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Abstract-For a Surface-Mounted Permanent Magnet Syn
chronous Motor (SM-PMSM) with currents and voltages as 
only measurements, we propose a robust nonlinear Luenberger 
observer estimating both the rotor position and the magnets 
flux. The robustness of the observer to the mechanical load 
connected to the machine shaft comes from an appropriate choice 
of coordinates, while its robustness to the physical parameters 
of the machine is studied and reveals satisfactory results. We 
prove that observers may be designed, i.e. the system is said to 
be observable, under the only assumption that the rotor speed 
is non-zero. Experimental results assess its validity. 

L INTRODUCTION 

Designing high-level control algorithms of SM-PMSM 
drives requires an accurate knowledge of the rotor position 
to control the torque delivered by the machine, This knowl
edge could of course be obtained through a position sensor. 
However, cost and volume reduction, wires removal and an 
increased reliability are all arguments in favor of position 
sensorless control of SM-PMSM drives, using an estimation 
of the rotor position, 

This estimation is in general obtained through observers, 
with voltages and stator currents as only available measure
ments, However, other parameters, namely the physical param
eters of the machine (stator resistance, inductance, magnets 
flux) and those related to the mechanical load connected to 
its shaft (inertia, friction, load torque), are also involved in 
the observer equations, Therefore, the challenge related to 
the rotor position estimation may come from its robustness 
to these data, which are often changing dynamically or are 
unknown. For instance, the stator windings resistance and the 
flux created by the rotor magnets are temperature dependant 
parameters and undergo changes due to the motor heating. 

A lot of publications deal with the position estimation for 
sensorless control of PMSM. Among them, a few are also 
interested in the impact of such parameter variations on the 
estimated position, and most of them design estimators robust 
to stator resistance uncertainties. For example, [ I] augments its 
reduced-order position observer for motion-sensorless salient 
PMSM drives with a stator resistance adaptive law to improve 
the robustness at low speed, while [2] develops an online 
identification method of the resistance to make the control of 
the PMSM robust to resistance uncertainties. The sensorless 

control algorithms, based on a back-EMF space-vector esti
mation in [3] and on an Extended Kalman Filter in [4], are 
also quite robust to the resistance variations. If [1] and [3] 
show good robustness to inductance variations too, magnets 
flux uncertainties cause relatively important position errors in 
[ I], while this magnets flux is assumed to be constant in [3]. 
Concerning [4] and the phase-locked-loop observer proposed 
in [5], they also show good robustness to two parameters 
(resistance and flux for [4], inductance and flux for [5]), but 
do not consider the robustness to the third physical parameter 
of the machine. As for [6], not only focusing on the robustness 
to the physical parameters of the machine, it formulates a 
linear model-based observer, independant from the parameters 
related to the mechanical load, robust both to the mechanical 
parameters and, via an adaptive velocity correction, to magnets 
flux uncertainties. 

In this paper, we propose an observer for estimating both 
the rotor position and the magnets flux of a SM-PMSM in a 
robust way, with currents and voltages as only measurements. 
On the one hand, the robustness to the mechanical load, i.e. 
to inertia, friction and load torque, is obtained via the use of 
a specific two-dimensional subsystem of the motor modeling 
[7], completely decoupled from the mechanical behavior of 
the motor. On the other hand, the robustness to the physical 
parameters of the machine, and more precisely the impact of 
inductance and stator resistance biases on the estimations, is 
studied and shows very little dependency. As for the robustness 
to the magnets flux variations, it is ensured by the combined 
position and flux estimation. Note that the magnets flux esti
mation has a double interest: if we are in this paper interested 
in its ability to make the position estimation robust to the 
flux uncertainties, it can also be used to estimate the rotor 
temperature variations, the flux created by the magnets varying 
linearly with the temperature variations of these magnets. 

