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In most cases when we manipulate data coming from the real world, we

implement in one way or another what I call an observer.

Depending on the field of applications, observers take different names –

stochastic filters, soft sensors, state re-constructors, data assimilation, in-

verse problems, . . .

They are answers to the same problem: given measurements (= partial

information), try to estimate internal variables of a dynamical system.

In this talk, I briefly go over the general (well known) design rules and give

more details on one particular observer.
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§ 1/8Approaching the observation problem
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§1.1 Approaching the observation problem

Observation Problem:

Estimate hidden variable, denoted z, from observed/measured variable, de-

noted y.

The “object” solving this problem is called an observer.

Measurements make what is called the a posteriori information. It evolves

with time as data accumulate.

-

Measurement

A posteriori information
Observer -

Estimated hidden variable

(1st thought version of) observer structure
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§1.2 Example Estimating a length using a pendulum

Galileo Galilei wrote in 1638 in a book entitled Dialogues concerning two

new sciences,

I can easily know the length of a . . . string whose upper end is attached . . . .

For, if I attach to the lower end of this string a rather heavy weight and give

it a to-and-fro motion, and if a friend counts the number of its oscillations,

while I, during the same time interval, count the number of oscillations of

a pendulum which is exactly one cubit in length, then, knowing the number

of oscillations which each pendulum makes in the given time interval, one

can determine the string length. . . . by taking the squares of these two

numbers of oscillations . . . I shall divide the larger square by the smaller one

and . . . the length of the long string is the ratio in cubits.
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§1.3 Example Estimating a length using a pendulum

Observation Problem:

Estimate a string length from the measurement of the angular position of

a pendulum.

⇒ We need to know a “relation” between the hidden variable, the string

length, and the measured variable, the angular position.
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Rule 1 for observer design

We need a priori information,

= a “relation” between

hidden and measured variables.
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§1.4 Approaching the observation Problem

Usually this “relation” is not instantaneous and not explicit.

It can be given by dynamic and sensor models.

[time 7→ measured variable (time)]

= Function
(
[time 7→ (hidden variable (time), others (time)]

)
.

This makes what is called the a priori information.
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§1.5 Approaching the observation Problem

-

Measurement

A posteriori information
Observer -

Estimated hidden variable

?

Dynamic and sensor models A priori information

(a more elaborate version of) observer structure
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§1.6 Example Length estimation following Galileo’s comment

For Galileo, the “relation” is:

z = ` =
g

4π2
∗
(
oscillation number

observation time

)2

It is sufficient to produce the oscillation number and the observation time

from the measured pendulum angle.
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§1.6 Example Length estimation following Galileo’s comment

For Galileo, the “relation” is:

z = ` =
g

4π2
∗
(
oscillation number

observation time

)2

It is sufficient to produce the oscillation number and the observation time

from the measured pendulum angle.

initial_angle

initial_angle/2-initial_angle/2
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§1.6 Example Length estimation following Galileo’s comment

For Galileo, the “relation” is:

z = ` =
g

4π2
∗
(
oscillation number

observation time

)2

It is sufficient to produce the oscillation number and the observation time

from the measured pendulum angle.

Do nothing
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§1.6 Example Length estimation following Galileo’s comment

For Galileo, the “relation” is:

z = ` =
g

4π2
∗
(
oscillation number

observation time

)2

It is sufficient to produce the oscillation number and the observation time

from the measured pendulum angle.

if measured_angle < - initial_angle/2
pass = 0

end
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§1.6 Example Length estimation following Galileo’s comment

For Galileo, the “relation” is:

z = ` =
g

4π2
∗
(
oscillation number

observation time

)2

It is sufficient to produce the oscillation number and the observation time

from the measured pendulum angle.

if measured_angle > initial_angle/2
if pass == 0

pass = 1
oscillation_number = oscillation_number+1
observation_time(oscillation_number) = t

end
end
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§1.7 Example Length estimation following Galileo’s comment

This leads to the observer :
dot t = 1

if measured_angle > initial_angle/2

if pass == 0

pass = 1

oscillation_number = oscillation_number+1

observation_time(oscillation_number) = t

end

elseif measured_angle < - initial_angle/2

pass = 0

end



←Observer dynamic

z=(oscillation_number/observation time)^2 * g/4*pi^2 ← Observer output

This observer is an hybrid dynamical system with continuous variable t, in-
teger variable oscillation_number, and logical variable pass which make a
state and with an output which is a function of this state.
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§1.8 Example Length estimation following Galileo’s comment
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The estimation depends on the pendulum energy. Bad!
Problem: Galileo’s “relation” is an approximation for small energy.

