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Abstract— A weak version of the small-gain theorem is

derived. Connections with the classical linear and nonlin-

ear small-gain conditions are established. The necessity

of the weak small-gain conditions is discussed.

I. INTRODUCTION

Small-gain theorems have been widely used to es-

tablish stability properties of nonlinear interconnected

systems. It is possible to provide several versions

of the small-gain theorem, depending of the input-

output property that is used to quantify the input-output

behavior of the interconnected subsystems. Possible

selections include the L2-gain, yielding an L2 small-

gain theorem [11], [10] (which generalizes to the

nonlinear setting the linear H∞ small-gain theorem

[4]), and the property of Input-to-State Stability (ISS),

which leads to the derivation of nonlinear small-gain

theorems, such as the one in [7]. Other versions of

the small-gain theorem have been developed in [5],

[1], [6], in which interconnections of possibly non-ISS

subsystems have been considered. Finally, small-gain

theorems for large scale interconnected systems and

for systems interconnected by means of communication

channels have recently been developed in [3].

The purpose of this paper is to develop a weak

version of the small-gain theorem, in the spirit of the

Matrosov theorem derived in [2]. As a matter of fact,

the paper partly extends, to a class of interconnected

systems, the results therein which provide a weak

version of Matrosov theorem. Note, however, that the

results in [2] are somewhat stronger, since under some

stability assumptions it is possible to establish strong

convergence claims.
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We consider a nonlinear system described by equa-

tions of the form

ẋ = f(x) , (1)

where x(t) ∈ R
n is the state of the system, and f is

locally Lipschitz continuous. In addition, without loss

of generality, we assume that x = 0 is an equilibrium

of the system.

The ISS small-gain theorem, see [7], allows to es-

tablish asymptotic stability of the equilibrium of the

system (1) when there exist

• two C1 functions Vi : R
n → R+ such that V1 + V2

is positive definite and radially unbounded,

• two class K∞ functions, αi : R+ → R+ and two

continuous functions βi : R+ → R+,

satisfying, along the solutions of system (1), the differ-

ential inequalities

V̇1 ≤ −α1(V1) + β1(V2),

V̇2 ≤ −α2(V2) + β2(V1),
(2)

and the small-gain condition

β2 ◦ α−1
1 ◦ β1 ◦ α−1

2 < Id, (3)

where Id is the identity map.

The problem that we address in this paper is to

study what happens relaxing the inequalities (2). This

relaxation can be carried out in various directions.

In particular, we are interested in the case in which

the argument of the functions αi and βj are not the

functions Vk, but some other functions hi : R
n → R+

so that, along the solutions of system (1), we have

V̇1 ≤ −α1(h1(x)) + β1(h2(x)),

V̇2 ≤ −α2(h2(x)) + β2(h1(x)).
(4)

Remark 1: Under additional assumptions on the

functions Vi the inequalities (4) may be exploited to

establish boundedness of all solutions of the system

(1).

Remark 2: In the considered set up, borrowing from

LaSalle invariance principle, and from the classical

small-gain theorem, one may be tempted to conjecture
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that the ω-limit set of the solutions of the system (1)

is contained in the largest invariant set such that

0 = −α1(h1(x)) + β1(h2(x)),

0 = −α2(h2(x)) + β2(h1(x)).
(5)

This, unfortunately, is not true in general.

Remark 3: The small-gain condition (3) and the

inequalities (2) imply that the equations

0 = −α1(V1(x)) + β1(V2(x)),

0 = −α2(V2(x)) + β2(V1(x)),

have the unique solution x = 0, i.e. that thesystem (1)

has a unique equilibrium. This is, however, not implied

by the inequalities (5).

Remark 4: The differential inequalities in [2] are a

special case of the inequalities (4), obtained by setting

β1 to zero. This selection yields a triangular structure of

the inequalities which, exploiting properties of asymp-

totically autonomous vector fields [8], dictates very

specific properties for the ω-limit set of the solutions of

the underlying system. In particular the ω-limit set is a

chain recurrent set. This property is however lost in the

current scenario, since there is no driving inequality.

The paper is organized as follows. In Section II a

preliminary lemma, which generalizes the result in [2]

and introduces a new small-gain condition, is stated.

Section III discusses the new small-gain condition,

establishes connections with the classical, nonlinear,

small-gain condition, and clarifies the necessity of the

new small-gain property. Section IV provides the main

result of the paper, namely a weak version of the small-

gain theorem. Finally, Section V contains a simple

example and Section VI contains a few concluding

remarks and observations.

II. A PRELIMINARY RESULT

This section contains a preliminary result which is

instrumental to establish the weak small-gain theorem

formulated in Section IV.

Lemma 1: Let i = 1, 2. Let ai : R+ → [−ā, ā],
be bounded absolutely continuous functions and bi :
R+ → [0, b̄] be bounded, piecewise continuous, func-

tions.