The structure of this paper is as follows. Section II first 
presents the two-dimensional subsystem of the SM-PMSM, 
that we build a nonlinear Luenberger observer on in section 
IV, after having established the observability of the model in 
section III. Experimental and also some simulation results are 
then given in section V to assess the relevancy of the proposed 
observation scheme. 
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[I. SM-PMSM MODELING 

[n this section, we introduce the two-dimensional subsystem 
of the SM-PMSM model, that is used to design our nonlinear 
Luenberger observer. This subsystem has been proposed in [7]. 
An observer has been proposed and studied theoretically in [8], 
experimentally in [9] and more recently in [10] to design an 
observer of the rotor position with currents and voltages as 
only measurements. This two-dimensional subsystem has the 
advantage of being completely decoupled from the mechanical 
behavior of the motor, and thus to make possible the position 
estimation without necessary knowledge about inertia, friction 
or load torque. 

[n the following, the modeling of SM-PMSM in the station
nary frame is considered. By making use of the Faraday's and 
Ohm's Laws, this modeling may be expressed as: 

v = Ri + W, (1) 

where W is the total flux encompassed by the windings, i 
and v are respectively the currents within these windings and 
the voltages at the SM-PMSM terminals, and R is the stator 
windings resistance. In the ap'-frame, the quantities W, i and 
v are two dimensional vectors, and the total flux is given by 

. (cose) W = Lz + <[> sin e ' (2) 

where e is the rotor electrical phase, <[> is the flux created by 
the rotor magnets and L is the inductance. Let's also introduce 
w the electrical pulsation, which is the derivative of e. Note 
that the total flux W is constrained to evolve on a circle with 
radius <[> and time-varying center Li, since it satisfies the 
relation: 

(3) 

It is further assumed that the currents i are measured, while 
the control inputs v are known. This paper is devoted to the 
construction of an observer for the flux due to the magnets <[> 
and the electrical phase e, from the only knowledge of i and 
v, and under a coarse knowledge of the resistance R and the 
inductance L. The proposed scheme consists in first estimating 
the total flux W, and then extracting the flux created by the 
magnets and the electrical phase from it. Furthermore, the 
impact of the coarse knowledge of Rand L on the observation 
is studied and quantified. 

III. [NSTANTANEOUS OBSERVABTLITY 

Before building an observer based on the previously derived 
model, it is necessary to determine if it is possible to observe 
the quantities, collected in a state X, that we want to estimate. 
This is done through an observability study. Note that, since 
the system is nonlinear, we have to use here another method 
than the one consisting in studying the rank of the observabil
ity matrix. 

Let us remind that a system is said to be observable if two 
different states can be distinguished by looking at the output 
during a finite time interval. The instantaneous observability 
is a stronger property, thus implying the observability, which 

expresses the fact that this time interval can be as small as we 
want. 

In this section, we study the instantaneous observability of 
the state X = (WT <[»T, satisfying the following dynamic, 
notably given by ([): 

v - Ri 
0, 

(4) 

knowing the inputs (i, v) , approximate values of the physical 
parameters Rand L, and the measured output: 

2 2 Y=IW-Lil - <[> . (5) 

Thus, according to the constraint (3), Y is identically zero. 
Note that, in (4), we assume that the temperature dependant 

flux <[> varies slowly with time, which is realistic since the 
thermal time constant is very large compared to the electric 
one. We will also use the fact that this flux <[> is strictly 
positive. 

We choose to prove the instantaneous observability of the 
system (4,5) by showing it is differentially observable, a 
stronger property describing the possibility to express the 
state as a function of the output and a finite number of its 
derivatives. To that extent, let the vector Hk(X, t) be made of 
Y and its successive derivatives, along the system solution, up 
to order k - 1. Then, according to [11, Definition 4.2], the 
system is said to be differentially observable of order k if Hk 
is an injective mapping, that is to say that we can determine 
the state in a unique way from y and its derivatives. Let us 
now prove this differential observability. 

Proposition 1. The state X = (WT <[» T, where <[> > 0, 
satisfYing the dynamic (4), knowing the inputs (i, v, R, L) and 
the output (5), is differentially observable of order 3 if and 
only ifw # o. 