The correct relation involves Jacobi elliptic functions.
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§1.9 Example Length estimation using conservation of energy

According to Lagrange, another “relation” is given by conservation of en-

ergy :

E =
`

2
ω2 + g (1− cos(θ)) = constant

where g is the known local gravity acceleration, θ is the angular position

and ω is the angular velocity.

When the function s ∈ (t − T, t] 7→ (θ(s), ω(s)) is known, the two con-

stant numbers E and ` can be obtained by solving the minimization problem:

min
E,`

J(E, `, t) = min
E,`

∫ t

t−T

[
E −

`

2
ω(s)2 − g (1− cos(θ(s)))

]2

ds
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§1.10 Example Length estimation using conservation of energy

The function s ∈ (t − T, t] 7→ θ(s) is the a posteriori information, given

by measurement.

⇒ sufficient to produce the function s ∈ (t− T, t] 7→ ω(s) =
.
θ (s)

from the function s ∈ (t− T, t] 7→ θ(s)

But θ̇ is a mathematical concept involving a limit process.

Since only “standard” numbers can be used, we are led to use an approxi-

mation, e.g. :

ω

(
s−

h

2

)
≈ ω̂

(
s−

h

2

)
=

θ(s)− θ(s− h)

h
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§1.11 Example Length estimation using conservation of energy

Naive observer:

ω̂

(
t−

h

2

)
=

y(t)− y(t− h)

h

ˆ̀(t) = 2g

∫ t

t−T
ω̂(s)2ds

∫ t

t−T
(1− cos(y(s))ds

−T
∫ t

t−T
ω̂(s)2(1− cos(y(s))ds

T
∫ t

t−T
ω̂4(s)ds−

(∫ t

t−T
ω(s)2ds

)2

T and h are two parameters to tune.

-

s ∈ (t− T, t] 7→ y(s)

A posteriori information
Observer -

Estimated hidden variable

̂̀(t)?

E = `

2
ω2 + g (1− cos(θ)) A priori information
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§1.12 Example Length estimation using finite difference
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Compared with Galileo’s approach, (the average is) less dependent on initial

angle. But highly oscillatory estimated length though ` is constant. Why ?
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§1.13 Example A more elaborate sensor model

Actually . . .

The angle measurement is made with a disk divided in N sectors:

y = round

(
Nθ

2π

)
2π

N
= θ + q ← sensor model

q ∈ [− π

N
, π
N

] = quantization error in the angle measurement.

This leads to an error in the angular velocity estimation which can be up-

perbounded as

|ω(t)− ω̂(t)| ≤
1

2

g

l
| sin(θ(t))| h +

π

N

1

h

⇒ there exists an “optimal” step hopt. It is decreasing with respect to so-

lution energy but increasing with respect to the uncertainty N .

⇒ To tune the observer, we need to know N which models the uncertainty.
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§1.14 Example Length estimation Simulation

In all our simulations,

N = 512 (angle uncertainty ≈ 0.7◦)

and

the sampling period tsamp is chosen equal to hopt(N,solution energy).
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Rule 2 for observer design

In the a priori information,

we need also a model of the uncertainties
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§1.15 Example A more elaborate sensor model

Another consequence:

the measurement gives only :

θ ∈
[
y −

π

N
, y +

π

N

]
= The actual angle is in an interval.

So we should use as observer input any angle in the interval [y− π

N
, y+ π

N
].

This leads to an interval for the estimated length
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§1.16 Example Length estimation using finite difference
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tsamp=0.094, 512 angle div., L.S. horizon=3*period

Interval sampling obtained by a Monte Carlo method

⇒ We can claim only :

At each time t, the length should be between the points given by the curves
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Rule 3 for observer design

Due to uncertainties, the output of an observer

cannot be a point but only

a confidence set or a probability measure or . . . ,

(depending on the uncertainty model).

