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Abstract: The paper deals with the problem of output regulation for the class of multi-
input multi-output square nonlinear systems satisfying a minimum-phase assumption and a
“positivity” condition on the high-frequency gain matrix. By following a design paradigm
proposed in [12] for single-input single-output nonlinear systems, it is shown how an internal
model-based controller can be obtained, whose dimension depends on the number of regulated
outputs and on the dimension of the exosystem. Thanks to a scalability property of the regulator
structure highlighted in [10], it is shown how a “pre-processing” internal model can be shifted
from input to output, yielding in this way a “post-processing” internal model. This makes it
possible to run a high-gain asymptotic analysis that bypasses the need of finding a normal form,
as it would normally be the case.

1. INTRODUCTION

The problem of output regulation for nonlinear systems,
beginning with the work [7], has been addressed by several
authors and a rather satisfactory corpus of results has
been developed, the majority of which address the problem
in question for single-input single-output systems (see for
instance [12], [5], [9], [14] and references therein). For
the class of systems in question, (robust) regulation is
typically achieved by means of a controller consisting
of an internal model that provides a control input, to
the purpose of forcing the existence of a “steady-state
(invariant) manifold” on which the regulated variable
vanishes, complemented by a stabilizer that makes the
manifold in question attractive for the cascade of two such
subsystems.

The extension of the theory of output regulation to multi-
input multi-output nonlinear systems, in spite of a number
of encouraging contributions ([6]), is still at a very pre-
liminary state of development. There are several reasons
why the extension of the theory of output regulation to
such systems is a difficult and challenging research task.
These can be (in good part) understood by looking at
how the corresponding design problem has been success-
fully handled for multi-variable linear systems. In fact,
for linear systems having m inputs and p outputs (and
necessarily m ≥ p, because otherwise robust regulation
is not possible), the problem is solved (see [1], [4], [3])
by means of a controller embedding an internal model
(consisting of p copies of the largest cyclic component
of the exosystem) directly fed by the regulated output,
cascaded with stabilizer which, driven by the state of the
internal model as well as by any other variable available
for measurement, produces the appropriate control input.

Now, this control structure cannot be easily “copied” to a
multi-variable nonlinear setting, for a number of reasons.

One reason is that, while if m = p the computation of a
“generator” of the required steady-state input is in princi-
ple possible under reasonably weak assumptions (by means
of a suitable enhanced version of the “zero-dynamics algo-
rithm”, see [8, pages 293-311]), if m > p it is not clear
at all how to handle the inherent redundancy in a robust
fashion if one insists in following the paradigm that has
proven to be successful in the case of single-input single-
output systems. In fact, if the system has m > p controls,
only p of which are needed for regulation purposes, but
all of which might be necessary for stabilization, it is not
immediately clear how to identify a “robust selection” of
the inputs that are to be driven by the internal model.

Second, it is not clear yet how to handle the case in which
the system has q extra outputs, that are not expected to
be regulated but might be necessary for stabilization (via
possibly dynamic feedback). In fact, these extra outputs
may not vanish in steady-state and hence they have to
be somewhat “filtered” out, a problem that un-necessarily
complicates the design.

A third reason is that, regardless of how the internal
model is designed and where it is embedded, the resulting
(augmented) system is a multi-variable nonlinear system
that has to be robustly stabilized to a desired invariant
manifold. The theory of robust stabilization of multi-
variable nonlinear systems by (dynamic) output feedback
is far from being complete and only special (though
relevant) cases can be handled. Robust stabilization via
state-feedback is in general possible for multi-variable
systems that are strictly minimum phase, as shown in [11],
but this is not sufficient to handle the problem of output
regulation, where only outputs are available (and robust
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stability is sought). Ifm = p, if the system possesses a well-
defined relative degree and a normal form, if the system is
minimum-phase and if the so-called “high-frequency gain
matrix” satisfies a suitable “positivity condition”, robust
stabilization can be achieved (as show in the sequel), but
the stabilization procedure is rendered more complicated
by the presence of the internal model (in the sequel, we
will show how this problem can be efficiently handled).

