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Abstract: We show that regulation to a constant value of the output of a process can be
achieved robustly by designing a stabilizer for a model augmented with an integrator of the
output and by having the model dynamics close enough to the process ones. This is nothing but
the PI controller paradigm extended to the case of nonlinear systems. We recall also that the
forwarding technique is well suited for this particular stabilizer design. Finally we illustrate our
result with solving the problem of regulating the flight path angle of the longitudinal mode of
a plane.
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1. INTRODUCTION

Achieving a robust asymptotic regulation of a given output
of a dynamical system is a question of practical interest
in most industrial control design. We have identified two
distinct families of designs in the literature.

In the first family, the design follows the same route as
for linear systems. It consists in simply integrating ex
nihilo the output error, and in stabilizing the extended
system. The convergence of the output to its desired value
is then a consequence of asymptotic stability. Various
ways of designing the stabilizer for the extended system
have been proposed. For instance Khalil (2000) obtains
semiglobal robust stabilization by output feedback using
high gain / sliding mode techniques.

In the second family, the dynamics are rewritten in such
a way that an input perturbation, called steady state
control, appears and that cancelling this term is sufficient
to get the right invariant set. So part of the strategy
consists in observing this shift to be applied.

The theory of output regulation can be seen in this
perspective. Early results related to weakly nonlinear
systems are due to Francis and Wonham (1976) where it
was shown that integral control is sufficient to guarantee
output regulation in presence of a constant exogenous
input and small parameter variations. Latest results on
nonlinear output regulation can obviously be applied to
achieve robust asymptotic regulation, by considering an
integrator as the internal model of the controller. For
example, in Isidori et al. (2003) is described a complete
framework to build output regulators for minimum phase
systems.

Several other kind of input perturbation observers have
been proposed. The works of Praly and Jiang (1998) and

Chakrabortty and Arcak (2007) introduce an observer of
a dynamic input uncertainty, in order to reject it under
still under a minimum phase assumption. In addition,
Chakrabortty and Arcak (2007) need perfect knowledge
of the input vector field to insure asymptotic regulation.
In (Astolfi et al., 2008, Chapter 7.2), the authors solved a
similar problem using dynamic controller, but discontinu-
ous control law was used to stabilize the extended system,
and robustness of the regulation has not been established.

Extension of the above when the term to be removed is not
in the image of the control has been done using adaptive
control techniques. Freeman and Kokotović (1996) do this
for input/output linearizable systems with no zero dynam-
ics. In Jiang and Mareels (2001), the authors allow the
presence of inverse dynamics but with an ISS assumption.

After stating the problem, (Section 2), we present our
proposed approach (Section 3). Next we recall forwarding
tools specialized to our context of our interest (Section 4).
Finally an example is given, inspired from a concrete case
study in aeronautics (Section 5). Appendix A is devoted
to demonstrate a technical result.

2. PROBLEM STATEMENT

We investigate the problem of regulating, by state feed-
back, the output y of a given dynamical process to the
origin. The considered process satisfies

ẋ = ξ(x, u), y = ζ(x, u), (1)

where the state x in Rn, the control u in Rm and the
output y in Rm. The functions ξ : Rn × Rm → Rn and
ζ : Rn × Rm → Rm are assumed C1.

We do not assume the knowledge of the process, i.e. of the
pair (ξ, ζ). Precisely, we design the state feedback from a
model of the process only given as
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ẋ = f(x) + g(x)u, y = h(x), (2)

where f : Rn → Rn, g : Rn → Rnm and h : Rn → Rm are
C1 functions, and f and h vanish at origin.

The state x is assumed to be measured and the output
y define m signals which must converge to a constant
reference chosen as 0 without loss of generality.

All along this document, process refers to the approxi-
mated dynamical process (1); whereas model means the
known mathematical expression (2).

