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Abstract: We introduce a new sensorless rotor position observer for permanent magnet
synchronous motors which does not require the knowledge of the magnet’s flux : only electrical
measurements and (approximate) knowledge of the resistance and inductance are needed. This
observer extends the gradient observer from Lee et al. [2010] with the estimation of the magnet’s
flux and makes it globally convergent provided the rotation speed remains away from zero. We
study its sensitivity to uncertainties on the resistance and inductance and to the presence of
saliency. Its performances in open-loop are illustrated via an implementation using real data
and compared to other existing magnet flux independent observers in terms of computational
cost and robustness.

1. INTRODUCTION

1.1 Context

To minimize the cost and increase the reliability of Per-
manent Magnet Synchronous Motors (PMSM), it is still
important to make progress on estimating their state vari-
ables, in particular the rotor position and speed, with
a minimum of sensors and fast algorithms. To this end,
studies have been made for a long time on the so-called
”sensorless” control which uses no mechanical variables
measurement, only electrical ones. A review of the first
used methods was given in Acarnley and Watson [2006]),
then a Luenberger observer was proposed in Poulain et al.
[2008]. More recently, a very simple gradient observer,
proposed in Lee et al. [2010] and analyzed in Ortega et al.
[2011], has been shown to be extremely effective in practice
as rotor position estimator. From the theoretical view
point it is only conditionally convergent but it was shown
in Malaizé et al. [2012] how, via a very minor modification,
it can be made globally convergent thanks to convexity
arguments.

These observers require typically the knowledge of the
resistance, magnet flux and inductance. Unfortunately
while the latter may be considered as known and constant
(as long as there is no magnetic saturation), the other
two do vary significantly with the temperature and these
variations should be taken into account in the observer. For
example, for a given injected current, when the magnet’s
temperature increases, its magnetic flux decreases, and
the produced torque becomes smaller. Therefore, an online
estimation of the magnet’s flux enables to :

• adapt the control law in real time and thus ensure
a torque control which is robust to the machine’s
temperature ;
• have an estimation of the rotor’s temperature
• have an estimation of the magnet’s magnetization

degradation with time.

That is why efforts have been made to look for observers
which do not rely on the knowledge of those parameters.
For instance, in Romero et al. [2016], the authors propose
and study via simulations an adaptive observer to make

the gradient observer previously mentioned independent
from the resistance.

In this paper, we focus on observers which require the
knowledge of the resistance and the inductance, but not of
the magnet flux. First steps in this direction are reported
in Henwood et al. [2012] with the design of a Luenberger
observer (see Henwood [2014] for a much more detailed
analysis), and in Bobtsov et al. [2015a,b, 2016], with
the design of an observer based on tools from parameter
linear identification. In fact, we will show that those two
observers rely on the same regression equation but the
former solves it at each time whereas the latter solves it
with time with a gradient-like scheme. Convergence comes
with an assumption of invertibility of the regressor matrix
for the former, and on a persistent excitation condition for
the latter.

Here, we start by proposing, for the same goal, another
observer which is a direct extension, with estimation of
the magnet flux, of the gradient observer obtained in Lee
et al. [2010]. We claim its global convergence.

Then, for these various observers, we study the sensitivity
of the estimates to errors in the resistance and induc-
tance, and also to the action of (ignored) saliency and
we illustrate and compare their performances in open-loop
through simulations on real data.

1.2 System model and problem statement

Using Joule’s and Faraday’s laws, a simpler PMSM model
expressed in a fixed αβ-frame reads

Ψ̇ = u−R i (1)
where Ψ is the total flux generated by the windings and
the permanent magnet, (u, i) are the voltage and intensity
of the current in the fixed frame and R the stator winding
resistance. The quantities u, i and Ψ are two dimensional
vectors, and, for the case of a non-salient PMSM, the total
flux may be expressed as

Ψ = Li+ Φ
(

cos θ
sin θ

)
(2)

where L is the inductance, Φ the magnet’s flux, and θ the
electrical phase. This relation implies

|Ψ− Li|2 − Φ2 = 0 (3)



and the electrical phase θ is nothing but the argument of
Ψ−Li. Therefore, in the case where L and i are known, θ
can be recovered simply through an estimate of the total
flux Ψ.