20
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§ 2/8 The observation problem
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§2.1 A precise statement of the observation problem

Observation Problem:
A priori information: We are given a model :

or continuous time or hybrid version

xk+1 = fk(xk, uk) , yk = hk(xk, vk) , zk = gk(xk, wk)
xk ∈ Xk , yk ∈ Yk , zk ∈ Zk

uk ∈ Uk , vk ∈ Vk , wk ∈Wk

i.e. we are given the functions f , h, g and the sets X to W or the probability
measure of these sets,

and,

A posteriori information: at time k, we have the observations
j ∈ (k −K, k] 7→ yj

Observation Problem:
Give a confidence set or probability measure for the hidden variable, zk.
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§2.2 A precise statement of the observation problem

-

Measurement

A posteriori information
Observer -

Estimated hidden variable

Set, probability measure, . . .
?

Dynamic and sensor models
+ uncertainties models
+ . . .

A priori information

(a correct version of) observer structure
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§2.3 Example Length estimation following Newton’s law

Following Newton, . . .

the a priori information for the length estimation problem can be :

˙̀ = 0 , θ̇ = ω , ω̇ = −
g

`
sin(θ) , θ ∈

[
y −

π

N
, y +

π

N

]
, ` > 0

with g and N given.

-

s ∈ (t− T, t] 7→ y(s)

A posteriori information
Observer -

Estimated hidden variable

?

˙̀ = 0 , θ̇ = ω , ω̇ = −g

`
sin(θ)

A priori informationθ ∈
[
y − π

N
, y + π

N

]
, ` > 0

24
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§ 3/8 “Conceptual” solutions
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§3.1 Conceptual solution 1 Set-valued estimators

At time k, the hidden variable zk is in a set Ẑk given by the following recursive

algorithm, where X̂k contains xk,

initialization X̂0 = X0

prediction X̂k|k−1 = fk−1(X̂k−1, Uk−1) flowing

restriction X̂k =
{
x ∈ Xk

⋂
X̂k|k−1 : yk ∈ hk(x, Vk)

⋂
Yk
}

consistency

estimation Ẑk = gk(X̂k,Wk)
⋂
Zk

A priori information in blue

. . . ellipsoid, hypercubes, polyhedron, sampling . . .
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§3.1 Conceptual solution 1 Set-valued estimators

At time k, the hidden variable zk is in a set Ẑk given by the following recursive

algorithm, where X̂k contains xk,

initialization X̂0 = X0

prediction X̂k|k−1 = fk−1(X̂k−1, Uk−1) flowing

restriction X̂k =
{
x ∈ Xk

⋂
X̂k|k−1 : yk ∈ hk(x, Vk)

⋂
Yk
}

consistency

estimation Ẑk = gk(X̂k,Wk)
⋂
Zk

How to implement this algorithm in practice = set approximations

. . . ellipsoid, hypercubes, polyhedron, sampling . . .
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§3.2 Example Length estimation using a set-valued estimator
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t samp=0.094 , 512 angle divi sions

The length is guaranteed to be between the curves
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§3.3 Conceptual solution 2 Conditional probability-valued estimators

A priori information: x0, uk, vk and wk are independent random variables
with known probability densities and we know

functional description probabilistic description notation

x0 = X0 → p(x0 = X0) = X(X0)

xk+1 = fk(xk, uk) → p
(
xk+1 = Xk+1 xk = Xk, k

)
= Xk(Xk+1, Xk)

yk = hk(xk, vk) → p
(
yk = ψk xk = Xk, k

)
= Yk(ψk, Xk)

zk = gk(xk, vk) → p
(
zk = ζk xk = Xk, k

)
= Zk(ζk, Xk)

A priori information in blue

(yk = ψk, yk−1 = ψk−1, . . . , y1 = ψ1) denoted Yk = Ψk = (ψkΨk−1)

Observation problem: Compute at each time k the conditional probability

p
(
zk = ζk Yk = Ψk, k

)
= Ẑk(ζk,Ψk)

that the hidden variable zk has value ζk knowing a priori and a posteriori
information.
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§3.3 Conceptual solution 2 Conditional probability-valued estimators