Thus, in summary, the design of robust regulators for
multi-variable nonlinear systems is still a largely open
domain of research, that deserves appropriate attention.
The purpose of the present paper is to offer a contribution
in this direction, by showing how the design paradigm
suggested in [12], for a single-input single-output system,
to handle the case of a nonlinear exosystem in a very
general setting, can be extended to the special class of
multi-variable systems having m = p, a well-defined
relative, a “high-frequency gain matrix” that satisfies
a suitable “positivity condition” and an asymptotically
stable zero dynamics.

The contribution of the paper is a novel procedure that
makes it possible to overcome the need of finding, as it
was done in [12], a normal form when the controlled plant
is driven by the internal model. Using a design procedure
recently suggested in [10]) and a “scalability” property
of the (nonlinear) internal model designed in [12], it is
shown how the internal model can be shifted from control
input to controlled output, in which case the problem of
determining the normal form trivially disappears. In this
way, the paper proposes a design procedure for solving the
problem of output regulation for a relevant special class
of multi-variable nonlinear systems, in the presence of a
rather general class of nonlinear exosystems.

2. PROBLEM FORMULATION

The paper deals with nonlinear multivariable square sys-
tems of the form

ẇ = s(w)

ż = f(w, z, ξ)

ξ̇i,j = ξi,j+1 j = 1, . . . ri − 1

ξ̇i,ri = qi(w, z, ξ) +Bi(w, z, ξ)u i = 1, . . . ,m

(1)

in which w ∈ Rnw , z ∈ Rn, ri ≥ 1, i = 1, . . . ,m, the vector
ξ ∈ Rr1+...+rm is defined as

ξ =


ξ1
...

ξm

 with ξi =


ξi,1

...

ξi,ri

 ,

for i = 1, . . . ,m, and u ∈ Rm. The vectors u and

e = col(ξ1,1, ξ2,1, · · · , ξm,1)

are respectively the control input and the regulated
error, while the variable w models exogenous inputs
that might represent reference/disturbance signals to be
tracked/rejected or uncertain parameters. All the func-
tions on the right-hand side of (1) are smooth. As cus-
tomary in output regulation, the exogenous input w(t) is
solution of an autonomous system ẇ = s(w), referred to as

the exosystem, evolving on a compact set W ⊂ Rnw that is
assumed to be invariant. The initial conditions (z(0), ξ(0))
of system (1) are assumed to range in a fixed arbitrary
compact set Z × Ξ ⊂ Rn × Rr1+...+rm .

For this class of systems we are interested to solve the
problem of semiglobal output regulation, that is to find an
error feedback controller of the form

η̇ = ϕ(η, e) η ∈ Rν

u = ϑ(η, e)
(2)

and a compact set C ⊂ Rν , such that for any

(w(0), z(0), ξ(0), η(0)) ∈W × Z × Ξ× C
the resulting trajectories of the closed-loop system (1)-(2)
are bounded and limt→∞ e(t) = 0 uniformly in the initial
conditions.

The previous problem will be solved under a certain
number of assumptions. First, we assume that system (1)
has a well-defined vector relative degree {r1, · · · , rm} and
a “high-frequency gain matrix” (see [8])

B(w, z, ξ) =


B1(w, z, ξ)

...

Bm(w, z, ξ)

 (3)

that satisfies the following “positivity” assumption.

Assumption 1. There exists a nonsingular matrix M ∈
Rm×m such that the following inequality holds

B(w, z, ξ)M +MT B(w, z, ξ)T ≥ I (4)

for all (w, z, ξ) ∈W × Rn × Rr1+...+rm .

Furthermore, we assume that the system is (strongly)
minimum-phase relative to the output e and input u. The
minimum-phaseness condition is specified as follows.

Assumption 2. There exists a smooth function π : W →
Rn such that the system

ẇ = s(w)

ż = f(w, z, ξ)
(5)

with state (w, z) and input ξ is input-to-state stable
relative to the compact set

A = {(w, z) ∈W × Rn : z = π(w)}
with a locally linear gain function, that is there exist
a class-KL function β(·, ·) and, for all dξ > 0, there
exists γ > 0 such that for all (w(0), z(0)) ∈ W × Z and
all bounded ξ(t) satisfying ‖ξ(·)‖∞ ≤ dξ, the resulting
trajectory (w(t), z(t)) of (5) fulfills 1

‖(w(t), z(t))‖A ≤ max{β(‖(w(0), z(0))‖A, t) , γ ‖ξ(·)‖∞}
for all t ≥ 0.