Our interest in this work is about observers of Ψ using
measurements of u and i, (approximate) knowledge of
R and L but not of Φ. In particular, we look at the
computational cost and study how the estimate they
give depend on uncertainties on R, L and saliency. To
guarantee observability, we assume, all along, the electric
rotation speed ω = θ̇ remains away from 0.

Notations : The rotation matrix of angle θ is denotedR(θ),
i-e

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
.

2. GRADIENT OBSERVER

In Lee et al. [2010], the authors proposed the gradient
observer :

˙̂
Ψ = u− R̂i− 2q (Ψ̂− L̂i)

(∣∣∣Ψ̂− L̂i∣∣∣2 − Φ2

)
. (4)

where R̂ and L̂ are estimates of R and L the model
parameters. This observer turned out to be quite efficient
in practice but it was proved in Ortega et al. [2011]
that it was only conditionally convergent. In particular
it may admit several equilibrium points depending on
the rotation speed ω. In fact, later in Malaizé et al.
[2012], it was shown that taking rather the following
gradient observer, based on the “convexified” expression

max

(∣∣∣Ψ̂− L̂i∣∣∣2 − Φ2 , 0

)
,

˙̂
Ψ = u− R̂i− 2q (Ψ̂− L̂i) max

(∣∣∣Ψ̂− L̂i∣∣∣2 − Φ2 , 0

)
(5)

enables to achieve global asymptotic stability when R̂ = R
and L̂ = L.

In this paper, we propose the following observer for Ψ and
Φ 

˙̂
Ψ = u− R̂i− 2γ (Ψ̂− L̂i)

(∣∣∣Ψ̂− L̂i∣∣∣2 − Φ̂2

)
˙̂
Φ = γ Φ̂

(∣∣∣Ψ̂− L̂i∣∣∣2 − Φ̂2

) (6)

where γ is an arbitrary strictly positive real number. It is
a straightforward extension of the gradient observer (4).

Let Ψ(ψ, t) be the solution at time t of model (1)
satisfying (3) initialized at ψ at time 0. Similarly, let

(Ψ̂(ψ̂, φ̂, t), Φ̂(ψ̂, φ̂, t)) be the solution at time t of observer

(6) initialized at (ψ̂, φ̂) at time 0.
Theorem 1. Assume that there exists a strictly positive
number w such that ω is lower-bounded by w, and that
the state variables of the PMSM are bounded. Assume
also R̂ = R and L̂ = L. Then, for any strictly positive real

number γ, for any (ψ, ψ̂, φ) in R4 × (0,+∞), we have

lim
t→∞

|Ψ̂(ψ̂, φ̂, t)−Ψ(ψ, t)|+ |Φ̂(ψ, φ, t)− Φ| = 0 .

Taking θ̂ as the argument of Ψ̂ − L̂i, we also obtain
according to (2)

lim
t→∞

θ̂ − θ = 0 .

The proof of Theorem 1 goes with changing coordinates,
building an appropriate weak Lyapunov function and

studying the invariant sets. Unfortunately it is too long
and too technical to be given here.

This theorem tells us that unlike for observer (4), no
convexification is needed to achieve global convergence of
the gradient observer (6). Hence, even when the parameter
Φ is known, we may prefer to use observer (6) instead
of observer (4). In this way, although the observer state

is augmented with Φ̂, we get global convergence and
independence with respect to Φ.