Prool We aim at showing that the function (X f--+ 
H3 (X, t)) is injective. Let us start by determining the derivative 
components of H3 = (y y yf: 

y IWI2 -2LWTi - <[>2 + gl 

Y 2WT ( -Ri + v -L?) + g2 

y 2WT ( -R? + v -L?) + g3 

where (gl, g2, g3) are functions of time, not depending on 
X, and whose expressions are of no use in the observability 
study. Let us now prove the injectivity of H3 by contradiction. 
For this purpose, let us assume that two different states 
X = (WT <[» T and X = (\jfT <D) T have generated the same 
output and derivatives. Then we have H3(X, t) -H3(X, t) = 0 
and thus: 

v -Ri -LC 
o 
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where (jT = ((\if - \I!)T <J)2 - <[>2) . Then, using (1) and (2), 
we get: ( (,fJ_W)T + <[>a1 _1) 2 2 

wa2 0 (j = 0, 
w2a1 - wa2 0 

with a1 = (eos e sin e) and a2 = (- sin e eos e), which is 
equivalent to 

with: 

sine 

weose 

-weose 
(6) 

where the denominator is non zero since X # x. Moreover, <[> 
being strictly positive, the numerators are also non zero. 

If the electrical pulsation w is zero, the system (6) has an 
infinite number of solution. On the other hand, if w # 0, it 
is easy to verify that the system (6) has no solution, even if 
w = o. 

Thus, if w # 0, the system H3(X, t) = H3(X, t) has no 
solution if X # X. This does mean that H3(X, t) = H3(X, t) =} 
X = X. Therefore, the function (X f--+ H3(X, t)) is injective and 
the state X is differentially observable of order 3 if w # o. On 
the contrary, if w = 0, the state is not differentially observable 
of order 3. Note that if w is zero but one of its derivatives is 
non zero, the system may still be differentially observable but 
with a higher order. 

• 

IV. NONLINEAR LUENBERGER OBSERVER 

Since, under the conditions explained in Proposition 1, 
the state X = (\I! T <[> ) T is observable instantaneously, it is 
possible to build an observer on it. Due to the nonlinearity 
of the model, this observer must be nonlinear. Therefore, in 
this section, we propose to implement a nonlinear Luenberger 
observer for X. 

A. Observer principle 

According to [12], this observer takes the following form: 

ij = ILj (Zj -y)+r/j, l::;j::;m 

X = T* (Zl, ... ,Zm,t) , 
(7) 

with m complex numbers with negative real parts ILj and state 
components Zj in C, with Tlj signals to be defined depending 
on currents and voltages, and with T* a function to determine. 

The goal is thus to estimate the state from the components 
Zj. To that extent, we need to express, in a first place, 
the components Zj in terms of the state, i.e. to determine 
the functions Tj so that Zj = Tj(X). If these functions, 
solutions of partial differential equations, may in the general 
case be difficult to determine, they have in our case a quite 
simple polynomial form. In a second place, since we look 

for T*, which conversely expresses the state in terms of 
the Zj components, we need to solve in X the equations 
Zj = Tj(X). However, due to unmodelled effects and/or 
noise, these equations may not have a solution. Therefore, we 
transform the problem into a minimization problem, so as to 
find, from several equations, the state that best matches. 

B. Observer design 

The design of the observer consists in choosing the 
eigenvalues ILj, the number m of these eignenvalues and 
the function T*. Concerning the choice of m, 2m must be 
larger than or equal to the size of X, that is to say 3, if 
the ILj have non zero imaginary parts. If the ILj are real, 
we must have m :;0. 3. As for the choice of the observer 
eigenvalues ILj, it depends on the system requirements, 
which are essentially rapid response and stable estimation. 
There is indeed a compromise to make between the speed 
of convergence and the damping of the estimated signal: the 
more negative the real parts of the eigenvalues, the faster 
the estimation convergence, but the noisier the estimation in 
return. Lastly, the determination of the function T* represents 
the main challenge of the design. As previously mentionned, 
this determination is done in two steps: determination of the 
functions Tj verifying Zj = Tj (X) and resolution of these 
equations in X, using a minimization problem. 

i) First step - Determination ofTj: 
The implementation of the theory developped in [12] and 

applied in a similar case in [7] leads to the following polyno
mial form of the functions Tj: 

(8) 

the two dimensional vector Cj being defined by (10). 

