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Abstract—For a surface-mount Permanent Magnet Syn-
chronous Motor (SM-PMSM) with currents and voltages as
only measurements, we propose an observer estimating the
rotor electrical phase. It comes from an appropriate choice
of coordinates and exploits convexity. We prove its global
convergence under the only assumption that the rotor does not
stop. Experimental results assess the validity of the proposed
observer.

I. INTRODUCTION

A. The context

The problem of estimating the mechanical state compo-

nents, i.e. rotor position and speed, for a SM-PMSM from the

measured electrical variables has a very long history [8], rich

in various and efficient methods. There are off course several

technical reasons to go for sensorless control of SM-PMSM:

cost reduction, wires removal and reliability improvement.

No matter what technique is considered, from a control

designer point of view, it always comes down to feed an

estimate of the rotor position to a state feedback, in charge

of controlling the torque delivered by the machine. It is

now well established that to design such a feedback, it

is easier to work with a two-phase model expressed in a

frame rotating with the motor. The so called dq model, that

is central to the well-known field-oriented control scheme,

see [7] and [8]. However, it turns out that, for the state

estimation problem, a model expressed in a fixed frame is

more appropriate. This remark was made in [5]. Actually, in

that paper it was shown that, by immersing the standard four

dimensional model leaving in R3×S
1 into a five dimensional

one leaving in R
5, it is possible to describe the SM-PMSM

dynamics with a triangular structure. In particular this makes

possible the reconstruction of the rotor position from a simple

two-dimensional subsystem, completely decoupled from the

mechanical behavior of the motor. To be more specific,

position and speed estimation may be carried out without

any precise of the mechanical load connected to the machine

shaft. There is no need for inertia, friction or load torque

knowledge. This is quite an appealing characteristics, since

this is usually rather complicated to accurately access these

data, subject to changes when the motor is in operation.

This two-dimensional subsystem has been used as a design

tool for the gradient observer proposed and studied experi-

mentally in [3], [6] and theoretically in [4]. Unfortunately
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the study of the corresponding error system, closely related

to an averaged approximation of the periodically forced van

der Pol oscillator, is very difficult.

In the following, we suggest to modify this gradient

observer by taking advantage of convexity. Convexity also

has a long history in estimation and particularly in adaptive

control. See [1] for instance. But in trying to exploit it, we

end up facing a difficulty very similar in spirit to the one

presented on [2, page 418]. As in that paper we round it by

a conditional correction term.

This paper is organized as follows. The end of Section I

briefly considers the dynamical system considered hereafter,

and the different assumptions made throughout the paper.

Section II is devoted to the design of an observer for a dy-

namical system, exhibiting an elementary drift and a convex

output function. Under some mild assumptions, the proposed

observer is proved to yield global asymptotic convergence of

the estimated state to the actual state of the system. In Section

III, the problem of estimating the flux of a SM-PMSM is

addressed. It is first showed that a SM-PMSM falls under

the scope of systems with elementary drift and output convex

function. We then present the reconstruction of the position

and the speed from the observed flux, and briefly sketch

the implementation of a sensorless field-oriented control

scheme. Some experimental results assess the relevancy of

the proposed observation scheme. We wrap up the paper

with some concluding remarks and future work directions

in Section IV.

B. System modeling and problem statement

In the following, the equations of SM-PMSM cast in the

so-called stationary frame are considered. By making use of

the Faraday’s and Joule’s Laws, the phase-to-neutral voltages

at the SM-PMSM terminals read

v= Ri+ Ψ̇ (1)

This allows us to relate the voltages v at the SM-PMSM

terminals to the derivative of the total flux Ψ encompassed

by the windings, and to the currents i within them, while R

stands for the stator windings resistance. The quantities v, i

as well as Ψ are two dimensional vectors, and, for the case

of SM-PMSM, the total flux may be expressed as

Ψ = Li+Φ

(
cosθ
sinθ

)
(2)

where θ is the rotor electrical phase, Φ is the flux created

by the magnets and L is the inductance. Note that the flux
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Ψ is constrained to evolve on a circle with radius Φ and

time-varying center Li, for it is solution of:

|Ψ−Li|2−Φ2 = 0 (3)