3. ALTERNATIVE PATH

The observer presented in the previous section is based on
the system  Ψ̇ = u−Ri

Φ̇ = 0
y = |Ψ− Li|2 − Φ2

(7)

with inputs (u, i), state (Ψ,Φ) and measurement y which
is constantly zero. This system is nonlinear because of its
output function. Fortunately, this function is quadratic
in (Ψ,Φ), and (Ψ̇, Φ̇) does not depend on (Ψ,Φ). Hence
linearity can be obtained by time derivation. Namely, we
have

ẏ = 2 (Ψ− Li)T (u−Ri−
︷̇ ︷
Li)

which is linear in Ψ and independent from Φ. The new
problem we face now is the presence of the time derivative︷̇ ︷
Li. A well known fix to this, is to use a strictly causal
filter. Namely, let

η̇ = −λ(η + y) , yf = η + y (8)

with λ any complex number with strictly positive real part.
It is easy to check that the evaluation of yf +(c+2Li)T Ψ−
(z + L2|i|2), along any solution, decreases as exp(−λt)
when c and z are solutions of{

ċ = −λc− 2λLi− 2(u−Ri)
ż = −λz + cT (u−Ri)− λL2|i|2 . (9)

So, instead of the design model (7), we can use :{
Ψ̇ = u−Ri
yf = −(c+ 2Li)T Ψ + (z + L2|i|2)

(10)

with inputs (u, i, c, z), state Ψ and measurement yf . Also
because of (8), we pick yf constantly zero as we did above
with y. The system (10) can be seen as a linear time
varying system and therefore any observer design for such
systems apply. It can be a Kalman filter or more simply
the following gradient observer :
ċ = −λc− 2λL̂i− 2(u− R̂i)
ż = −λz + cT (u− R̂i)− λL̂2|i|2
˙̂
Ψ = u− R̂i+ γ

(
c+ 2L̂i

)(
−(c+ 2L̂i)T Ψ̂ + z + L̂2|i|2

)
.

(11)
where γ is an arbitrary strictly positive real number. In
Bobtsov et al. [2015a], the authors propose the following
non minimal version of this observer :

Ψ̂ = ξ14 + ξ89

ξ̇14 = u− R̂i
ξ̇5 = −λ(ξ5 − |ξ14 − L̂i|2)
ξ̇89 = γΩ

(
y − ΩT ξ89

)
Ω = −λ(c+ 2L̂i)
y = −λ|ξ14 − L̂i|2 − λξ5

(12)

where c verifies the dynamics (11) and we have the relation

z = ξT14(c+ ξ14) + ξ5 .

with z satisfying (11).



Convergence of these observers (11) or (12) is guaranteed
as long as Ω satisfies a persistent excitation condition
which, as proved in Bobtsov et al. [2015a], holds when
the rotation speed is sufficiently rich.

Inspired from nonlinear Luenberger observers, another
observer is proposed in Henwood et al. [2012]. It consists
in using m filters of the type (9), with poles λk, with k in

{1, . . . ,m}, to obtain m equations in Ψ̂

(ck + 2L̂i)T Ψ̂− (zk + L̂2|i|2) = 0 (13)
which are solved in a least square sense. It is proved in
Henwood [2014] that the matrix of the ck + L̂i is full
column rank when ω stay away from 0, m ≥ 3 and the
λk are chosen in a generic way.

Actually, observer (11), observer (12) of Bobtsov et al.
[2015a], or the one in Henwood et al. [2012], are identical

except in their way of solving in Ψ̂ equations (13). The
former two solve (13) with only one λ (m = 1) but
dynamically along time. The later solve them at each time,
with at least two λ (m ≥ 2).

In the remainder of the paper, we intend to compare the
performances of observer (6) introduced in the previous
section with those of this other family of observers, in
particular observer (11).

4. PERFORMANCES

4.1 Computational cost

We already see that the small dimension of observer (6)
and its great simplicity of implementation provides a
significant advantage. Indeed, in our matlab simulations,
CPU time was found to be twice smaller than for the other
observers presented in Section 3. This numerical efficiency
constitutes an important feature since those observers are
intended to run online where processing power is often
limited.

