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Abstract: For nonlinear systems affine in the input with state x ∈ Rn, input u ∈ R
and output y ∈ R, it is a well-known fact that, if the function mapping (x, u, . . . , u(n−1))
into (u, . . . , u(n−1), y, . . . , y(n−1)) is an injective immersion, then the system can be locally
transformed into an observability normal form with a triangular structure appropriate for a
high-gain observer. In this technical note we extend this result to the case of systems not
necessarily affine in the input and such that the injectivity condition holds for the function
mapping (x, u, . . . , u(p−1)) into (u, . . . , u(p−1), y, . . . , y(p−1)) with p ≥ n. The forced uncertain
harmonic oscillator is taken as elementary example to illustrate the theory.

1. INTRODUCTION

The paper deals with a nonlinear single-input single-
output nonlinear system of the form

ẋ = f(u, x) , y = h(u, x) (1)

in which x is the state living in an open bounded subset
X of Rn, u is the input taking values in an open bounded
subset U of R and y ∈ R is the measured output of the
system. With cX and cU , denoting the closure of X and
U respectively, the functions f and h are assumed to be
defined on an open set O containing cU× cX and on which
they are sufficiently many times differentiable.

Our problem is to give conditions under which solutions
of this system are related to those of a system in an
observability form (see (3) and (4) below).

To state the most known answers about this problem, we
define recursively functions ϕi : Rn × Ri+1 → R as

ϕ0(x, v0) = h(x, v0)

ϕi(x, v0, . . . , vi) =
∂ϕi−1

∂x
f(x, v0) +

i−2∑
k=0

∂ϕi−1

∂vk
vk+1 .

and we let :

Φi+1(x, v̌i) =


v̌i

. . . . . . . . . .

Φi+1(x, v̌i)

 =


v̌i

. . . . . . . .
ϕ0(x, v̌0)

...

ϕi(x, v̌i)

 (2)

with the notation v̌i =
(
v0 · · · vi

)T
.

We know (see [1, p. 13] for instance) that if, for some
integer p, Φp is an injective immersion from X×U ×Rp−1

to R2p, then, to each solution of (1), we can associate
a solution of the following system, called phase-variable
representation, a special kind of observability form :


ż0
...

żp−2

żp−1

 =


z1
...

zp−1

F (ǔp, žp−1)

 (3)

where y = z0, and with the notations

ži =
(
z0 · · · zi

)T
, ǔp−1 =

(
u, u(1), · · · , u(p−1)

)T
,

where u(i) is the ith time derivative of the input u.

In the case, studied in [2], where p = n, the state
dimension, and the vector field f in (1) is affine in u, the
observability form (3) can be replaced by :

ż0
...

żp−2

żp−1

 =


z1
...

zp−1

F (žp−1)

+


`0(ž0)

· · ·

`p−2(žp−2)

`p−1(žp−1)

 u (4)

where again y = z0, and with a triangular structure for the
control vector field given by the `i’s and no time derivative
of the input.

Here, we extend this last result in two directions. First we
allow p to be strictly larger than n. Second we allow f to
be non-affine in u but then at the price of having u̇ instead
of u in (4).

2. MAIN RESULT

Let Vi = U × Ri−1 and cVi = cU × Ri−1 be its closure.

Proposition 1. If, for some integer p, the function Φp is
injective on cX×cVp then there exist a C1 function T : R×
Rn → Rp, continuous functions F : R × Rp → R and
`i : R× Ri → R, i = 1, . . . , p, such that :

– for any Cp−1 function u : t 7→ u(t) taking values in U
on some open time interval Iu containing 0;
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– for any solution x(t) of system (1) under the effect of
the input u, takeing values in X on some open interval
Ix ⊂ Iu containing 0,

the function t ∈ Ix 7→ z(t) = T (u(t), x(t)) is solution of
ż0
...

żp−2

żp−1

 =


z1
...

zp−1

F (u, žp−1)

+


`0(u, ž0)

...

`p−2(u, žp−2)

`p−1(u, žp−1)

 u̇ (5)

Proposition 2. In the case where f is affine in u, i.e.

f(x, u) = a(x) + b(x)u

then under the same assumption as in the previous Propo-
sition, we get the existence of a C1 function T : Rn → Rp,
continuous functions F : Rp → R and `i : Ri → R,
i = 1, . . . , p, such that z(t) = T (x(t)) is solution of (4).

Remark 1.

(1) In the case where p = n and Φp is not only an injective
function from cX × cU × Rn−1 to R2n but also the
function x ∈ X 7→ Φn(x, 0) is an immersion, then the
result of Proposition 2 holds with a function T which
is a C1 diffeomorphism . In this way, we recover the
result of [2].