It is further assumed that the currents i are measured, while

the control inputs v are known. This paper is devoted to

the determination of the electrical phase θ from the only

knowledge of v and i, and under a perfect knowledge of the

SM-PMSM physical parameters, namely R, Φ, and L. The

proposed scheme consists in first estimating the flux and then

extracting the electrical phase from it.

II. AN OBSERVER FOR A SYSTEM WITH AN ELEMENTARY

DRIFT AND A CONVEX OUTPUT FUNCTION

In this section, we consider a broader class of dynamical

systems, for which we shall build a globally convergent

nonlinear state observer. The system (1) previously described

obviously falls under the scope of this study. Consider a

dynamical system with state x of dimension two, whose

dynamics simply reads:

ẋ= u(t), (4)

with x in R
2, u : R+ → R

2 a continuous function whose

value u(t) is known at each time t. Assume further that u

as well as its integral are bounded on R+. Denote by χ(t) a
particular solution of the previous dynamical system, which,

according to the different assumptions, is necessarily defined

and bounded on R+.

We restrict our study to the case where the initial condi-

tions χ(0) and the exogenous input u are such that χ runs

along a closed curve which, for any given t, is described as

:

h(x, t) = 0, (5)

where h : R2×R → R is a C2 function. In the context of

observer design h is considered as an output function whose

measurement is zero for all time. Namely, as in [5], we

rewrite (5) as :

y(t) = h(x, t),

with y identically zero.

Further assumptions on the function h are also required:

A1 For any positive scalar c, one may find H0(c), H1(c)
and H2(c) such that :

∀(x, t) : |x| ≤ c, t ≥ 0 , |h(x, t)| ≤ H0(c) ,
∣∣∣∣
∂h

∂x
(x, t)

∣∣∣∣≤ H1(c) ,
∣∣∣∣
∂h

∂ t
(x, t)

∣∣∣∣≤ H2(c) .

A2 There exists a strictly positive scalar ∆ such that the

Hessian matrix of h satisfies :

∂ 2h

∂x2
(x, t)≥ 2∆I, ∀x, t ≥ 0.

A3 For any solution of (4), and any unit vector e in R
2,

there exists a sequence tn going to infinity as n grows

indefinitely such that:

∂h

∂x
(χ(tn), tn) . e> 0.

Remark 1:

1. A1 simply requires that the functions x 7→ h(x, t) and

x 7→
∂h

∂x
(x, t) have to be bounded, uniformly in t, on any

compact subset of R2.

2. According to A2, the function x 7→ h(x, t) is convex and

coercive uniformly in t.

3. If A3 is fulfilled, this means that the gradient of h

evaluated along any solution χ of (4) indefinitely points in

all the directions of R2. This may be viewed a persistency

of excitation condition, which will be central in the study

of the error system generated by our observer.

Since we know u(t) and h(·, t) in the system (4), with

output y = h(x, t), we propose the following as an observer

for the state x

˙̂x = u(t) − µ
∂h

∂x
(x̂, t) max{0, h(x̂, t)} (6)

where µ is an arbitrary strictly positive real number. It is

an algorithm of a gradient type but with a correction term

which is “on” only when h(x̂, t) is non negative.

Proposition 1: Under assumptions A1 to A3, the observer

(6) makes the zero error set Z =
{
(x, x̂) ∈ R

2 : x= x̂
}

globally and asymptotically stable.