A priori information: x0, uk, vk and wk are independent random variables
with known probability densities and we know

functional description probabilistic description notation

x0 = X0 → p(x0 = X0) = X(X0)

xk+1 = fk(xk, uk) → p
(
xk+1 = Xk+1 xk = Xk, k

)
= Xk(Xk+1, Xk)

yk = hk(xk, vk) → p
(
yk = ψk xk = Xk, k

)
= Yk(ψk, Xk)

zk = gk(xk, vk) → p
(
zk = ζk xk = Xk, k

)
= Zk(ζk, Xk)

A posteriori information = collected measurements

(yk = ψk, yk−1 = ψk−1, . . . , y1 = ψ1) denoted Yk = Ψk = (ψk,Ψk−1)

Observation problem: Compute at each time k the conditional probability

p
(
zk = ζk Yk = Ψk, k

)
= Ẑk(ζk,Ψk)

that the hidden variable zk has value ζk knowing a priori and a posteriori
information.
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§3.4 Conceptual solution 2 Conditional probability-valued estimators

The conditional probability density Ẑk is given by the following recursive

algorithm, where X̂k(Xk,Ψk) is the conditional probability that xk = Xk

knowing that Yk = Ψk,

initialization X̂0(X0) = X(X0)

prediction X̂k|k−1(Xk,Ψk−1) =
∫
X
Xk−1(Xk, X)X̂k−1(X,Ψk−1)dX flowing

Chapman-Kolmogorov

restriction X̂k(Xk,Ψk) =
Yk(ψk, Xk)X̂k|k−1(Xk,Ψk−1)∫
X
Yk(ψk, X)X̂k|k−1(X,Ψk−1)dX

consistency
Bayes rule

estimation Ẑk(ζk,Ψk) =
∫
X
Zk(ζk, X)X̂k(X,Ψk)dX

Chapman-Kolmogorov

If all the probability distributions are gaussian this is the Kalman filter

In the general case, how to implement this algorithm in practice ?
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§3.5 Conceptual solution 2 Conditional probability-valued estimators

⇒ approximate nonlinear filters:

– Extended Kalman filter,

– Unscented Kalman filter,

– Approximate grid based methods,

– Sequential Monte Carlo methods (particle filters),

– . . .

30



§3.6 Conceptual solutions

These conceptual solutions give a confidence set, a probability measure,

. . . , for the hidden variable.

How getting a single value ?
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Rule 4 for observer design

To get a single value for the hidden variable from the

confidence set, probability measure, . . .

we need to know what it is used for.
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§3.7 Conceptual solution 3 Optimization-based estimators

⇒ Quantify what the hidden variable is used for in a cost (acknowledging
the equations of the a priori information cannot be satisfied “exactly”).

For instance, at time k, a single-valued estimate ẑk for the hidden variable
zk is given by the following algorithm:

– Solve the minimization problem:

min
σ∈Σk

Jk ((uk, . . . , uk−K), (vk, . . . , vk−K), (wk, . . . , wk−K))

with
σ = ((Xk, . . . , Xk−K), (ζk, . . . , ζk−K))

Σk =
{
σ : Xk−l = fk−l−1(Xk−l−1, uk−l−1) ∈ Xk−l , uk−l−1 ∈ Uk−l−1 ,

ζk−l = gk−l(Xk−l, wk−l) ∈ Zk−l , wk−l ∈Wk−l ,

hk−l(Xk−l, vk−l) = yk−l , vk−l ∈ Vk−l
}

– Select ẑk as the component ζk of σ in the set of minimizers of Jk.

How to implement this algorithm in practice ⇒ approximation
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§3.8 Example Length estimation following an optimization approach

Using a small angle approximation (sin(θ) ≈ θ) and the notations

% =
√
g

l
, C = cos (%tsamp) , S = sin (%tsamp) ,

the a priori information is:

θk+1 = C θk + 1

%
S ωk , ωk+1 = −%S θk + C ωk system dynamics

and the a posteriori information is :

θk ∈
[
yk − π

N
, yk + π

N

]
measurement with quantization

We look for the length which is the most consistent, in a least square sense,

with the a posteriori and a priori information, i.e. we look for %̄ minimizing

J(%̄, θ̄k−K, . . . , θ̄k, ω̄k−K, . . . , ω̄k) =

r
k∑

l=k−K

(
min

{
θ̄l − yl + π

N
, 0

}2
+ max

{
0 , θ̄l − yl − π

N

}2
)

+ qθ
k∑

l=k−K+1

(
θ̄l −

[
C θ̄l−1 + 1

%̄
S ω̄l−1

])2

+ qω
k∑

l=k−K+1

(
ω̄l +

[
%̄S θ̄l−1 − C ω̄l−1

])2
.
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§3.9 Example Length estimation following an optimization approach
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§ 4/8 Observability
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§4.1 Observability

Without any assumption on the models, the set-valued estimator and the

conditional probability-valued estimator, in particular, are providing the best

possible answer to the observation problem given the a priori and a posteriori

information.