Assume there exist continuous positive definite func-

tions αi : R+ → R+, continuous functions βi : R+ →
R+, which are zero at zero, and a real number ε in

]0, 1[ such that the following hold.

1) The differential inequalities

ȧ1(t) ≤ −α1(b1(t)) + β1(b2(t)),

ȧ2(t) ≤ −α2(b2(t)) + β2(b1(t))
(6)

hold for almost all t in R+.

2) The small-gain like condition

β1(b2)β2(b1) ≤ (1− ε)α2(b2)α1(b1) (7)

holds for all (b1, b2) in [0, b̄]2.

Then

lim inf
t→+∞

[b1(t) + b2(t)] = 0. (8)

III. THE SMALL-GAIN CONDITION (7)

In this section we study the condition (7) and we

relate this condition with the classical nonlinear small-

gain condition.

To start with, we observe that, if there exist real

numbers ψ1 and ψ2 such that

ψ1 = sup
b1∈]0,b̄]

β2(b1)

α1(b1)
, ψ2 = sup

b2∈]0,b̄]

β1(b2)

α2(b2)
,

then the condition

ψ1 ψ2 ≤ (1− ε) (9)

implies condition (7). The converse statement is also

true. Namely, if condition (7) holds then the numbers

ψ1 and ψ2 exist and satisfy condition (9).

This property justifies the terminology ”linear small-

gain condition” for condition (7).

We are now ready to relate the condition (7) to

the classical nonlinear small-gain condition. To this

end, and to simplify the discussion, assume that the

functions βi and αi are defined on R+ and that the

functions αi are invertible. Assume also that b̄, in (7),

is infinity. Then, from the theory of interconnected non-

linear systems we would expect that stability properties

be related to the nonlinear small-gain condition (4),

namely

β2 ◦ α−1
1 ◦ β1 ◦ α−1

2 (s) < s ∀s > 0. (10)

Lemma 2: Condition (7) implies, but it is not im-

plied by, condition (10).

While necessity of the small-gain condition (7) is

difficult to establish, we now show that violation of the

non-strict inequality yields the existence of functions

ai and bi such that the convergence result of Lemma 1

does not hold.
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Lemma 3: Assume there exist strictly positive real

numbers b1a, b2b and b2c such that

β1(b2b)β2(b1a)

α2(b2b)α1(b1a)
> 1

β1(b2c)β2(b1a)

α2(b2c)α1(b1a)
< 1. (11)

Then there exist functions ai and bi such that the

convergence result in Lemma 1 does not hold.

To illustrate the result in Lemma 3 consider the

differential inequalities

ȧ1 ≤ −a1 + b22, ȧ2 ≤ −b2 + γ
√
a1,

with γ > 0. Note that the linear small-gain condition

is violated, while the nonlinear one holds for γ < 1.

Let k be in ]0, 1[ and

b2(t) =
√

1− k cos(t).

Then

a1(t) = 1− k√
2
cos

(

t− π

4

)

is a solution of the first inequality and

lim inf
t→+∞

[b1(t) + b2(t)] > 0.

To conclude, it remains to establish that we can find

a bounded absolutely continuous function a2 which

satisfies the second differential inequality. To this end

note that, for all k in ]0, 1[,

ρ(k) =

∫ 2π

0

√

1− k√
2
cos

(

t− π

4

)

dt

∫ 2π

0

√

1− k cos(t)dt

≥ 1.

As a result, for all γ in ]1/ρ(k), 1[,

lim
t→+∞

∫ t

0

[

−b2(s) + γ
√

a1(s)
]

ds = +∞,

which implies that a function a2 does exist1.

IV. A WEAK SMALL-GAIN THEOREM

In this section we state the main result of the paper,

namely a weak version of the small-gain theorem.

Theorem 1: Consider the nonlinear, time-invariant,

system (1). Suppose there exist continuous functions

βi : R+ → R+, which are zero at zero, C1 functions

Vi : Rn → R, continuous functions hi : Rn → R+,

continuous positive definite functions αi : R+ → R+,

1For example a2(t) = sat

(

∫

t

0

[

−b2(s) + γ
√

a1(s)
]

ds
)

.

such that the conditions (4) hold. Suppose in addition

that we have

β1(b2)β2(b1) ≤ (1− ε)α1(b1)α2(b2), (12)

for some ǫ > 0 and all non-negative b1 and b2.

Then, for any bounded solutions of system (1),

lim inf
t→+∞

[h1(x(t)) + h2(x(t))] = 0. (13)

Moreover, if the largest invariant set N contained in

the set

{x ∈ Rn : h1(x) = h2(x) = 0},
is stable, then

lim
t→+∞

h1(x(t)) + h2(x(t)) = 0. (14)

Remark 5: As explained in Section III it is not

possible, in general, to obtain stronger convergence

results, for example asymptotic convergence to zero of

h1(x(t)) + h2(x(t)), nor to relax the linear small-gain

condition (12).

Remark 6: The last point in Theorem 1 rephrases a

well-known fact, see for instance [9, Lemma I.4].