Proof: Let us start by noting that, with the help of A2,

Taylor’s Formula with integral remainder gives, for any t > 0

and (x1,x2) in R
2:

h(x2, t) = h(x1, t)+
∂h

∂x
(x1, t)[x2− x1]

+
1

2
[x2− x1]

⊤

[∫ 1

0
(1− s)

∂ 2h

∂x2
(x2+ s(x2− x1), t)ds

]
[x2− x1]

≥ h(x1, t)+
∂h

∂x
(x1, t)[x2− x1]+∆ |x1− x2|

2
.

Provided h(x1, t)≥ h(x2, t), using the previous relation leads
to the following remarkable inequality, valid at any time t >

0:

∂h

∂x
(x1, t) [x1− x2]≥∆ |x1− x2|

2
, ∀(x1,x2) : h(x1, t)≥ h(x2, t)

(7)

Now, the error dynamics is obtained by combining (4) and

(6), and simply reads:

˙̃x =−µ
∂h

∂x
(x̂, t) max{0, h(x̂, t)} . (8)

Let us consider V =
1

2
x̃⊤x̃ as a Lyapunov function candidate

and compute its time derivative:

V̇ =−µ max{0, h(x̂, t)} .
∂h

∂x
(x̂, t) (x̂− x) .

Making use of (7) allows us to conclude that:

V̇ ≤−2µ ∆ max{0, h(x̂, t)} .V .

It follows that the zero error set Z is globally stable.

Moreover, the evaluation of V at time t which we denote

V (t) satisfies:

V (t)≤ exp

(
−2µ∆

∫ t

0
max{0,h(x̂(s),s)}ds

)
V (0).
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The attractivity of the set Z follows when the following

integral diverges :

I(t) =

∫ t

0
max{0,h(x̂(s),s)}ds.

Let us establish this attractivity by contradiction. We assume

that V does not converge to 0. This implies that I converges.

Since Z is globally stable, and the function t 7→ χ(t) is

bounded, the function t 7→ x̂(t) is bounded too. There exists

a positive scalar c, such that |x̂(t)| ≤ c, and according to A1
and (8):

| ˙̃x| ≤ µH1(c)max{0,h(x̂, t)} .

This yields for any 0≤ t1 ≤ t2,

|x̃(t2)− x̃(t1)| ≤
∫ t2

t1

| ˙̃x(s)|ds≤ µH1(c) |I(t2)− I(t1)| .

The convergence of I(t) implies that, for any sequence tn
tending to infinity, I(tn) is a Cauchy sequence, and so is

x̃(tn) as a consequence of the previous inequality. It follows
that x̃(tn) admits a limit, denoted x̃⋆, which is different from
zero by assumption. Rewrite x̃ as :

x̃(t) = x̃⋆+ ε1(t),

with ε1 : R+ → R
2 tending to zero.

Moreover, according to A1 and the fact that ˙̂x is bounded,

the function t 7→ h(x̂, t) is uniformly continuous, and the same
conclusion applies to the function t 7→max{0,h(x̂(t), t)}. For
I converges, Barbalat’s Lemma may be invoked to come up

with:

lim
t→∞

max{0,h(x̂, t}= 0.

This allows us to define the vanishing function ε2 :R+ →R
2

as:

ε2(t) =max{0,h(x̂(t), t} ( ≥ h(x̂(t), t) ) .

From the definition of x̃ and ε1, this translates into:

ε2(t)≥ h(χ(t)+ x̃⋆+ ε1(t), t).

Let us now make use of (7) together with the fact that

h(χ(t), t) = 0 to come up with:

ε2(t) ≥
∂h

∂x
(χ(t), t)(x̃⋆+ ε1(t))+∆|x̃⋆+ ε1(t)|

2

Since h satisfies A1, t 7→ χ(t) is bounded, x̃⋆ is non-zero and
ε1 and ε2 tend to zero. There exists a time T > 0 such that:

0≥
∂h

∂x
(χ(t), t) x̃⋆+∆|x̃⋆|

2 ∀t ≥ T.

This is in contradiction with A3. So the set Z must be

globally attractive.