(2) We may require the functions `i and F in the normal
form (5) to be locally Lipschitz. For this it is sufficient
that, besides the injectivity of Φp on cX × cU , that
the function :

(u, x) ∈ cU × cV 7→

 u

Φi+1(x, (0, . . . , 0))


be an immersion. Indeed this implies that the function
Υ introduced in the proof below is Lipschitz on its
compact set of definition. In such a case, in the proof
below, instead of Tietze extension theorem, we use
Kirszbaum extension theorem.

(3) If the normal form is to be used to solve an observer
problem, we need to know the input time derivative.
This is usually possible in the case of feedback with
a backstepping design.

3. PROOFS

Here we prove Proposition 1. The proof of Proposition 2
follows by similar arguments.

We start by observing that injectivity of Φp and its relation
with Φp imply the existence of a (unique) function Ψp :
Φp(

cX × cVp)→ cX satisfying

x = Ψp(Φp(x, v̌p), v̌p) ∀ (x, v̌p) ∈ cX × cVp , (6)

Let us us add an integrator to system (1), namely

ẋ = f(x, u) , u̇ = v , y = h(x, u)

that is regarded as a system with input v, output y and
state ξ = col(u, x). By letting A(ξ) = col(f(x, u), 0),
B = col(0, 1), H(ξ) = h(x, u), the previous system can
be compactly rewritten as

ξ̇ =A(ξ) +Bv y = H(ξ)

The C1 function T : R × Rn → Rp claimed in the
proposition is

T (u, x) = Φp(x, (u, 0, . . . , 0)) =


H(ξ)

LA(ξ)H(ξ)

· · ·

Lp−1
A(ξ)H(ξ)

 . (7)

The variable z = T (u, x) is governed by the dynamics

ż0 = z1 + g0(ξ)v
...

żp−2 = zp−1 + gp−2(ξ)v

żp−1 = F̄ (ξ) + gp−1(ξ)v

where F̄ (ξ) = LpA(ξ)H(ξ) and gi(ξ) = LBL
i
A(ξ)H(ξ),

i = 0, . . . , p− 1.

Consider now the C1 function Γ : O → Rp+1 defined as

Γ(u, x) =

 u

T (u, x)


By assumption, its restriction to cU × cX is injective. This
set being compact, Γ is a topological emmbedding and so
there exists a continuous function Υ : Γ(cU × cX)→ cU ×
cX that associates to each z = col(u, z) ∈ Γ(cU × cX) the
value

Υ(z) =

 u

Ψp(z, (u, 0, . . . , 0))

 .

and which satisfies

Υ(Γ(ξ)) = ξ ∀ ξ ∈ cU × cX .

Now let ḡi : Γ(cU × cX) → R, i = 1, . . . , p, be the
continuous function defined as

ḡi(z) = gi(Υ(z)) .

It turns out that, for all k = 0, . . . , p − 1, and each pair
za = (u, za) and zb = (u, zb) in Γ(cU × cX) satisfying
zai = zbi for all i = 0, . . . , k, we have ḡk(za) = ḡk(zb). This
fact follows by an elementary adaptation of the arguments
in [2] we write here just for the case k = 0.

Let u∗ ∈ U , xa∗ ∈ X and xb∗ ∈ X be such that ξa∗ = (u∗, x
a
∗)

and ξb∗ = (u∗, x
b
∗) satisfy H(ξa∗ ) = H(ξb∗) or equivalently

za∗0 = zb∗0, with za∗ = Γ(ξa∗ ) and zb∗ = Γ(ξb∗). Assume we
have

ḡ0(u∗, z
a
∗ ) 6= ḡ0(u∗, z

b
∗)

i.e.
LBH(ξa∗ ) = g0(ξa∗ ) 6= g0(ξb∗) = LBH(ξb∗) .

By continuity there exist neighborhoodsN a andN b ⊂ U×
X of ξa0 and ξb0 such that

LBH(ξa) 6= LBH(ξb) ∀ (ξa, ξb) ∈ N a ×N b .

Consider now the system

ẋa = f(xa, u) , ẋb = f(xb, u) , u̇ = v1

with output ỹ = h(xa, u)− h(xb, u) and input v1 taken as
the feedback

v1 =
LA(ξa)H(ξa)− LA(ξb)H(ξb)

LBH(ξa)− LB(ξb)
.
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It is motivated by the fact that it gives ˙̃y = 0. And it is
as many times differentiable as needed as long as (ξa, ξb)
is in N a ×N b.

Let (ξa(t), ξb(t)) be its solution with initial value (ξa∗ , ξ
b
∗).