4.2 Sensitivity to the presence of saliency when id is
constant

According to Bodson and Chiasson [1998], the simplest
way to take saliency into account in the model of a PMSM
is to keep (1) but to replace the expression (2) of the total
flux by

Ψ = L0i+ L1

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
i+ Φ

(
cos θ
sin θ

)
(14)

where L1 is a second order inductance. Thanks to the
identity(

cos 2θ + 1 sin 2θ
sin 2θ − cos 2θ + 1

)(
cos θ − sin θ
sin θ cos θ

)
= 2

(
cos θ 0
sin θ 0

)
the above expression of Ψ can be rewritten as

Ψ− (L0 − L1)i = (Φ + 2L1id)
(

cos θ
sin θ

)
(15)

with the notation

idq =
(
id
iq

)
= R(−θ) i . (16)

This shows that, when id is constant, we recover exactly
the design model (7) provided we replace L and Φ by

Ls = L0 − L1 , Φs = |Φ + 2L1id| .
Hence Theorem 1 holds in the case with saliency at least
when the signals obtained from the motor are such that
id is constant. Specifically, by implementing observer (6)

with L̂ = Ls, we directly obtain :

lim
t→∞

|Ψ̂(ψ, φ, t)−Ψ(t)|+ |Φ̂(ψ, φ, t)− Φs| = 0

This means that Ψ̂ converges to Ψ and Φ̂ to the ”equivalent
flux” Φs. But this time, it is not sufficient to compute
the argument of Ψ̂ − Lsi to obtain an estimate of θ,
since according to (15), it converges either to θ or θ + π
depending on the sign of Φ + 2L1id. In fact, defining θ0 as
the argument of Ψ− Lsi and idq,0 as

idq,0 =
(
id,0
iq,0

)
= R(−θ0) i

we have :

- if Φ + 2L1id > 0, then Φs = Φ + 2L1id, θ0 = θ,
id,0 = id and Φs − 2L1id,0 = Φ > 0

- if Φ + 2L1id < 0, then Φs = −Φ− 2L1id, θ0 = θ + π,
id,0 = −id and Φs − 2L1id,0 = −Φ < 0 .

Therefore, computing the argument θ̂0 of Ψ̂−Lsi, and îdq,0
defined by

îdq,0 =

(
îd,0
îq,0

)
= R(−θ̂0) i ,

and taking

θ̂ = θ̂0 if Φ̂− 2L1îd,0 ≥ 0
θ̂ = θ̂0 + π otherwise ,

we obtain convergence of θ̂ to θ. This convergence is a clear
argument in favor of observer (6) with respect to observer
(5). Indeed, the flexibility provided by the estimation of
Φ enables to apply the same observer to salient motors
without losing convergence of θ. The same conclusions
hold for the observers presented in Section 3. Not to be
forgotten, all this holds when id is constant.

4.3 Sensitivity to errors on R and L when (id, iq, ω) is
constant

In Theorem 1, we claimed convergence for observer (6)
assuming perfect knowledge of the resistance and the
inductance and the absence of saliency. Then, in the latter
subsection, we extended this result to salient models as
long as the current in the dq frame id is constant. We
study here the possible consequences of having R̂ and L̂
different from R and L. For this we restrict our attention
to the case where R(−θ) i = idq and ω are constant.
This configuration is often considered in practice, since it
corresponds to a constant rotation speed with a constant
load torque. In this case the model with saliency made of
(1) and (14) has an asymptotic behavior given by

u = R(θ)udq , i = R(θ)idq , Ψ = R(θ)Ψdq

where udq, idq and Ψdq are constant satisfying

ωJΨdq = udq −Ridq , Ψdq − Lsidq =
(

Φs
0

)
where

J =
(

0 −1
1 0

)
.

Let Ψeq be defined as

Ψeq =
1

ω
J−1R(θ)(udq − R̂idq)

It satisfies

a) Ψ̇eq = u− R̂i

i-e the same dynamics as Ψ but with R̂ instead of R.

b) Ψeq − L̂i = R(θ)

(
1

ω
J−1

(
udq − R̂idq

)
− L̂idq

)
︸ ︷︷ ︸

constant

. (17)



R+ 1%R L+ 1%L

ω Obs θ̃ (rad) Φ̃/Φ θ̃ (rad) Φ̃/Φ

500 rpm
(6) 0.015 2.6 % 5.4 10−3 0.3 %

(11) 0.015 2.6 % 5.2 10−3 0.3 %

2000 rpm
(6) 3.8 10−3 0.7 % 5.4 10−3 0.3 %

(11) 3.3 10−3 0.6 % 4.9 10−3 0.3 %

Table 1. Sensitivity of observers (6) and (11)
with respect to R and L at two different
electrical rotation speeds with the notation

θ̃ = |θ̂ − θ| and Φ̃/Φ = |Φ̂−Φ|
Φ .