III. SENSORLESS CONTROL OF SM-PMSM

A. Assumptions validation

Let us move back to the system described through (1), (2)

and (3). It is straightforward to check that it falls under the

scope of the context exposed in section III. Let first denote

u= v−Ri, x= Ψ, and finally

h(x, t) = |x−Li(t)|2−Φ2
.

The assumptions A1 through A3 still have to be verified:

A1 This condition is fulfilled as soon as the currents i are

bounded uniformly in t, which is necessary the case

from a practical point of view, to avoid deteriorating

the SM-PMSM. Actually, we have

|h(x, t)| ≤ |x|2+L2|i|2+Φ2
,

and ∣∣∣∣
∂h

∂x
(x, t)

∣∣∣∣≤ 2|x|+2L|i|

while the boundedness of
∂h

∂ t
is directly linked to the

existence of physical bounds on the voltages v and the

currents i, see (1).

A2 This assumption is readily satisfied, since

∂ 2h

∂x2
(x, t) = 2∆I,

with ∆ = 1.

A3 In the case of SM-PMSM, the particular solution χ(t)
of (1) turns out to be given by (2) for some positive

function θ : R+ → R. When h is defined according to

(3), its gradient evaluated along this specific solution χ
simply reads:

∂h

∂x
(χ(t), t) = 2Φ

(
cosθ sinθ

)
.

Any unit vector e in R
2 with argument ϕ is expressed

as e=
(
cosϕ sinϕ

)
, and

∂h

∂x
(χ(t), t) . e= 2Φcos(θ −ϕ) .

It follows that Assumption A3 is satisfied as soon as the

rotor electrical phase does not freeze at some constant

value ϕ and so, in particular, when the motor rotates

indefinitely in the same direction, i.e. clockwise or anti-

clockwise.

B. Flux and position observer

In view of the elements previously reported, we claim that

the following observer :

˙̂
Ψ =−Ri+v−µ . max

{
0, |Ψ̂−Li|2−Φ2

}
.

(
Ψ̂−Li

)
(9)

allows to asymptotically observe the total flux in the SM-

PMSM. The knowledge of the electrical phase is critical to

its accurate control, and this information has to be retrieved

from the observed flux. For Ψ̂ does not necessary lie on the
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z1ω̂

Fig. 1. Electrical pulsation estimation scheme from the phase estimate.

circle with radius Φ and center Li in presence of measure-

ments uncertainties and during transients, the estimation of θ
from Ψ̂ may be cast into the following optimization problem:

θ̂ = arg min
0≤θ<2π

∣∣∣∣Ψ̂−Li−Φ

(
cosθ
sinθ

)∣∣∣∣
2

By canceling the gradient of this criterion, and checking the

positivity of the Hessian, one may trivially conclude that the

electrical phase θ may be estimated through :

(
cos θ̂

sin θ̂

)
=

Ψ̂−Li

|Ψ̂−Li|
. (10)

(10) is off course valid provided its denominator is non-zero.

Practically speaking, if this situation occurs, or if

∣∣∣Ψ̂−Li
∣∣∣

gets close to zero, one may freeze the reconstruction of θ as

long as it takes for

∣∣∣Ψ̂−Li
∣∣∣ to move away from zero.

Because Ψ̂(t)−Li(t)−Φ

(
cosθ(t)
sinθ(t)

)
converges to 0 as t

goes to infinity, θ̂(t)−θ(t) goes also to 0.

C. Speed estimation

To ensure a proper torque control in the flux weakening

area [7], an estimate of the speed is highly desirable. Speed

information may also be of core interest for speed tracking,

though this is not the case in this paper. As in [3], a PLL-type

speed estimator, as represented in Figure 1, is used. It may be

regarded as a simple PI control loop tracking the input signal

θ̂ . Provided the PI gains Kp and Ki are properly set, and that
the incoming phase estimate lies within the resulting closed

loop bandwidth, one may estimate the electric pulsation ω̂
by doing.