But this anwser is useful only when the a posteriori information is enriching

the a priori one, i.e. when the a posteriori information allows us to make

a better distinction among the hidden variable compatible with the a priori

information.

Without this information enrichment, we may fear a too strong sensitivity

in errors in the a priori information.
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§4.2 Example Length estimation following an optimization approach
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optimization for 3 different ini tial angles (10◦ (r), 5◦ (k) and 1◦ (b))

As the solution energy decreases,
( ⇒ the a posteriori information gets worse)

the estimation quality deteriorates
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§4.3 Observability

Let the system be ẋ = f(x) , y = h(x) with solutions

denoted X(x, t) and defined on the maximal time interval (σ−(x), σ+(x)).

If the system is time varying (may be due to known exogenous inputs), i.e.

ẋ = f(x, t) , y = h(x, t) ,

we recover the above equations by replacing x by xe = (x, t), (f(x, t),1)
by fe(xe), and (h(x, t), t) by he(xe)

. . . but then everything depends on the particular time function.
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§4.4 Observability

Differential observability with order k:

The system satisfies the differential observability property with order k if

the function1 x 7→ Hk(x) =


h(x)
Lfh(x)

...
Lk−1
f h(x)

 is injective.

Proposition 1:

Differential observability with order k implies that, for all T strictly positive,
the mapping x 7→ { h(X(x, t)), t ∈ [0 , min{T, σ+(x)} ) } is injective.

⇒ if there is no uncertainty, the a posteriori information allows us to isolate
instantaneously a single hidden variable.

The best for information enrichment
1

Lj
fh = Lf

(
Lj−1
f h

)
, Lfh(x) = lim

t→0

h(X(x, t))− h(x)

t

40



§4.5 Example Differential observability with order 4 for the pendulum

For the pendulum, we get : H4(`, θ, ω) =


y1

y2

y3

y4

 =



θ
ω

−
g

`
sin(θ)

−
g

`
ω cos(θ)



We have

 `
θ
ω

 =


−
y3 sin(y1) + y4y2 cos(y1)

y2
3 + y2

4

g

y1

y2

 where :

y2
3 + y2

4 =
g2

`2
sin(θ)2 + ω2 cos(θ)2 = 0 ⇐⇒ state energy = 0

⇒ H4 is left invertible when state energy 6= 0
⇒ H4 is injective when state energy 6= 0
⇒ The pendulum satisfies the differential observability property with order

4 except for states with zero energy. But its state space dimension is 3.
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§4.6 Example Convergence of the length estimate

The differential observability property implies that,

when there is no quantization error, the set-valued estimate, the conditional

probability-valued estimate, and the optimization-based estimate converge.
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No quantization , hori zon fil ter =3*period , set (r) and optization (k)
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§ 5/8 The convergence problem
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§5.1 The convergence problem “Conceptual” observer

{s ∈ (t− T, t] 7→ y(s)}
Measurement

-
time to “state” transformation

(= data compression . . . )
Σ{x, t, T}

?

output

Ẑ(t)

· · · · · · · · · · ·

··
··
··
·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·Conceptual Observer

· · · · · · · · · · · · · · · · · · · · · · · · ···
··
··
··
··
·

Σ{x, t, T} is a “conceptual” observer “state”. It is :

X̂(t)
set appr.

, X̂(X,Ψ(t), t)
stochastic appr.

, ∂J

∂χ
(χ, t, T )

optimization appr.

,
(
y(t), ẏ(t), . . . ,

. ... .
y (t))

)
differential obs.

Ẑ(t) is the hidden variable estimate. It is :

Ẑ(t)
set appr.

, Ẑ(ζ,Ψ(t), t)
stochastic appr.

, ẑ(t)
optimization appr.

