) 
/ = - m  

For vector  processes,  additive  decompositions of the  corresponding  spec- 
tra  can be  defined in various  ways,  corresponding to different  ways of 
splitting the matrix R , .  For our purposes it wiU be convenient to 
introduce  the following  definition.  Let 

( R o ) t , ;  i < j  
R o + =  i ( R , , ) l , ;  i = j  lo; i >  j .  

Then define 

m 

S +  ( z )  = R o +  + 1 R,z - ‘ .  (5) 
/ = 1  

S, ( z )  will be called the causal part of the  spectrum.  Clearly, S ( z )  can be 
written as 

s ( z ) = s + ( Z ) + [ S + ( z - ’ ) ] T .  ( 6 )  

This is known as the additive  decomposition of the spectrum.  Additive 
decompositions  are useful,  e.g.,  in  Wiener  filtering  theory [l]. Another 
potential use is i n  spectral  estimation of ARMA processes.  A standard 
technique for obtaining additive  decompositions of rational  spectra is by 
partial  fraction expansions. This requires  knowledge of the  poles of the 
spectrum  and  can  be  quite tedious to carry out in practice. 
In this note we propose an efficient  computational  algorithm for 

obtaining  the  additive decomposition of the spectrum of a  given ARMA 
process. The algorithm is based on a  recently  proposed  algorithm for a 
related  problem, namely, the computation of the  covariances of a  vector 
autoregressitre (AR) process 121. In contrast to partial fraction  expansion, 
the new  algorithm is purely  rational,  using  only standard linear  algebra 
operations. In Section  I1 we state and  prove the basic  theorem, on which 
the algorithm is based.  Section 111 briefly  describes  the  algorithm, omit- 
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