3. SUGGESTED APPROACH

To solve the problem of regulating y to 0 in the uncertain
context described above we follow the very classical idea
of augmenting the model with a pure integrator 1 . Namely
we design a state feedback stabilizing the origin of the
system 2

ż = k(x, y), ẋ = f(x) + g(x)u, (3)

where k : Rn × Rm → Rm is a function to be chosen
verifying

∀x ∈ Rn, k(x, h(x)) = 0 ⇒ h(x) = 0. (4)

Thanks to a “folk” result given in appendix we are able to
conclude that the state feedback, designed for (3), solves
the problem for a whole family of neighboring processes.
Precisely we have

Proposition 1. Assume we have designed a function ψ :
Rn × Rm → Rm such that the origin is an exponentially
stable equilibrium point of:

ż = k(x, h(x)), ẋ = f(x) + g(x)ψ(x, z), (5)

with D×Rm as domain of attraction. Under this condition,
for any strictly positive real number ε, there exists a
strictly positive real number δ and a neighborhood N of
the origin such that, to any pair (ξ, ζ) of C1 functions
which satisfies:

|k(x, h(x))− k(x, ζ(x, ψ(x, z))|
+ |[f(x) + g(x)ψ(x, z)]− ξ(x, ψ(x, z))| ≤ δ, (6)

for all (x, z) in D × Rm and∣∣∣∣∣∣∣
 0
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∣∣∣∣∣∣∣ ≤ δ, (7)

for all (z, x) in N , we can associate (xe, ze) ∈ N which is
an exponentially stable equilibrium point of:

ż = k(x, ζ(x, ψ(x, z))), ẋ = ξ(x, ψ(x, z)), (8)

whose basin of attraction contains the set

A = {(x, z) ∈ D × Rm : d((x, z), ∂(D × Rm)) > ε}. (9)

Also, under the above condition and (4), any solution
(X((x, z), t), Z((x, z), t)) of (8) with initial condition in
the above set satisfies:

lim
t→+∞

ζ(X((x, z), t), ψ(X((x, z), t), Z((x, z), t))) = 0.

(10)

1 See (Khalil, 2002, page 481) for instance for an explanation.
2 The interest of replacing h by k will be illustrated in Section 5.

Proof. With the notations

X =

(
z
x

)
,

ϕ̂(X) =

(
k(x, h(x))

f(x) + g(x)u

)
, ϕ(X) =

(
k(x, ζ(x, u))
ξ(x, u)

)
,

we see that all the assumptions of Theorem 6 are satisfied.
It follows that if the pair of functions (ξ, ζ) satisfies (6) and
(7), we have an asymptotically stable equilibrium point
(xe, ze) withA given in (9) as basin of attraction and which
satisfies

k(xe, ζ(xe, ψ(xe, ze))) = 0. (11)

But (4) and continuity imply the existence of a class K∞
function ρ such that we have:

|y| ≤ ρ(|k(x, y)|)[1 + ρ(|x|+ |y|)] ∀(x, y). (12)

Hence we have that, for any initial condition (x, z) in
A, the corresponding solution (X((x, z), t), Z((x, z), t))
of (8) is defined on [0,+∞), converges to (xe, ze) and
satisfies (10).

Remark 2. Equation (11) is nothing but a regulator equa-
tion, since (xe, ze) is an equilibrium of (8).

4. DESIGN OF THE FEEDBACK ψ

In this section we discuss possible feedback designs which
guarantee the assumption about system (5) in Proposi-
tion 1 is met.

The extended system (3) has one of the block-triangular
forms that has been extensively studied in the 90’s with
in particular the introduction of the techniques of back-
stepping (see Krstic et al. (1995) for an overview) and for-
warding. The latter has been developed using saturations
in Teel (1996) or using Lyapunov design with coordinate
change in Mazenc and Praly (1996) or coupling term in
Jankovic et al. (1996). Here we recall these forwarding
techniques. One of their interesting features is the avail-
ability to simply “extend” an existing static controller
which stabilize the origin of (2). In the following, we call
φ(x) this controller.

Assumption 3. (Stability of statically controlled system).
We know a continuous function φ : Rn → Rm such that
the origin is an asymptotically and locally exponentially
stable equilibrium point with D as domain of attraction.