Note that this implies the set A is invariant for (5) if
ξ(t) ≡ 0.

In what follows, we address the problem of semiglobal
output regulation in the simpler case of unitary vector
relative degree, namely ri = 1 for i = 1, . . . ,m. The reason
why this can be done without loss of generality follows
1 Here and in the following we use the notation ‖x‖C = miny∈C ‖x−
y‖ to denote the distance of x ∈ Rn from a compact subset C of Rn.
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from classical results about output feedback stabilization
which, for the sake of completeness, are briefly summarized
here. Set

ζi = col(ξi,1, ξi,2, · · · , ξi,ri−1)

and consider the change of variable

ξi,ri 7→ θi = ξi,ri −Aiζi i = 1, . . .m

where Ai =
(
ai,1 . . . ai,ri−1

)
, with the coefficients ai,j

chosen in such a way that the roots of the polynomials
λri−1 + ai,ri−1λ

ri−2 + . . .+ ai,2λ+ ai,1 = 0 have negative
real parts, i = 1, . . . ,m. By letting ζ = col(ζ1, . . . , ζm) and
θ = col(θ1, . . . , θm), system (1) in the new coordinates
reads as

ẇ = s(w)

ż = f(w, z, ξ(ζ, θ))

ζ̇i = Hiζi +Niθi

θ̇i = qi(w, z, ξ(ζ, θ))−Ai(Hiζi+Niθi) +Bi(w, z, ξ(ζ, θ))u

i = 1, . . . ,m

(6)
where Hi are Hurwitz matrices and

ξ(ζ, θ) = Q1ζ +Q2θ

with

Q1 = blkdiag(

 Ir1−1

A1

 , . . . ,

 Irm−1

Am

)

Q2 = blkdiag(

 0(r1−1)×1

1

 , . . . ,

 0(rm−1)×1

1

)

By Assumption 1, system (6) has relative degree r =
{1, . . . , 1} with respect to the input u and output θ.
Furthermore, by Assumption 2 and by the fact that Hi

are Hurwitz, standard properties of a cascade of two ISS
systems lead to the conclusion that system

ẇ = s(w)

ż = f(w, z, ξ(ζ, θ))

ζ̇i = Hiζi +Niθi i = 1, . . . ,m ,

(7)

regarded as a system with state (w, z, ζ) and input θ,
is ISS relative to the set A × {0} with locally linear
asymptotic gain. As consequence, if the system (1), with
relative degree {r1, . . . , rm} with respect to the input u and
output e, satisfies the minimum-phase Assumption 2, also
system (6), with relative degree {1, . . . , 1} with respect to
the input u and output θ, satisfies a similar assumption,
with (w, z) replaced by (w, z, ζ), with ξ replaced by θ
and system (5) given by (7). Now let E ⊂ Rr1+...+rm−m
and Θ ⊂ Rm be compact subsets such that ξ(0) ∈ Ξ ⇒
ζ(0) ∈ E and θ(0) ∈ Θ, and suppose that it is possible to
design a controller of the form

η̇′ = ϕ′(η′, θ) η ∈ Rν
′

u = ϑ′(η′, θ)
(8)

able to stabilize the set A× {0} × {0} for the closed loop
system with a domain of attraction containing W×Z×E×
Θ and to secure that θ(t) converges to zero asymptotically
uniformly in the initial conditions. By the definition of
θ and by the fact that the Hi are Hurwitz matrices, it

follows that also the regulation error e converges to zero
uniformly in the initial conditions. Furthermore, classical
results about high-gain observers (see [2]) can be used to
show that an “error feedback” controller of the form (2)
can be obtained from a “partial state feedback” controller
of the form (8) with a domain of attraction that still
contains the compact sets of initial conditions. By above
arguments we thus conclude that there is no loss of
generality in considering the problem at hand under the
simplified assumption of unitary vector relative degree. For
this reason we concentrate on a system of the form

ẇ = s(w)

ż = f(w, z, e)

ė = q(w, z, e) +B(w, z, e)u

with regulated output e ∈ Rm, fulfilling “positivity”
Assumption 1, written with ξ replaced by e, and the
(strong) minimum-phase Assumption 2.