D. Sensorless torque control scheme

All these elements allow to design a complete position

sensorless torque control scheme, as depicted in Figure 2,

not requiring any dedicated sensor provided the motor does

not stop, see the validation of A3 for SM-PMSM. It is quite

common to deal with a SM-PMSM featuring 3 electrical

phases, usually named a, b and c. Applying the so-called

Concordia Transform, to the vectors of currents and voltages,

enables to derive the vector i and v of (1). From the estimated

position θ̂ , a rotation of angle −θ , i.e. the Park Transform, is
applied to i to get the direct and quadrature currents, id and

iq respectively. A hierarchical control scheme is then used,

as commonly acknowledged [7]:

• The torque to be delivered by the SM-PMSM, i.e. τ⋆, is
translated into direct and quadrature currents references

i⋆d and i
⋆
q.

• Two local PI controllers are in charge of making the

quantities id and iq (obtained from θ̂ ) track the refer-

ences i⋆d and i
⋆
q respectively.

• The outputs of these PI controllers are the direct and

quadrature voltages, cast into voltages in the stationary

frame by an inverse Park Transform, relying on the

estimated electrical phase.

Position

and Speed

Observer

PMSM

Motor

Torque

Controller

PI

PI

i-Park

Transform

Voltage

Source

Inverter

Park

Transform

va vb vc

ia

ib

ic

ω̂

θ̂

i
⋆
d

i
⋆
q

τ
⋆

iqid

vd

vq

θ̂

Fig. 2. Sensorless control scheme for SM-PMSM.

E. Experimental setup

This section presents the test bench used to experimentally

validate the performances of the previously designed control

scheme. The testbed is composed of two PMSM, connected

through a shaft featuring a torque sensor delivering accurate

torque measurements. This setup is illustrated in Figure 3.

These two drives have respective rated power of 1.7kW

Fig. 3. Experimental setup.

and 2.2kW, and similar rated speed of 6000rpm. They are

intended to deliver a desired torque for the first one, and

control the rotary speed of the shaft for the latter. The

control strategy previously discussed is implemented in a
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Fig. 4. Experimental results of the proposed sensorless FOC scheme, at 1000 rpm.

voltage inverter connected to the first machine. Also note

that this machine is equipped with a fine position sensor

used to compare the relevancy of the estimated position and

speed to the actually values of these quantities in operation.

For information, the machine to be controlled exhibits the

physical parameters reported in Table I.

F. Experimental results

The experimental results are those given in Figure 4, for

the previously mentioned SM-PMSM operated at 1000rpm,

and required to deliver i⋆d =−2A and i⋆q= 2A. At t = 0, while

the motor is rotating, both the control and the observation

stator resistance R [Ω] 0.25
windings inductance L [mH] 0.77

magnets flux Φ [Wb] 0.075
number of poles pairs p [-] 3

TABLE I

MAIN PHYSICAL PARAMETERS OF THE TESTED SM-PMSM.

schemes are turned on.

Note that no direct measurements of the actual flux are at

our disposal. The best to be done is to compare the estimated

position and speed to the measured values. Still, with the
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Figure 4(a), one may check that Ψ̂−Li does asymptotically
reach the neighborhood of a circle of radius Φ (whose value

is given in Table I). As expected, a fairly accurate estimation

θ̂ of the electrical phase θ is provided. This is first illustrated

in Figure 4(e) that allows to come up to the conclusion that

it takes less than an electrical revolution of the estimation

error to become fewer than a couple of degrees. Figure 4(c)

gives an even more informative aspect of the observation

error between 0◦ and −5◦. Looking at Figure 4(c), there are
clearly two components in the observation error:

• A low frequency term, around 10Hz, which is solely

caused by aliasing in the acquisition of the actual

position. This components is not caused by the proposed

control scheme.