There exists a T > 0 such that for all t ∈ [0, T )
(ξa(t), ξb(t)) ∈ N a × N b and, as a consequence, the
components xa(t) and xb(t) are in cX and u(t) is in cU
for all t ∈ [0, T ).

Furthermore, since t 7→ ỹ(t) is constant on [0, T ) and
ỹ(0) = 0, it is zero on the whole interval. So the same
holds for its p − 1 first derivatives. By definition of the
function Φ, we get Φp(x

a(t), ǔp−1(t)) = Φp(x
b(t), ǔp−1(t))

and thus

xa(t) = Ψp(Φp(x
a(t), v(t)), v(t))

= Ψp(Φp(x
b(t), v(t)), v(t))

= xb(t) ∀t ∈ [0, T ) .

This yields in particular xa∗ = xb∗. So we have ξa∗ = ξb∗
and thus g1(ξa∗ ) = g1(ξb∗). This is a contradiction. In this
way, we have shown that, for each pair za = (u, za) and
zb = (u, zb) in Γ(U × X) satisfying za0 = zb0 , we have
ḡ0(za) = ḡ0(zb). Since the function g1 is continuous on
cU × cX, the same holds on Γ(cU × cX).

Similar arguments, can be used by induction for k =
1, . . . , p, with an appropriate choice of the input derivative
u(k+1).

From the above, it follows that the functions ḡi(z) presents
a triangular structure in the zi components of z. Namely,
since Γ(cU × cX) is a subset of R × Rp, we can introduce
its projection Γi on R× Ri, i.e.

Γi =
{

(u, ži) ∈ R× Ri :

∃(zi+1, . . . , zp−1) ∈ Rp−i−1 :

(u, (ži, (zi+1, . . . , zp−1))) ∈ Γ(cU × cX)
}
.

This allows us to define the function `i : Γi → R as :

`i(u, ži) = ḡi(z) ∀z ∈ Γ(cU × cX) .

As ḡi, it is continuous. Let also F : Γ(cU × cX)→ R be

F (u, žp−1) = F̄ (Υ(z)) ,

it is also continuous. With these functions we do have
obtained the form (5).

However, up to now, the functions `i and F are defined
only on Γi and Γ(cU × cX), respectively where they are
continuous. To extend their definition to R × Rp, we use
the fact that Γi and Γ(cU × cX) are compact subsets of
R × Ri and R × Rp respectively as images by continuous
functions of compact sets. By applying Tietze extension
Theorem, we know that the definitions `i ad F can be
extended to the corresponding full spaces.

4. EXAMPLE

We consider the uncertain harmonic oscillator described
in the state space by

ẋ1 = x2 , ẋ2 = x3x1 + u , ẋ3 = 0 (8)

with y = x1 and living in the open bounded subset of R3

X = {(x1, x2, x3) ∈ R× R× R : c1 < x21 + x22 < c2 ,

−c3 < x3 < −c4}
with c1 < c2 and c3 > c4 positive numbers, forced by the
input u ∈ U , U an open bounded subset of R. It turns
out that the injectivity condition of Proposition 2 is not
fulfilled with p = n = 3 but it is fulfilled with p = 4. As a
matter of fact, by defining ϕ0(x) = x1,

ϕ1(x) = x2 , ϕ2(x, v0) = x1x3 + v0 , ϕ3(x, v1) = x2x3 + v1

and
Φ4(x, v0, v1) = col (ϕ0, ϕ1, ϕ2, ϕ3) ,

it turns out that the function Ψ4 : Φ4(cX × cV ) → cX
defined as

Ψ4 =


ϕ0

ϕ1

(ϕ2 − v0)ϕ0 + (ϕ3 − v1)ϕ1

ϕ2
0 + ϕ2

1


is such that

x = Ψ4(Φ4(x, v), v)

for any (x, v) ∈ cX × cV , with v = (v0, v1), and cV =
cU × R. The smooth function T : R3 → R4 claimed in
Proposition 2 is

T (x) = col(x1 , x2 , x1x3 , x2x3)

with the normal form (4) expressed as:
ż1

ż2

ż3

ż4

 =


z2

z3

z4

z1z3

+


0

1

0
z1z3 + z2z4

max{c1, z21 + z22}

u (9)

which is defined on R4 (and not only on Φ4(cX × {0})).

5. CONCLUSIONS

In this note we have studied the existence of observability
normal forms (5) for nonlinear systems of the form (1).
The main result is detailed in Proposition 1 and relies
upon the existence of a left inverse of the function Φp(·)
defined in (2) for p ≥ n. The result generalizes known
results for systems that are affine in the input and fulfilling
the assumption of the paper with p = n.
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