3. THE INTERNAL MODEL

Let (F,G) ∈ Rd×d × Rd×1, d > 0, be a controllable pair
and let F ∈ Rmd×md and G ∈ Rmd×md be defined as

F = blkdiag
(
F F · · · F

)
G = blkdiag

(
G G · · · G

)
.

Moreover, let Ψ : W → Rm be the smooth function defined
as

Ψ(w) = B(w, π(w), 0)−1q(w, π(w), 0) . (9)

Note that −Ψ(w), w ∈ W , represents a desired steady
state behavior for u.

The following proposition, instrumental to present the
regulator structure, follows by applying “component-wise”
the main result of [12].

Lemma 1. Let d ≥ 2nw + 2. There exist an ` > 0 and a
subset S ⊂ C of zero Lebesgue measure such that if the
eigenvalues of F are in {λ ∈ C : Reλ ≤ −`} \ S, then
there exist a differentiable function σ0 : W → Rmd and a
continuous bounded function γ0 : Rmd → Rm such that

∂σ0
∂w

s(w) = Fσ0(w) + GM−1Ψ(w)

M−1Ψ(w) = γ0(σ0(w))
(10)

for all w ∈W .

Note that the function γ0 solution of (10) is just guar-
anteed to be continuous and bounded. In this paper we
require stronger properties for γ0 specified in what follows.

Assumption 3. The function γ0 in (10) is at least C2, is
bounded, and ∇γ0 is bounded with bounded derivatives.

Remark. Boundedness of γ0(η), of its gradient ∇γ0(η) and
of the derivative of the latter for all η ∈ Rmd can be
assumed without loss of generality. As a matter of fact,
note that the only condition required to γ0(η) is that
the second equation of (10) is fulfilled for all η in the
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compact set {η ∈ Rmd : η = σ0(w), w ∈ W}. Standard
extension results can be then used to extend γ0(η) outside
the compact set by obtaining functions with the required
boundedness properties. /

We are now in the position of presenting the regulator
and the main result of the paper, as detailed in the next
proposition.

Proposition 1. Suppose Assumptions 1 and 2 hold. Let
F and G be chosen as above and suppose that the
function γ0(·) in the second equation of (10) is such that
Assumption 3 holds. Let C be an arbitrary compact set of
Rmd. Then there exists a κ? > 0 such that for all κ ≥ κ?

the controller

η̇ = Fη + G(γ0(η) + v)

u = −M(γ0(η) + v)

v = κe

(11)

solves the problem of semiglobal output regulation.

Remark. Practical implementation of the controller (11)
is clearly affected by the design of the function γ0(·)
fulfilling (10). Lemma 1 just guarantees existence of the
function without providing explicit expressions. Explicit
expressions of the function γ0(·) fulfilling (10) have been
presented in [13]. In that paper also approximate expres-
sions have been proposed that are suitable for practical
implementation of the controller. /

The controller (11) has exactly the same structure as the
controller considered in [12]. However, as explained in the
introduction, the arguments used in [12] to prove that
this controller solves the problem of output regulation
cannot be trivially extended to the present, multivariable,
setting. In fact, the arguments used in [12] required a
preliminary transformation whose purpose was to bring
the (augmented) system

ẇ = s(w)

ż = f(w, z, e)

ė = q(w, z, e)−B(w, z, e)M(γ0(η) + v)