As a consequence of this assumption, using converse Lya-
punov theorem from Kurzweil (1956), there exists a C1

function V : D → R+ which is positive definite and proper
on D such that the function U defined below is positive
definite on D.

U(x) = −∂V
∂x

(f(x) + g(x)φ(x)) . (13)

Depending on whether or not we know such a function V
leads to different designs.

Assumption 4. (Rank of static gain). The matrix(
∂k

∂x
+
∂k

∂y

∂h

∂x

)(
∂

∂x
[f + gφ]

)−1
g

∣∣∣∣∣
x=0

(14)

is invertible.
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A consequence of Assumption 3 is the existence of a C1

function M : D → Rm satisfying

∂M

∂x
(x) (f(x) + g(x)φ(x)) = k(x, h(x)), M(0) = 0.

(15)

Depending on whether or not we know this function or only
its first order approximation at the origin gives different
designs.

4.1 Forwarding with V and M known

When both V and M are known a stabilizer for the system
(3) is

u = φ(x)−L
([
LgV (x)− (z −M(x))>LgM(x)

]>)
, (16)

with M defined by (15), and with L any continuous
function satisfying

v>L(v) > 0, ∀v 6= 0, det

(
∂L

∂v
(0)

)
6= 0. (17)

Following Mazenc and Praly (1996) this can be established
with the function W : D × Rm → R+ defined as

W (x, z) = V (x) +
1

2
(z −M(x))>(z −M(x)). (18)

which is positive definite and proper on D × Rm.

4.2 Forwarding with V unknown but M known.

When V is unknown, but M is known, there exists a scalar
function ki : D → R+ such that a state feedback for the
system (3) is

u = φ(x) + ki(x)LgM(x)>L(z −M(x)), (19)

with M defined by (15), and with L any bounded contin-
uous function satisfying (17).

This can be established with the Lyapunov function (18).

4.3 Forwarding with V unknown and M approximated.

Instead of solving the partial differential equation (15) for
M , we can simply solve the linear equation

M0
∂

∂x
[f(x) + g(x)φ(x)]

∣∣∣∣
x=0

=
∂

∂x
(k(x, h(x))

∣∣∣∣
x=0

. (20)

This can always be done, thanks to Assumption 4.

In this case, there exists a function ki : D → R+ with
strictly positive values such that a state feedback for the
system (3) is

u = φ(x) + ki(x)M0
>g(x)>L(z −M0x), (21)

with M0 defined by (20), and with L any bounded contin-
uous satisfying (17).

This can be established with the Lyapunov function

W (x, z) = e(V (x)) +
√

1 + 1
2 (z −M0x)>(z −M0x)− 1,

where e : R+ → R+ is a C1 function with strictly positive
derivative, to be chosen large enough (see Mazenc and
Praly (1996)).

In the case where the system

ẋ = f(x) + g(x)(φ(x) + v), (22)

with v as input is input to state stable with restriction, i.e.
provided |v| is bounded by some given strictly positive real
number ∆, then following Teel (1996), the state feedback
can be chosen as

u = φ(x) + λL

(
g(0)>M>0 (z −M0x)

λ

)
, (23)

where L is any bounded continuous function satisfying (17)
and λ is a small enough strictly positive real number.

Remark 5. (Link with an observer point of view). The ap-
proach proposed above for the case where V is unknown
can also be seen as a perturbation observer. To this end,
consider the case where there is a constant input pertur-
bation δ in the model (2), i.e. its dynamics are

ẋ = f(x) + g(x)(u+ δ) , δ̇ = 0. (24)

Assume there exist a C1 function K, a square matrix N
and a positive definite matrix P satisfying

PNLgK(x) + [NLgK(x)]>P < 0 , ∀x ∈ D. (25)

Note this condition is met for x close to the origin under
Assumption 4 if we pick

K(x) = M(x) , N = −LgM(0)>. (26)

Then a reduced order observer for δ is given by

ż = [LfK(x) + LgK(x)u] + LgK(x)N [z −K(x)],

δ̂ = N [z −K(x)].