, ẑ(t)
differential obs.
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§5.2 The convergence problem “Real” observer

Because of approximation – in the sets, in the probabilities, in the optimiza-
tion, in the derivatives, in the observer output, . . . , a real observer is only
an approximation of the “conceptual” observer.

{s ∈ (t− T, t] 7→ y(s)} - ξ̇ = ϕ(t, ξ, y)

Ẑ = τ(t, ξ, y)

?

Ẑ(t)

· · · · · · · · ·

··
··
··
· · · · · · · · · · · · · · · · · · · · · · · · · ·

Observer

· · · · · · · · · · · · · · · ·
··
··
··
··

The observer convergence problem : When there is no uncertainty,
do we have Ẑ(t) “converging to a single point” z(t) = g(X(x, t)) if the
solution exists on [0,+∞) (respectively within the domain of existence of
the solution [0, σ+(x)) ) ?
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§ 6/8 Necessary conditions for convergence
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§6.1 Necessary conditions for convergence

The technical context:

• Let dx and dξ be given distances on Rn×Rn and Rm×Rm respectively;

• Let the system be defined by two functions f and h :

ẋ = f(x) , y = h(x) , z = x (1)
↑

hidden variable = system state
with x in an open set O of Rn and y in Rp;

There is no uncertainty = perfect model

• Let the observer be defined by two functions ϕ and τ :

ξ̇ = ϕ(ξ, y) , x̂ = τ(ξ, y) (2)

with ξ in an open set Ω of Rm and x̂ in O;
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§6.2 Necessary conditions for convergence

Assumptions :

Reg : the functions f : Rn → Rn, h : Rn → Rp, ϕ : Rm × Rp → Rm

and τ : Rm × Rp → O are locally Lipschitz and all the solutions

of (1),(2) with values in O ×Ω can be right maximally defined on

[0,+∞).

Conv : The zero error set

↙ = x̂

E = {(x, ξ) ∈ O ×Ω : x =
︷ ︸︸ ︷
τ(ξ, h(x)) }

is asymptotically stable with domain of attraction containing O×Ω.
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§6.3 Necessary conditions for convergence

Proposition 2: Under Assumptions Reg and Conv, we have :

Inv1 : there exists a subset O0 of O and a set-valued map x ∈ O0 7→
τ ∗(x) ⊂ Ω such that the zero error set E is the graph of τ ∗, i.e.

E = {(x, ξ) ∈ O0 ×Ω : ξ ∈ τ ∗(x)} ,
⇒ the observer output function τ must be surjective given h(x)

Conv1 : We can “describe” the asymptotic stability of E by a Lyapunov

function. This says there exist a C∞ function V : O ×Ω→ R+,

class K∞ functions α and α and a continuous function $ : O ×
Ω→ R+ such that :

Lf,ϕV (x, ξ) ≤ −V (x, ξ) ∀(x, ξ) ∈ O ×Ω ,

α (dx(x, τ(ξ, h(x)))) ≤ V (x, ξ) ≤ α ($(x, ξ) dx(x, τ(ξ, h(x))))

V is a function of two variables (x, ξ) not of x− x̂ = x− τ(ξ, h(x))
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§6.4 Necessary conditions for convergence

Proposition 3: Under Assumption Reg, if there exists a C1 function V :
Rn→ R+ satisfying

V (x− τ(ξ, h(x))) > 0 , Lf,ϕV (x− τ(ξ, h(x))) < 0

∀(x, ξ) ∈ O ×Ω : x 6= τ(ξ, h(x)))

then the function x ∈ O0 7→
 f(x)

h(x)

 is injective.

Here V is a function of x−x̂ only. This is a coordinate dependent condition.
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§6.5 Example A negative answer for the length estimation

For the length estimation, the function

x =

 `
θ
ω

 7→

f(x)

h(x)

 =


0
ω

−
√
g

`
sin(θ)

θ


is not injective on the set of strictly positive energy states.