η̇ = Fη + G(γ0(η) + v) ,

viewed as a system with input v and output e, in normal
form. In this way, exploiting the asymptotic properties of
the resulting (augmented) zero dynamics, it was possible
to show that convergence to the desired steady-state be-
havior is achieved if the gain parameter κ is sufficiently
large. If m > 1 the transformation suggested in [12] to
bring the system in question in normal form is not imme-
diately applicable, unless B(w, z, e) is a constant matrix.
Thus, in what follows, we propose a somewhat different
argument. This argument is based on the observation
that the controller (11), which as such is seen as a pre-
processor generating the required steady-state input driven
by a high-gain feedback from the regulated variable e,
can be equivalently seen as a post-processor described by
equations of the form

˙̃η = Fη̃ + G(γk(η̃) + e)

u = −κM(γk(η̃) + e)
(12)

if η̃ and γk are defined as

η̃ =
1

κ
η γκ(η̃) =

1

κ
γ0(κη̃) .

Remark. The two modes of control are compared in Fig.
1. Note that while swapping the internal model with the
(scalar) gain parameter κ is trivially possible in case the
internal model is a linear system, this is no longer an
obvious option if the latter is nonlinear, as it is in the
current setting. The “scalability” property used in the
previous transformation, and exploited in the proof below,
is yet another relevant feature of the “canonical” internal
model introduced in [12]. Such a scalability property, in
turn, strongly relies on the fact that the stabilizer v = κe
is a linear function. As it will be clear from the proof of
Proposition 1, the fact that the stabilizer can be taken
linear is a consequence of the linearity of the asymptotic
gain in the minimum-phase Assumption 2. /

yη

Pu e

uη

˙̃η = Fη̃ + G(γκ(η̃) + uη)
yη = −M(γκ(η̃) + uη)

η̇ = Fη + G(γ0(η) + uη)
yη = −M(γ0(η) + uη)

κ

Pu e

κ

yη

uη

Fig. 1. Pre- and Post-processing internal models.

4. PROOF OF THE MAIN RESULT

The proof of the result relies upon high-gain arguments
detailed in this section. We apply a first change of variables
of the form

e 7→ ē := e+ γκ(η̃)

that transforms the closed loop system as

ẇ = s(w)

ż = f(z, w, ē− γκ(η̃))

˙̃η = Fη̃ + Gē

˙̄e = q(w, z, ē− γκ(η̃)) +B(w, z, ē− γκ(η̃))u

+ ∇γκ(η̃) (Fη̃ + Gē)

u = −κMē

(13)

Furthermore, by bearing in mind that −Ψ(w), w ∈ W ,
represents a desired steady state behavior for u and that
u = −κMē, we further change the variable ē as

ē 7→ ς := ē− 1

κ
M−1Ψ(w)

putting system (13) into the form
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ẇ = s(w)

ż = f(w, z, ς +
1

κ
M−1Ψ(w)− γκ(η̃))

˙̃η = Fη̃ + G(ς +
1

κ
M−1Ψ(w))

ς̇ = q(w, z, ς +
1

κ
M−1Ψ(w)− γκ(η̃)) +B(·)u

+∇γκ(η̃) (Fη̃ + G(ς +
1

κ
M−1Ψ(w)))− 1

κ
M−1Ψ̇(w)

u = −κM(ς +
1

κ
M−1Ψ(w)))

(14)
where B(·) = B(w, z, ς + 1

κM
−1Ψ(w)− γκ(η̃)). Let σκ be

defined as

σκ(·) =
1

κ
σ0(·) .

By using (10) and the definition of γκ(·), it turns out that

∂σκ
∂w

s(w) = Fσκ(w) +
1

κ
GM−1Ψ(w)

1

κ
M−1Ψ(w) = γκ(σκ(w))

(15)

for all w ∈ W . From this we observe that the ς̇ dynamics
in (14) can be elaborated as

ς̇ = q(w, z, ς + γκ(σκ(w))− γκ(η̃))

−B(w, z, ς + γκ(σκ(w))− γκ(η̃))κM(ς + γκ(σκ(w)))

+∇γκ(η̃) (Fη̃ + G(ς + γκ(σκ(w))))

−∇γκ(σκ(w)) (Fσκ(w) + Gγκ(σκ(w)))

(16)
It turns out that the right-hand side of (16) is identically
zero if ς = 0 and η̃ = σκ(w) for all w ∈ W . Furthermore,
ς = 0 and η̃ = σκ(w) imply that e = 0. This fact suggests
a final change of variables of the form