2) Second step - Resolution of the minimization problem: 
We have to solve the following minimization problem: 

m 
X = argmin L ITj(x) - zjl 2 

x j=l 
(9) 

However, this cost of dimension 3 is not easy to minimize, 
since Tj (X) - Zj is nonlinear in the three components of the 
state. Fortunately, we may simplify this with a change of 
variables to get a linear expression of dimension 2 instead, 
in which only the two �omponents of \I! app�r (12), the 
estimated magnets flux <[> being obtained from \I! (17). This 
modified minimization is thus easily performed online by 
inverting a 2x2 matrixj I6). Moreover, we also get an estimate 
of the position from \I! (18). 

C. implementation 

Concretely, the coefficients of the vector Cj, appearing in 
the expression of Tj (8), are extra state components of the 
observer with dynamics: 
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and the expressions of the Tlj, appearing in the differential 
equations verified by the Zj (7), are given by: 

(11) 

Concerning the simplification of the minimization problem, 
the change of variables leads to the following problem: 

(12) 

with: 
1 m Cj - - LRe(cl) 

m, 1=1 
1 m Zj - - LRe(zl). m, 1=1 

(13) 

In the case where the ILj are real, we notice that the solution 
of this problem can be obtained by solving a linear Least 
Squares problem: 

with: 

A= (c[) c;, (15) 

Besides, if the imaginary parts of the ILj are non zero, the 
solution becomes: 

(16) 

where A stands for the conjugate of A. Thus, in both cases, we 
have to invert a 2x2 matrix, which can easily be done online. 

From this estimation of the total flux, we finally deduce 
those of the magnets flux and of the position thanks to (2): 

( cose ) W - Li 
sin e = I W - Li I . 

Figure 1 summarizes the implementation procedure: 

(17) 

(18) 

Eq. 

(��.) W (17) ¢, e 
(18) 

Fig. I. Luenberger observer implementation 

V. RESULTS 

A. Experimental setup 

The performances of the previously designed nonlinear 
Luenberger observer are experimentally validated on a testbed 
made up of two PMSM, connected through a shaft. This setup 
is illustrated in Figure 2. These two drives have respective 
rated power of 1.7kW and 2.2kW, and similar rated speed of 
6000rpm. The former is intended to deliver a desired torque, 
while the latter is intended to control the rotation speed of the 
shaft. Table I presents the values of the first motor parameters, 
which will be used as benchmarks in this section. Also note 
that this machine is equipped with a fine position sensor used 
to compare the relevancy of the estimated position to its actual 
value. 

Fig. 2. Experimental setup 

TABLE I 
ELECTRIC MOTOR PARAMETERS 

stator resistance R 
magnets flux ij) 

0.25 S1 
0.0755 Wb 

inductance L 0.77 mH 

number of poles pairs p 3 

B. Experimental results 

The experimental results of the implementation of the 
nonlinear Luenberger observer on the previously mentioned 
SM-PMSM are given in Figure 3. Note that the chosen values 
of the resistance R and inductance L, which are inputs of the 
observer, are those of Table I. 

Figures 3(a), 3(c) and 3(e) present the results when the 
motor is operated at 1000rpm, while Figures 3(b), 3(d) and 
3(f) present the results at �OOOrpm. In Figures �a) to 3(d), 
the estimated magnets flux <I> and electrical phase e (blue solid 
lines) are respectively compared to the reference value of <I> 
(cf. Table I) and to the electrical phase, acquired with the fine 
position sensor, that we assume to be the exact phase (red 
dotted lines). 

We notice that the estimation of the magnet flux is satisfac
tory, since it converges towards the reference values, regardless 
of the motor speed. The estimation of the phase, almost fitting 
with the exact phase, is also pretty satisfactory. However, we 
remark the existence of a slight error between the estimated 
and exact phases, which is plotted in Figures 3( e) and 3(f). 
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Fig. 3 .  Experimental results of the proposed Luenberger observer 

If this phase estimation error remains almost constant with 
time at a given speed, it increases with the speed (about 3 
degrees at 1000rpm and 10.5 degrees at 3000rpm). In future 
work, we may make the hypothesis that this error comes from 
a phase difference due the presence of bad known filters in 
the data measurement process. The phase difference of a low 
pass filter, for instance, indeed increases with the speed. See 
[13] for more information about the impact of a such phase 
difference. 