(problem when sin(θ) = 0)

So there is no observer for which asymptotic stability of the zero error set

E can be established with a strict Lyapunov function depending only on

(`− ˆ̀, θ − θ̂, ω − ω̂).
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§6.6 Necessary conditions for convergence

Proposition 4: Under Assumptions Reg and Conv, if the observer output
function τ is injective given h(x), specifically if there exists a class K∞
function ατ such that

dξ(ξa, ξb) ≤ ατ(dx(xa, τ(ξb, h(xa))))

∀(xa, ξb) ∈ O0 ×Ω : ξa ∈ τ ∗(xa) ,
we have :

Inv2 : τ ∗ is singled valued and there exists a function ` : Ω × Rp → Rn

such that the dynamic observer function ϕ can be decomposed as

ϕ(ξ, y) = Lfτ
∗(τ(ξ, y)) + `(ξ, y)

where

`(ξ, y) = 0
∀(ξ, y) ∈ Ω× h(O0) : y = h(τ(ξ, y)) , τ(ξ, y) ∈ O0

i.e. the observer dynamic is a copy of the image by τ ∗ of the system dynamic
plus a correction term which is zero when actual measurement = estimated
measurement.
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§6.7 Necessary conditions for convergence

Hence,

in some coordinates, the decomposition

“observer dynamic = copy of system dynamic + correction term”

is necessary when the observer output function τ is a bijection given h(x),

i.e. when there exists a function τ ∗ satisfying

surjective : x = τ(τ ∗(x), h(x)) ∀x ∈ O0 ,

injective : ξ = τ ∗(τ(ξ, y))
∀(ξ, y) ∈ Ω× h(O) : y = h(τ(ξ, y)) , τ(ξ, y) ∈ O0
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Rule 5 for observer design

For an observer to have the convergence property

with an output function τ which is a bijection given

h(x), the dynamic of its state ξ must be a copy of

the system dynamic plus a correction term which is

zero when y = h(τ(ξ, y)) (actual measurement =

estimated measurement).

There is no such rule if the output function τ is not

injective given h(x)
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§ 7/8 Observer with

τ possibly non injective given h(x)
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§7.1 Observer with τ possibly non injective given h(x)

The most frequently encountered observers have an output function τ which

is a bijection given h(x).

But we know at least 2 families of observers with τ possibly non injective

given h(x) :

1. The high gain observer with immersion

2. The nonlinear Luenberger observer

The latter being less known let us focus our attention on it.
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§7.2 The nonlinear Luenberger observer

Proposition 5: Assume the set O is forward and backward invariant and

there exist an integer m, a Hurwitz matrix A in Cm×m, continuous functions

τ ∗ and B and a class K∞ function ρ such that Lfτ ∗ exists and we have :

Lfτ ∗(x) = Aτ ∗(x) + B(h(x))) ∀x ∈ O , (PDE)

dx(x1, x2) ≤ ρ (dξ(τ
∗(x1), τ

∗(x2))) ∀x1, x2 ∈ cl(O)
i.e. τ ∗ is uniformly injective

Then there exists a continuous function τ such that the observer

ξ̇ = ϕ(ξ, y) = Aξ + B(y) , x̂ = τ(ξ)

solves the observer convergence problem.

This observer is a nonlinear Luenberger observer. Its tunable parameters

are the integer m (= dimension of ξ), the matrix A and the function B.
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§7.3 The nonlinear Luenberger observer

Comments :

a) The observer output function τ is not

a bijection given h(x) in general.

b) The observer dynamic function ϕ is not

a copy of the image by τ ∗ of the system dynamic plus a correction term

which is zero when y (actual measurement) = h(τ(ξ, y)) (estimated

measurement).
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§7.4 The nonlinear Luenberger observer Existence

Existence of a solution to

Lfτ ∗(x) = Aτ ∗(x) + B(h(x))) ∀x ∈ O , (PDE)

Proposition 6: For each Hurwitz complex matrix A in Cm×m, we can find

a C1 injective function B : Rp → Cm×p such that there exists a continuous

function τ ∗ solution of (PDE).
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§7.5 Example The nonlinear Luenberger observer for the length estimation

With λi a complex number with negative real part, the nonlinear Luenberger
observer dynamics are:

ξ̇i = λi (ξi − sin(θ)) i ∈ {1, . . . ,m} ,
with A = diag(λ1, . . . , λm) and B = −(λ1 . . . λm)T sin(θ) .

The corresponding PDE with unknown τ ∗i is :

∂τ ∗i
∂θ

(`, θ, ω, t)ω −
∂τ ∗i
∂ω

(`, θ, ω, t)
g

`
sin(θ) +

∂τ ∗i
∂t

(`, θ, ω, t)

= λi [τ
∗
i (`, θ, ω, t)− sin(θ)] .