Thus, with Φeq the constant real number defined as

Φeq =

∣∣∣∣ 1ωJ−1
(
udq − R̂idq

)
− L̂idq

∣∣∣∣
=

∣∣∣∣(Φs
0

)
+

(
[R− R̂]

J−1

ω
+ Ls − L̂

)
idq

∣∣∣∣
we have

|Ψeq − L̂i|2 − Φ2
eq = 0 .

It follows that Ψeq is solution of the model (1)-(3) if we

replace (R,L,Φ) by (R̂, L̂,Φeq). So, according to Theorem

1, the observer (6), implemented with R̂ and L̂, gives

lim
t→∞

|Ψ̂(ψ, φ, t)−Ψeq(t)|+ |Φ̂(ψ, φ, t)− Φeq| = 0 .

Hence Φ̂ converges to
∣∣∣(Φs

0

)
+
(

[R− R̂]J
−1

ω + Ls − L̂
)
idq

∣∣∣.
And with θ̂ computed as the argument of Ψ̂− L̂i, we have
asymptotically∣∣∣Ψ̂− L̂i∣∣∣ (cos(θ̂ − θ)

sin(θ̂ − θ)

)
= R(−θ)

(
Ψeq − L̂i

)
=

1

ω
J−1

(
udq − R̂idq

)
− L̂idq

=
(

Φs
0

)
+

(
[R− R̂]

J−1

ω
+ Ls − L̂

)
idq , (18)

where we have used (17). In other words the error θ̂−θ con-

verges to the argument of
(

Φs
0

)
+
(

[R− R̂]J
−1

ω + Ls − L̂
)
idq.

Up to the first order, this is exactly the same result as
the one obtained in Henwood [2014] for the Luenberger
observer presented in Henwood et al. [2012]. Of course we
recover the fact that without any errors on R and L, the

asymptotic value of Φ̂ is Φs and θ̂ converges to θ.

We illustrate formula (18) via simulations with ideal data
obtained for L = 0.65 mH, R = 0.167 Ω, Φ = 7.3 mWb,
id = −3.46 A, iq = 6 A, for two different regimes. The
results are given in Table 1 for observers (6) and (11).
Both observers were implemented with an Euler scheme
with dt = 1.2 10−4 s and give similar results. The reader
may check that the absolute error on θ and the relative
error on Φ correspond exactly to the expected theoretical
errors.

5. TESTS WITH REAL DATA

To illustrate the results above about the sensitivity with
respect to the parameters, to saliency, but also to noise,

Parameter Motor 1 Motor 2

Regime variable : Figure 1 constant : 2000 rpm

Ld 0.72 mH 0.142 mH

Lq 0.78 mH 0.62 mH

Φ 8.94 mWb 18.5 mWb

R 0.151 Ω 0.023 Ω

Pairs of poles (np) 10 2

Table 2. Parameters for Motor 1 and 2.

we applied in open-loop (and offline) the observers (6) and
(11) to real data obtained from two PMSM used in test
beds at IFPEN : Motor 1 and Motor 2. The available data
are the measurements of voltages um and currents im in
the αβ fixed frame, the measurement of the rotor position
θm, the physical parameters given in Table 2.

The norms of um and im for each motor are given in
Figures 2 and 5. Note that unlike Motor 2, Motor 1 is
submitted consecutively to four regimes : around 150 rpm,
450 rpm, 1000 rpm and finally 1500 rpm (see Figure 1).

The motors differ in terms of saliency. According to
Bodson and Chiasson [1998], L0 and L1 in (14) are given
by

L0 =
Ld + Lq

2
, L1 =

Ld − Lq

2
.

and therefore
Ls = L0 − L1 = Lq .

We conclude that saliency is weak for Motor 1 (L1

L0
≈ 4%),

but significant for Motor 2 (L1

L0
≈ 80%).