Indeed, we have

˙︷ ︷
(δ̂ − δ)>P (δ̂ − δ) < 0. (27)

Cancelling δ with the feedback leads to the dynamic
feedback

ż = LfK(x) + LgK(x)φ(x), u = φ(x)−N [z −K(x)].

So we do recover (19) if we pick

K(x) = M(x),

L(z −M(x)) = −(z −M(x)),

N = −ki(x)LgM(x)>.

This link with a reduced order observer brings some more
light on the role played by ki. In particular we understand
that the value at x for ki(x) should be such that either it
is zero or ki(x)LgM(x)> is close to ki(0)LgM(0)> and we
have

PLgM(0)>LgM(x) + [LgM(0)>LgM(x)]>P > 0.

5. EXAMPLES OF APPLICATION: THE
LONGITUDINAL MODE OF A PLANE

A very elementary approximation of the flight dynamics
of an aerodyne is

V̇ = e− sin γ, γ̇ =
lV 2 − cos γ

V
, (28)

where V ∈ R∗+ is the speed and γ ∈ R is the flight
path angle. The controls are the lift l and the propulsive
balance e. This is an oscillator early studied by Zhukovskii
in the XIXe century (see Andronov et al. (1987)). It
has stable periodic solutions for fixed values e = 0 and
l = 1/V 2

0 > 0. Indeed, it can be easily verified that the
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equilibrium (γ = 0, V0) is stable, by the use of the energy
function

W (V, γ) = V 3 + 2V 3
0 − 3V V 2

0 cos(γ), (29)

which is non negative for all (V, γ) ∈ R+ × [−π;π] and
vanishes only when (V, γ) = (V0, 0) but whose sublevel sets
do not contain points with V ≤ 0 only for W (V, γ) < 2V 3

0 .
This stability property can be exploited to design the
following controller

l =
1

V 2
0

− V 2

V 4
0

sin γ, e = cos γ −
(
V

V0

)2

. (30)

which makes the equilibrium (V0, 0) exponentially stable
with domain of attraction containing the set {(V, γ) : V >
0,W (V, γ) < 2V 3

0 }. See Poulain et al. (2009).

The longitudinal mode model (28) of the vehicle being
only an approximation, the stabilized equilibrium obtained
with the controller (30) for this vehicle, even if it exists,
is likely to differ from the desired one. Insisting on the
convergence of the flight path angle to its desired value
we choose it as output. In order to apply the design of
Section 4.2, we have then to find functions M and k
verifying

∂M

∂V
(e−sin γ)+

∂M

∂γ

(
1− V 2

V 2
0

sin γ
)

V 2

V 2
0
− cos γ

V
= k, (31)

and
k(V, γ) = 0⇒ γ = 0. (32)

We observe that choosing

k(V, γ) = −
(
∂M

∂V
+
∂M

∂γ
V 3

)
sin γ + e(1− cos γ)

∂M

∂V
,

which satisfies (32) in the domain of interest, the partial
differential equation (31) reduces to

∂M

∂V
e cos γ − ∂M

∂γ

e

V
= 0, (33)

for which

M(V, γ) = ln(V ) + sin(γ)− ln(V0) (34)

is a solution. Also, fortunately, with this k the model
controlled with (30) verifies the static gain requirement.

The controller, extended with an integral action thus
becomes

ż = −
(

1

V
+
V 3

V 4
0

cos γ

)
sin γ +

1

V
(1− cos γ)e, (35a)

e = cos γ −
(
V

V0

)2

, (35b)

l = l0 − V 2 sin γ + z − (ln(V ) + sin(γ)− ln(V0)). (35c)

It guarantees asymptotic regulation of the output on the
process provided it is close enough to the model (28).