C. Robustness to resistance and inductance uncertainties 

As previously mentionned, the stator resistance R and the 
inductance L are fed to our nonlinear Luenberger observer. 
However, we may not have a very good knowledge of these 
physical parameters. For instance, the resistance value is 
temperature dependant and varies thus with the motor heating. 
Therefore, in this part, we study the impact of a wrong 
knowledge of Rand L on the magnets flux <I> and electrical 
position e estimates. 

The study is carried out in simulation under MAT
LAB/SIMULINK. To perform it, a model of the PMSM, 

whose physical parameters are those of the Table I, is built. 
The observer is then applied to the currents and voltages 
signals generated by this model and to biased values of R 
and L, and we look at the steady-state values of the estimated 
position and magnets flux. 

Table II presents the impact of I % errors on the resistance 
or the inductance on the estimated magnets flux and position 
at an electrical speed of 9000rpm (i.e. a mechanical speed 
of 3000rpm) and a torque of INm, while Figure 4 shows the 
combined impact of the wrong knowledge of both parameters, 
at these s'!..me sp�ed and torque. We notice that the relative 
errors on <I> and e seem linear in the relative errors on Rand 
L, which is approximately true near the values of Rand L of 
our motor, but is not in the general case. Besides, the impact 
of the biases depends on the speed and torque. The impact of 
an error on R on the estimation of <I> and e decreases indeed 
proportionately with the motor speed, while the impacts of 
an error on R on the estimation of <I> and of an error on 
L on the estimation of e increases with the torque. As an 
example, Table III presents the same impacts than Table II, 
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but at another operating point (mechanical speed of 5000rpm, 
torque of 0.5Nm). 

TABLE IT 
IMPACT OF A WRONG KNOWLEDGE OF R AND L ON ¥ AND e 

9000rpm (ELEC. SPEED) - INm 

1% error on R 

...J 
c: o 
.... 

g Q) 
Q) > 

1% error on L 

�-1 a; 0:: 

Relative error on ¥ Relative error on e 

0.013% 

0.021% 

-10 0 10 Relative error on R [%] 

0.0040° 

0.022° 

(a) Relative error on the estimated magnets flux ¥ (%) 

...J 
c: o 
.... 

g Q) 
Q) > 
�-1 a; 0:: 

-10 0 10 Relative error on R [%] 

(b) Relative error on the estimated position e (0) 

Fig. 4. Impact of a wrong knowledge of Rand L on ¥ and e 

TABLE III 
IMPACT OF A WRONG KNOWLEDGE OF R AND L ON ¥ AND e 

15000rpm (ELEC. SPEED) - 0.5Nm 

Relative error on ¥ Relative error on e 

1% error on R 0.0040% 0.0024° 

1% error on L 0.021% 0.011° 

All these results show that, whatever the conditions are, our 
observer is very robust to a wrong knowledge of the physical 
parameters R and L, as long as we consider realistic errors 
on them, the errors on Rand L having very little impacts on 
the estimation of <D and e. For instance, a 50% error on the 
resistance, at INm and a mechanical speed of 3000rpm, leads 
to relative errors of about 0.2 degree on the estimated electrical 
position and about 0.65% on the estimated flux. Therefore, a 

coarse knowledge of the resistance and inductance is sufficient 
to feed the observer. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed a nonlinear Luenberger observer 
to estimate the position and the flux of SM-PMSM from the 
only knowledge of the currents and voltages and under a 
coarse knowledge of the inductance and stator resistance. The 
observer is indeed robust to a wrong knowledge of these two 
parameters, and also of the magnets flux, the third parameter 
of the motor, since we estimate it. The implementation of 
this observer on the testbed provides good results, except for 
a slight error, constant with time at a given speed, between 
the estimated and exact positions. Therefore, future work will 
consist in improving the position estimation computed by the 
observer by adding a velocity estimator to it. In fact, the phase 
difference being function of the velocity, a velocity estimation 
would allow us to estimate the phase difference and then the 
position with no phase difference. 
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