• A high frequency component, with smaller magnitude,

and which has to be attributed to the observation

scheme. We shall comment further on this in the con-

cluding section. Simply note that this frequency exactly

equals the second harmonics with pulsation 2ω .

We deliberately set the adaptation gain µ of the observer

to a rather small value. As a consequence, the convergence

of the estimated position to the value of the actual one

could be significantly sped up. The relative slowness of the

observer causes a poor behavior of the control loop during

the transients, see Figure 4(d). Especially between t = 0

and t = 0.02s, the actual currents are far from their desired

values. This points is definitely set once the flux observer

has reached the circle, after t = 0.2s. Finally, the estimation

of the speed is reliable in Figure 4(b). However, for the

same reasons as earlier, there is a high frequency term with

pulsation 2ω , and it may be seen that the measurement of the

electrical pulsation ω by numerical differentiation of θ does

feature the same low frequency component at 10Hz. This

definitely shows that this components is only linked to the

acquisition system, and has nothing to do with the estimation

scheme.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, we proposed a nonlinear observer for the

problem of observing the flux of SM-PMSM. It turns out

to be a slight modification of a previous scheme, proposed

in [4] and experimentally validated in [3]. In view of the

complexity of the proof reported [4], the modified gradient

search exposed in this paper enjoys some remarkable proper-

ties, on top of which the global and asymptotic convergence

of the estimated flux to the actual one, provided the motor

does not stop. As a consequence, this theoretically guarantees

an accurate determination of both the electrical phase and

pulsation of SM-PMSM, in order to design a sensorless FOC

controller.

B. Future Work

As briefly addressed in the experimental results section,

when the motor is rotating at electrical pulsation ω , the

observation error, see Figures 4(c) and 4(b), exhibits a

component with pulsation 2ω . This is actually due to a slight
saliency on the rotor side. Saliency changes the previous

expression of the flux (2) into:

Ψ = Li+L1

(
cos2θ sin2θ
sin2θ −cos2θ

)
i+Φ

(
cosθ
sinθ

)
,

and adds a second harmonic to the flux. If neglected in the

observation, it does induce an observation error at 2ω . From

a practical point of view, vibrations, together with undesir-

able noise, will occur, which is of course unacceptable. In

view of this, future work consists in addressing the sensorless

control, using the same framework, i.e. a flux observer in

the same coordinates, but for salient-pole PMSM. This point

is more challenging, as it requires to derive an implicit

expression, similar to (3), but for the flux such as expressed

in this section. Furthermore, it may be required to modify

the assumptions A1 to A3, as the relationship to derive for

the flux might not fulfill them, as stated so far.

REFERENCES

[1] A. Fradkov, Speed gradient scheme and its applications in adaptive
control problem. Automation and Remote Control. Vol. 40, pp. 1333-
1342, 1979

[2] A. Fradkov, R. Ortega, G. Bastin, Semi-adaptive control of convexly
parameterized systems with applications to temperature regulation
of chemical reactors. International Journal of Adaptive Control and
Signal Processing. Vol. 15, 4, Jpp. 415-426, June 2001

[3] J. Lee, J. Hong, K. Nam, R. Ortega, L.Praly, A. Astolfi, Sensorless
control of surface-mount permanent magnet synchronous motors based
on a nonlinear observer. IEEE Transactions on Power Electronics, Vol.
25 , N. 2, February 2010 , Pages 290 - 297

[4] R. Ortega, L. Praly, A. Astolfi, J. Lee, K. Nam, Estimation of
Rotor Position and Speed of Permanent Magnet Synchronous Motors
With Guaranteed Stability. IEEE Transactions on Control Systems
Technology, Issue: 99, 1 - 13, 2010

[5] F. Poulain, L. Praly, R. Ortega. An Observer for Permanent Magnet
Synchronous Motors with Currents and Voltages as only Measure-
ments. Proceedings of the 47th IEEE Conference on Decision and
Control, December 2008
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