We have implemented the observers using the measured
values um and im as u and i, and an explicit Euler scheme
with the sample time (dt1 = 10−4 s, dt2 = 2 10−5 s).
We chose the parameters of the observers to ensure the
responses have all approximately the same time constant
(γ(6) = 20000, γ(11) = 50000, λ = 50) and so that
convergence is obtained in less than two rotations of the
motor. The results are presented in Figures 3-4 for Motor
1 and in Figures 6-7 for Motor 2. The performances are
globally better for Motor 1 than Motor 2, but it is mainly
due to the fact that the data were noisier for the latter.

For θ (Figures 3 and 6), both observers provide similar
results, with a final oscillatory error of amplitude smaller
than 0.05 rad for Motor 1 (0.09 rad for the last regime)
and 0.12 rad for Motor 2. But (the mean value of ) the

estimation θ̂ does not converge to the measurement θm.
There are static errors. They are likely due, in part at least,
to an offset in the sensor for θm. But there is more since,
according to Figure 3, these biases depend on the regime.
One explanation comes from (18) where the regime ω
appears explicitly. Another possible explanation has been
proposed and studied in Henwood [2014]. It is the effects
of the dynamics of the sensors providing the measurements
um and im. When they are modelled simply by

i̇m = −τi(im − i) , u̇m = −τu(um − u)

the phase shift of these first order systems (depending on

the regime) is directly translated in a static error on θ̂ and

consequently on Φ̂. We refer the reader to Henwood [2014]
for more details.

Concerning Φ (Figures 4 and 7), although both observers
provide again the same mean for the final errors, the
transient of observer (11) seems to be more oscillatory.

This difference could be explained by the fact that Φ̂ is



directly estimated by observer (6) while it is reconstructed

from the norm of Ψ̂−Lqi for observer (11). Here again (the

mean value of) Φ̂ does not tend to Φ. Let us concentrate on
the data from Motor 2 and from the first regime of Motor
1, where the norm of the current is constant. Assuming

that the offset θ̂ − θm mentioned above is only due to

the position of the sensor and therefore that θ̂ is actually
the correct rotor position, we compute id as the first

component of R(−θ̂)i and find

Motor 1: id,1 = −4.2 A
Motor 2: id,2 = −201 A .

If the values of R, Ld, Lq and Φ in Table 2 are correct, we

can expect Φ̂ to tend to Φs = Φ + 2L1id, i-e

Motor 1: Φs,1 = 9.2 mWb
Motor 2: Φs,2 = 115 mWb .

This is verified for both motors on Figures 4 (first regime)
and 7. We could conclude that the values of R and L used
in the observers are correct. Unfortunately we cannot go
further in the analysis since, for the other regimes in Figure
4, the steady state is not reached.

6. CONCLUSION

We have introduced a new rotor position observer for sen-
sorless permanent magnet synchronous motors (PMSM).
It is designed from a non salient model and uses measure-
ments of voltages and current, and estimations of resis-
tance and inductance. But it does not need the knowledge
of the magnet flux. We have claimed its convergence in an
ideal context and for a rotating motor.

We have compared it with the equivalent observers pro-
posed in Henwood et al. [2012], Henwood [2014] and
Bobtsov et al. [2015b]. The main difference is that this
new observer is less demanding in terms of computations.
On the other hand it gives qualitatively the same kind of
performance, in terms of speed of convergence, sensitivity
to errors in the resistance or the inductance and also in
presence of saliency.

At least three important issues remain to be addressed:
a) Sensitivity to measurement noise or more interestingly

the definition of a tuning policy in presence of such
disturbances. This kind of study has been made in
Henwood [2014] for the Luenberger observer proposed
in Henwood et al. [2012] . The same kind of tools should
be useful in our context.

b) Use of the observer in closed loop. Tests via simulations
or test beds for the observers in Henwood et al. [2012]
and Bobtsov et al. [2015b] are reported in those papers.
But as far as we know no theoretical results are yet
available.

c) Extension to non salient models. We are unaware of
any observer for this case.
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