The simulation results are presented on Figure 1, where no
special gain optimization was done. The process is taken as

ε
˙̂
l = l − l̂, (36a)

V̇ = e cosα− sin γ + (cosα− ε) l̂2V 2, (36b)

V γ̇ = εl̂V 2 − cos γ + e sinα, (36c)

with α = arcsin (l̂/µ) + ν, ε = 0.33, ε = 0.6, ν =
0.1 and µ = 5. These coefficients are representative of
modelling simplifications or uncertainties. Aerodynamics
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Fig. 1. Simulation of the Zhukovskii oscillator in perturbed
conditions (i) without integral action (dash-dotted
line); (ii) with an integral action (solid line).

are then scaled by ε, and the thrust direction of the
vehicle, assumed to be in the speed direction, is oriented
in the process by α. Furthermore, filtered measurement
noise and input dynamic are added. Asymptotic behavior
of the flight path angle is then clearly better using the
controller (35) using integral action compared with (30)
with no integral action.

6. CONCLUSION

Robust asymptotic output regulation has been investi-
gated. Our technique follows the very usual approach of
stabilizing the origin of the model augmented with an
integrator of the output error. The result is shown to be
robust to any small enough perturbation of the model, in
a C1 sense.

We use forwarding as a tool to design state feedback. This
allows us to handle models with no specific structure but
for which we have already a stabilizer. These systems can
be non-minimum phase. The basic required property is the
invertibility of the static gain at the origin, the standard
“non resonance” condition.

Finally, we observe that it is possible to extend what
we have presented to the context of output feedback by
following one approach of Teel and Praly (1994). The
details of this extension are under investigation.
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Appendix A. A TOTAL STABILITY THEOREM

The following result combines total stability and hyper-
bolicity.

Theorem 6. Let be given a C1 function ϕ̂ : Rn → Rn such
that the origin is an exponentially stable equilibrium point
of:

Ẋ = ϕ̂(X) (A.1)

with A as domain of attraction. Under this condition, for
any strictly positive real number ε, there exists a strictly
positive real number δ and a neighborhood N of the origin
such that, to any C1 function ϕ : Rn → Rn which satisfies:

|ϕ(X)− ϕ̂(X)| ≤ δ, ∀X ∈ A, (A.2)∣∣∣∣∂ϕ∂X (X)− ∂ϕ̂

∂X
(X)

∣∣∣∣ ≤ δ, ∀X ∈ N , (A.3)

we can associate Xe which is an exponentially stable
equilibrium point of:

Ẋ = ϕ(X) (A.4)

whose basin of attraction contains the set

{X ∈ A : d(X , ∂A) > ε}. (A.5)

This is a “folk” result. But being unable at this time to
give a reference containing a complete proof and to make
the paper self-contained, we give a proof below which has
some similarities with (Khalil, 2002, Section 14.1.4).

Proof. Let P be a positive definite symmetric matrix and
a a strictly positive real number satisfying:

P
∂ϕ̂

∂X
(0) +

∂ϕ̂

∂X
(0)>P ≤ −aP, λ(P ) = 1, (A.6)

where λ̄ and λ respectively stand for max and min singular
values. By continuity there exists a strictly positive real
number p0 such that we have, ∀X : X>PX ≤ p0,

P
∂ϕ̂

∂X
(X)+

∂ϕ̂

∂X
(X)>P ≤ −a

2
P , and X>Pϕ̂(X) ≤ −a

4
X>PX .

Let ϕ : Rn → Rn be a C1 function. We have:

X>Pϕ(X) = X>Pϕ̂(X) + X>P [ϕ(X)− ϕ̂(X)], (A.7)

≤ X>Pϕ̂(X) +
a

8
X>PX

+
2

a
[ϕ(X)− ϕ̂(X)]>P [ϕ(X)− ϕ̂(X)]

(A.8)

and therefore:

X>Pϕ(X) ≤ − a

16
X>PX , ∀X : X>PX =

p0
6
, (A.9)

provided ϕ satisfies:

|ϕ(X)− ϕ̂(X)| ≤ a

4

√
p0

12λ̄(P )
, ∀X : X>PX =

p0
6
.