η̃ 7→ x := η̃ − σκ(w)

that transforms system (14) into

ẇ = s(w)

ż = f(w, z, ρκ(w, x, ς))

ẋ = Fx+ Gς

ς̇ = −κB̄κ(w, z, x, ς)Mς + δ0κ(w, z, x, ς) + δ1κ(w, x, ς)

(17)
in which

ρκ(w, x, ς) = ς + γκ(σκ(w))− γκ(x+ σκ(w)))

B̄κ(w, z, x, ς) = B(w, z, ς + γκ(σκ(w))− γκ(x+ σκ(w)))

δ0κ(w, z, x, ς) = q(w, z, ς + γκ(σκ(w))− γκ(x+ σκ(w)))

− B̄κ(w, z, x, ς)Ψ(w)

δ1κ(w, x, ς) = (∇γκ(x+ σκ(w))−∇γκ(σκ(w))) ·
· (Fσκ(w) + Gγκ(σκ(w)))

+ ∇γκ(x+ σκ(w)) (Fx+ Gς)

Note that δ0κ(w, z, 0, 0) = 0 and δ1κ(w, 0, 0) = 0 for all
(w, z) ∈ A and for all κ.

We start analyzing the (w, z)-dynamics in system (17),
regarded as a system with state (w, z) and inputs (x, ς).
By definition of γκ(·) and σκ(·), and by the fact that γ0 is

locally Lipschitz and bounded, it follows that there exists
a positive L1, independent of κ, such that

‖γκ(x+σκ(w))−γκ(σκ(w))‖ = L1‖x‖ ∀w ∈W , x ∈ Rmd .
(18)

By this, the definition of ρκ(·) and by Assumption 2,
it follows that the system in question is Input-to-State
Stable relative to A with respect to the inputs (x, ς)
with linear asymptotic gains independent of κ. This fact
and the fact that F (and thus F) is a Hurwitz matrix,
immediately imply, by standard cascade arguments, that
also the system given by the first three equations in (17),
regarded as a system with state (w, z, x) and input ς,
is ISS with linear asymptotic gain independent of κ. In
particular, there exist a class-KL function β′(·, ·) and, for
any compact set X ⊂ Rmd and any dς > 0, a positive
γ′, such that for any (z(0), x(0)) ∈ Z × X, any bounded
ς(t) satisfying ‖ς(·)‖∞ ≤ dς , and any κ ≥ 1, the resulting
trajectory (z(t), x(t)) fulfills

‖(z(t), x(t))‖A×{0} ≤ max{β′(‖(z(0), x(0))‖A×{0}, t) ,
γ′ ‖ς(·)‖∞}

We now shift the attention on the ς dynamics of (17) by
finding bounds on the terms δ0κ(w, z, x, ς) and δ1κ(w, x, ς).
By adding and subtracting the terms q(w, π(w), 0) and
B(w, π(w), 0)Ψ(w) to the function δ0κ(·), the latter reads
as (bear in mind (9))

δ0κ(w, z, x, ς) = ∆q(w, z, x, ς) + ∆B(w, z, x, ς)

where

∆q(w, z, x, ς) =

q(w, z, ς + γκ(σκ(w))− γκ(x+ σκ(w)))− q(w, π(w), 0)

∆B(w, z, x, ς) = (B(w, z, ς+γκ(σκ(w))−
γκ(x+σκ(w))−B(w, π(w), 0))Ψ(w)

By using the fact that q(·) and B(·) are smooth and (18),
it turns out that there exists two positive numbers c1 and
c2, independent of κ, such that

‖δ0κ(w, z, x, ς)‖ ≤ c1‖(w, z, x)‖A×{0} + c2‖ς‖ .
As far as δ1κ(w, x, ς) is concerned, we observe that, by the
definition of γκ(·), σκ(·), by Assumption 3, and by the fact
that W is compact, there exist three positive numbers Li,
i = 2, 3, 4, such that 2