V. AN ILLUSTRATIVE EXAMPLE

In this section we illustrate some of the ideas and

results established by means of a simple example.

Consider the system

ẋ1 = (x21+ + x23)x2,

ẋ2 = −(x21+ + x23)x1

ẋ3 = −x33 + x
9/2
1+ .

(15)

Note that all solutions are bounded, since

˙︷ ︷

x21 + x22 = 0,

and the x3 sub-system is ISS. Therefore, for any

solution, there exists a constant c such that x21+x
2
2 and

x23 are bounded by c2. In what follows we assume that

these bounds hold. To apply the small-gain theorem let

V1(x) = x2 , V2(x) =
k

2
x23 .

Then, Young’s inequality yields

V̇1 = −(x21+ + x23)x1+ + (x21+ + x23) |x1−|
≤ −x31+ + c x23

V̇2 = −k x43 + k x3 x
9/2
1+

≤ −
(

k − k4ℓ8

4

)

x43 +
3

4

(

k

ℓ2

)3/4

x61+,
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which motivate the choice

h1(x) = x31+, h2(x) = x23,

α1(s) = s, β1(s) = cs ,

α2(s) =
(

k − k4ℓ2

4

)

s2, β2(s) =
3
4

(

k√
ℓ

)3/4
s2 .

The linear small-gain condition does not hold for

such functions, although the nonlinear one does hold

selecting

k <

(

16

27c6

)1/4

, ℓ =

(

27c6)
)1/8

k
.

Note that the conclusion of Theorem 1 would be, in

this case,

lim inf
t→+∞

[

x1+(t)
3 + x3(t)

2
]

= 0 . (16)

As we shall prove this is not the case if x3(0) is non-

zero. To this end, note that, at any equilibrium, x1+ =
x3 = 0. Moreover, since we have a locally Lipschitz

system, any solution not starting from an equilibrium

cannot reach an equilibrium in finite time. As a result,

along any solution x21+ + x23 remains strictly positive.

Consider now a solution with x3(0) 6= 0. The above

remark motivates the introduction of the function

τ(t) =

∫ t

0
(x1+(t)

2 + x3(t)
2) dt

where x1+(t)
2 + x3(t) is obtained from the solution.

The function is strictly increasing and, since

|x3(t)| ≥ exp

(

−
∫ t

0
x3(s)

2ds

)

|x3(0)| ,

the integral
∫ t
0 x3(s)

2ds and therefore τ(t) go to +∞
as t goes to ∞. Therefore there exists a time t0 such

that τ(t) is larger than 2π for all t ≥ t0.

Using τ , we can express the (x1, x2)-components of

the solution as

x1(t) + ix2(t) = exp(−iτ(t))x1(0) + ix2(0)

where i2 = −1. It follows that, in any interval

[τ(s), τ(s) + 2π], there exists an interval of length π
2

in which x1 and therefore x1+ is larger than or equal

to

√
2[x1(0)2+x2(0)2]

4 . As a result, for all t ≥ t0,

∫ τ(t)

0
exp(τ(s))x1+(τ(s))

9/2ds

≥
K(t)
∑

k=0

exp(2kπ) π
2

(√
2[x1(0)2+x2(0)2]

4

)9/2

,

≥ π
2
exp(2(K(t)+1)π)−1

exp(2π)−1

(√
2[x1(0)2+x2(0)2]

4

)9/2

,

where K(t) is the largest integer k satisfying τ(t) ≥
2kπ.

Consider now the identity

−x33 + x
9/2
1+ = −(x21+ + x23)x3 + (x21+x3 + x

9/2
1+ )

and the bound

x21+x3 + x
9/2
1+

x21+ + x23
≥ x

9/2
1+

c2
,

yielding

exp(τ(t))x3(t) − x3(0)

≥ 1

c2

∫ τ(t)

0
exp(τ(s))x1+(τ(s))

9/2ds

≥ 1
c2

π
2
exp(2(K(t)+1)π)−1

exp(2π)−1

(√
2[x1(0)2+x2(0)2]

4

)9/2

Finally, exploiting the conditions

lim
t→+∞

τ(t) = +∞ ,

1 ≤ exp([2(K(t) + 1)π]− τ(t)) ≤ exp(2π) ,

we conclude

lim inf
t→+∞

x3(t) ≥ 1
c2

π
2

1
exp(2π)−1

[√
2[x1(0)2+x2(0)2]

4

]9/2

> 0,

which shows that condition (16) does not hold.

Figure 1 displays the state histories of system

(15) for the initial condition (x1(0), x2(0), x3(0)) =
(1, 0, 1). Note that the x3 component of the state is

bounded away from zero.

VI. CONCLUSION

A weak version of the small-gain theorem has been

established. This result relies upon the properties of

a set of differential inequalities together with a linear

small-gain condition. The paper provides a non-trivial

generalization of the results in [2] in which cascaded

systems have been studied.
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