There exists a solution in the form :

τ ∗i (`, θ, ω, t) = ci`(t)
g

`
+ ciω(t)ω + sin(θ)

where

ċi` = λi ci` + ciω sin(θ) , ċiω = λi ciω − cos(θ) .
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§7.6 The nonlinear Luenberger observer Injectivity

Uniform injectivity of τ ∗

Proposition 7: Assume the system satisfies the differential observability

property with some order on O.

Then, if we select m = n+ 1, there exist

– a positive real number µ

– and a subset S of Cm with zero Lebesgue measure,

such that,

with A = diag(λ1, . . . , λm) where the m λi are (arbitrary) in Cm \ S and

with real part strictly smaller than µ,

we can find a function τ ∗ solution of (PDE) and injective.

Remark: On a compact set, continuity + injectivity ⇒ uniform injectivity.
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§7.7 Example The nonlinear Luenberger observer for the length estimation

With ċi` = λi ci` + ciω sin(θ) , ċiω = λi ciω − cos(θ) ,

and Mm(t) =

 c1`(t) c1ω(t)
... ...

cm`(t) cmω(t)



we have τ ∗(θ, ω, `, t) = M(t)


g

`

ω

 +

 1
...
1

 sin(θ)

It can be shown that it is sufficient to pick m = 3 (where complex counts
for 2) λi to obtain the matrix M3 with rank 2, at least for solutions with
small but non zero energy.

Hence, for m = 3, given (θ, t), the function (ω, `) 7→ τ ∗(θ, ω, `, t) is
injective on the set{

(θ, ω, `) : ` > 0 ,
`

2
ω2 + g(1− cos(θ)) > 0

}
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§7.8 Example The nonlinear Luenberger observer for the length estimation

Ultimately the nonlinear Luenberger observer is, for i ∈ {1,2,3},

ξ̇i = λi (ξi − sin(θ))

ċi` = λi ci` + ciω sin(θ) , ċiω = λi ciω − cos(θ)

M3 =

 c1` c1ω

c2` c2ω

c3` c3ω



ˆ̀ =
g

(1 0) (MT
3M3)

−1
MT

3

ξ −
 1

1
1

 sin(θ)


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§7.9 ExampleThe nonlinear Luenberger observer for the length estimation
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§7.10 The nonlinear Luenberger observer

Extra comments :

• An approximation theory about (PDE) solutions exists. In particular high

gain observers can be seen as approximations of nonlinear Luenberger

observers.

• No theory is available yet on how to select the tunable parameters m,

A and B.
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§ 8/8 Conclusions
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§8.1 Conclusions The observation problem

The observation problem is to estimate a hidden variable from a measured

variable.

I call observer the solution to this problem.

To design this observer, there are at least 5 rules.
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§8.2 Conclusions Design rules

Rule 1 : We need a priori information, as a “relation” between hidden and

measured variables.

Rule 2 : In the a priori information, we need also a model of the uncertain-

ties.

Rule 3 : Due to uncertainties, the output of an observer cannot be a point

but only a confidence set or a probability measure or . . . , (depend-

ing on the uncertainty model).

Rule 4 : To get a single value for the hidden variable from the confidence

set, probability measure, . . . , we need to know what it is used for.

Rule 5 : For an observer to have the convergence property with an output

function which is a bijection given the measurement, its state dy-

namic must be a copy of the system dynamic plus a correction

term which is zero when actual measurement = estimated mea-

surement. There is no such rule if the observer output function is

not injective given the measurement.
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§8.3 Conclusions

Observers whose output function is not injective given the measurement

do exist, e.g. high gain observer with immersion or nonlinear Luenberger

observer.

They exploit dynamic extension.

Their domain of application is broader than the one of usual observers

(whose output function is a bijection given the measurement).
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§8.4 Conclusions Future

Future:

With progress in theory and technology, “conceptual” approaches such as

set-valued estimators, conditional probability-valued estimators or optimi-

zation-based estimators will become very efficient tools. They can be used

already for slow dynamic systems or with reduced number of states.

But ad hoc techniques will remain appropriate . . . By combining Galileo’s

idea with Jacobi elliptic functions, we get a robust and very fast algorithm

giving. . .
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Example Galileo’s method with Jacobi elliptic functions
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