‖∇γκ(x+ σκ(w))‖ ≤ L2

‖∇γκ(x+ σκ(w))−∇γκ(σκ(w))‖ ≤ L3κ‖x‖

‖Fσκ(w) + Gγκ(σκ(w))‖ ≤ 1

κ
L4.

for all w ∈ W , x ∈ Rmd and κ ≥ 1. As a consequence,
there exist two positive numbers c3, c4 such that

‖δ1κ(w, x, ς)‖ ≤ c3‖x‖+ c4‖ς‖ .
These relations immediately lead to conclude that the last
dynamics in (17), regarded as a system with state ς and
inputs (w, z, x), can be rendered ISS with an arbitrarily
small linear gain, by taking κ sufficiently large. As a matter
of fact, consider the ISS-Lyapunov function V = ςT ς
whose derivative, by bearing in mind Assumption 1, can
be bounded as

2 Note that ∇γκ(η̃) = 1
κ
∂γ0
∂η̃0

∣∣
η̃0=κη̃

∂(κη̃)
∂η̃

= ∇γ0(κη̃).
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V̇ = 2ςT
(
−κB̄κ(w, z, x, ς)Mς + δ0κ(·) + δ1κ(·)

)
≤ −κ‖ς‖2 + 2‖ς‖‖δ0κ(·)‖+ 2‖ς‖‖δ1κ(·)‖
≤ −‖ς‖

(
(κ− c̄)‖ς‖ − 2c1‖(w, z, x)‖A×{0} − 2c3‖x‖

)
≤ −‖ς‖

(
(κ− c̄)‖ς‖ − 2(c1 + c3)‖(w, z, x)‖A×{0}

)
where δ0κ(·) = δ0κ(w, z, x, ς), δ1κ(·) = δ1κ(w, z, x, ς) and
c̄ = 2(c2 + c4). From this, elementary ISS-Lyapunov
arguments can be used to show that for any ε > 0 there
exists a κ? > 0 such that for all κ ≥ κ? the ς subsystem
is ISS (without restrictions on the initial state and on the
inputs) with linear asymptotic gain that can be bounded
by ε. From the previous fact, small gain arguments for
ISS systems with restrictions ([15]) can be used to show
that for any compact set Ē ⊂ Rm and any compact
set X ⊂ Rmd there exists a κ? > 0 such that for all
κ ≥ κ? the set A × {0} × {0} is asymptotically (locally
exponentially) stable for system (17) with a domain of
attraction containing Z×X× Ē. In order to complete the
proof of Proposition 1 we have to verify how compact sets
of initial conditions for the original variables (η̃, e) map
into compact sets of initial conditions for the transformed
variables (x, ς), by checking that “peaking” phenomena
in the parameter κ are prevented. In this respect, we
observe that, by the definition of ē, x, ς, σκ and γκ, for
any compact sets E ⊂ Rm and C ⊂ Rmd there exist
compact sets Ē ⊂ Rm and X ⊂ Rmd such that for all
(e(0), η̃(0)) ∈ E × C then (ς(0), x(0)) ∈ Ē × X for all
κ ≥ 1 and for all w ∈W .

5. CONCLUSIONS

The problem of output regulation for multi-input multi-
output square nonlinear systems of the form (1) has been
dealt with. Under a “positivity” condition on the high-
frequency matrix (Assumption 1) and a strong minimum-
phase assumption (Assumption 2), it has been shown that
a regulator of the form (11) solves the problem with a κ
sufficiently large provided that the function γ0(·), whose
main properties are highlighted in Lemma 1, fulfills the
technical conditions detailed in Assumption 3. It has been
shown how the proposed control structure can be equiv-
alently interpreted in terms of “pre-processing” internal
model, namely as a cascade of a stabilizer feeding an
internal model that directly acts on the control input (see
the scheme on the top of Figure 1), or “post-processing”
internal model, in which the internal model and the stabi-
lizer are swapped (see the scheme at the bottom of Figure
1). In other words, the operators from e to u are the same
in the two perspectives but their realizations are different.
The post-processing realization, in turn, has been shown
to be the right one in order to succeed in an high-gain
asymptotic analysis without transforming the system in
normal form, the latter being not easy to obtain in case
the high frequency matrix is state dependent.
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