(A.10)

In this condition, it follows from Brouwer fixed point Theo-
rem (See (Hale, 1980, Theorem 8.2)) that, for each function
ϕ satisfying (A.10), there exits a point Xe satisfying:

ϕ(Xe) = 0, X>e PXe ≤
p0
6
. (A.11)

Assume further that ϕ satisfies:∣∣∣∣∂ϕ∂X (X)− ∂ϕ̂

∂X
(X)

∣∣∣∣ ≤ a

8λ̄(P )
, ∀X : X>PX ≤ p0. (A.12)

In this case, we have:

P
∂ϕ

∂X
(X) +

∂ϕ

∂X
(X)>P =

P
∂ϕ̂

∂X
(X) +

∂ϕ̂

∂X
(X)>P + P

[
∂ϕ

∂X
(X)− ∂ϕ̂

∂X
(X)

]
+

[
∂ϕ

∂X
(X)− ∂ϕ̂

∂X
(X)

]>
P

≤ −a
4
P, ∀X : X>PX ≤ p0.

Note also that we have:

[Xe + s(X − Xe)]
>P [Xe + s(X − Xe)] ≤ p0,
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∀(X ,Xe, s) : s ∈ [0, 1], X>e PXe ≤
p0
6
, X>PX ≤ p0

3
.

Then, with

ϕ(X) = ϕ(X)−ϕ(Xe) =

∫ 1

0

∂ϕ

∂X
(Xe +s(X−Xe))ds[X−Xe],

and (A.11), we get:

[X − Xe]
>Pϕ(X) =∫ 1

0

(
[X − Xe]

>P
∂ϕ

∂X
(Xe + s(X − Xe))[X − Xe]

)
ds,

≤ −a
4

[X − Xe]
>P [X − Xe], ∀X : X>PX ≤ p0

3
.

This implies that Xe is an exponentially stable equilibrium
point of the system (A.4) with basin of attraction contain-
ing the compact set {X ∈ Rn : X>PX ≤ p0

3 }.
Finally, from the assumption on ϕ̂, we know there exists
a function V : A → R+ which is C1, positive definite and
satisfies:

lim
X→∂A

V (X) = +∞, ∂V

∂X
ϕ̂(X) ≤ −V (X), ∀X ∈ A.

(A.13)

Then let v0 and v∞ be strictly positive real numbers such
that we have:

v0 < v∞, (A.14)

X>PX ≤ p0
3
, ∀X ∈ A : V (X) ≤ v0 (A.15)

d(X , ∂A) ≤ ε, ∀X ∈ A : V (X) ≥ v∞. (A.16)

With (A.13) and since the set

C = {X ∈ A : v0 ≤ V (X) ≤ v∞} (A.17)

is a compact subset of A where V is C1, the real number
obtained as:

G = sup
X∈C

∣∣∣∣∂V∂X (X)

∣∣∣∣ (A.18)

is well defined and strictly positive. We get:
∂V

∂X
(X)ϕ(X) =

∂V

∂X
(X)ϕ̂(X) +

∂V

∂X
(X)[ϕ(X)− ϕ̂(X)]

≤ −V (X) +G sup
X∈C
|ϕ(X)− ϕ̂(X)| , ∀X ∈ C.

So if ϕ satisfies also:

∀X ∈ A, |ϕ(X)− ϕ̂(X)|

≤ infX∈C V (X)

2G
=

infX∈C V (X)

2 supX∈C
∣∣∂V
∂X

(X)
∣∣ , (A.19)

we have:
˙︷ ︷

V (X) ≤ −1

2
V (X) ∀X ∈ C. (A.20)

This implies that the compact set {X ∈ A : V (X) ≤ v0}
is asymptotically stable for the system (A.4) with basin of
attraction containing the compact set defined as {X ∈ A :
V (X) ≤ v∞}. But from (A.15), we have:

{X ∈ A : V (X) ≤ v0} ⊂ {X ∈ Rn : X>PX ≤ p0

3 }. (A.21)

So, with (A.10), (A.12), (A.16), and (A.19) we have
established our result with δ given as:

δ = min

{
a

4

√
p0

12λ̄(P )
,

a

8λ̄(P )
,

infX∈C V (X)

2 supX∈C
∣∣∂V
∂X

(X)
∣∣
}

(A.22)
and N given as:

N =
{
X ∈ A : X>PX ≤ p0

}
. (A.23)
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