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Abstract— The problem of integrator forwarding is revisited
using the notion of dynamically scaled (control) Lyapunov
function. A new class of dynamic stabilizing control laws
is presented, and connections with classical forwarding are
established.

I. INTRODUCTION

The problem of stabilization for general nonlinear sys-

tems using control Lyapunov functions has been recently

revisited in [7], on the basis of the ideas introduced in

[4]. In particular, the main result of [7] states that, under

suitable technical assumptions, the existence of a statically

scaled control Lyapunov function, i.e. of a control Lyapunov

function of the form

l1(V1) + l2(V2), (1)

with l1 and l2 scaling functions, is equivalent to the existence

of a dynamically scaled control Lyapunov function, i.e. of a

function of the form

V1 +
V2

r
, (2)

where r is a dynamic parameter which is updated on-line.

A direct consequence of this equivalence result is that

control design, exploiting for example universal formulae [8],

[2], can be performed using either the statically scaled func-

tion or the dynamically scaled one. This observation leads

naturally to the study of the advantages and disadvantages

of these two designs. A few comments in this direction

have been already given in [7], where it is noted that the

design based on the dynamically scaled Lyapunov function is

simpler in that it does not require the explicit construction of

the scaling functions l1 and l2, although it requires the design

of the differential equation of the scaling parameter r, which

may be non-trivial. In addition, in [4] it has been shown that

the use of dynamically scaled Lyapunov functions is helpful

in some adaptive control and observer design problems, since

the dynamics of r can be specified without the knowledge

of unknown parameters or unmeasured states.

Goal of this paper is to exploit dynamically scaled control

Lyapunov functions in the design of stabilizing control
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laws for a class of feedforward systems (in line with the

preliminary results in [1]) and to highlight the amount of

prior knowledge required in the design of the dynamics of

the scaling parameter. In addition, it is shown that the design

based on dynamic scaling allows to partly match the gain of

any linear feedback, designed for the linear approximation

of the system around the origin.

We complete the introduction noting that dynamic scaling

has been used in the design of control laws for feedforward

systems in [11], [5]. In [11] stabilizing control laws based

on Teel’s nested saturation scheme [9], [10] and on the

introduction of a state scaling parameter have been designed.

The control design relies upon the definition of scaled

dynamics and the dynamic scaling parameter is monotoni-

cally updated using a logic-based scheme. Similarly, in [5]

scaled dynamics are defined, whereas the dynamics of the

scaling parameter obey a differential equation. There are

some significant differences with the approach put forward

in this paper. First, in the present paper it is the Lyapunov

function, and not the state, which is scaled. Secondly, and

most importantly, in this paper the extended system, i.e. the

system with state including the dynamic scaling parameter,

has a globally, asymptotically, stable equilibrium, whereas in

[11], [5] boundedness of the dynamic scaling parameter is

assessed a-posteriori and relies upon convergence to zero of

the state of the underlying system.

Notes

1) We use the verb know to mean that the corresponding

object is available to the designer, whereas we use the verb

exist to mean that the corresponding object exists but it

cannot be used by the designer.

2) To help the reader we collect here some definitions which

are used throughout the paper:

z = y − M(x) ,

δ(x) = h(x) − LfM(x) ,

U(x, y, r) = V (x) +
z2

r
,

N
(

x, z
r

)

= LgV (x) − 2z

r
LgM(x) ,

P
(

x, z
r

)

=

LgM(x)L
(

x, z
r

) (

K(x) + L
(

x, z
r

))−1
K(x)LgM(x)T

(3)
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II. PRELIMINARIES AND PROBLEM DEFINITION

Consider systems described by equations of the form






ẏ = h(x),

ẋ = f(x) + g(x)u,
(4)

where x is in R
n, y is in R and u is in R

m. The functions

h and f are C1 and zero at the origin and the function g

is continuous. System (4) is one of the simplest feedforward

forms. For such a system static, state feedback, stabilizing

control laws can be designed using several approaches, see

for example [10], [6], [3]. Unlike these papers, we aim at

designing a dynamic, state feedback, control law of the form

ṙ = ψ(x, y, r) , u = φ(x, y, r) , (5)

with r in1
R+∗, which renders the point (0, 0, r∗), for some

r∗ > 0, asymptotically stable (see Section III). To achieve

this goal we first revisit the classical forwarding construction

of [6].

A. Forwarding revisited

In [6] it is shown that, static, globally stabilizing control

laws for system (4) exist provided the designer knows a C1

positive definite and radially unbounded function V and a

C1 function M such that2 :

• the functions3 :

x 7→ −LfV (x) ,

x 7→ W (x) := −LfV (x) − LgV (x)K(x)LgV (x)T (6)

are continuous and positive definite, where K is a

C0 function, the values of which are non-negative

symmetric matrices4;

• lim sup
|x|→0

|h(x) − LfM(x)|
W (x)

< +∞ , (7)

• LgM(0) 6= 0 . (8)

Let ℓ and m be two C1 class K∞ functions, define the

function

V(x, y) = ℓ(V (x)) + m((y −M(x))2)

and note that its derivative along solutions is

˙︷ ︷

V(x, y) = −ℓ′(V (x))|LfV (x)| + 2m′(z2) zδ(x)

+
[

ℓ′(V (x))LgV (x) − 2m′(z2)zLgM(x)
]

u,

where, as defined in (3) we have used the notation

z = y −M(x), δ(x) = h(x) − LfM(x) .

1
R+∗ denotes the set of strictly positive real numbers.

2This assumption holds when the origin is a globally asymptotically and

locally exponentially stable equilibrium and ∂h
∂x

(0) ∂f
∂x

(0)−1 g(0) is not
zero.

3This condition can be enforced with the preliminary feedback u =
−K(x)LgV (x)T , with K designed so that this feedback satisfies in a
strict way any given constraint on the control.

4It is sufficient that only its symmetric part be non-negative.

As a result, the function V is a control Lyapunov function

provided

2m′(z2) zδ(x) < ℓ′(V (x))|LfV (x)| (9)

∀(x, z) 6= 0 : 2m′(z2)zLgM(x) = ℓ′(V (x))LgV (x) .

Conditions (9) hold for any functions ℓ and m if δ is

identically zero, which means that we know the function

M solution of :

LfM(x) = h(x) .

When δ is not identically zero, conditions (9) hold if either

of the following conditions holds.

1) For all non-zero x satisfying :

LgM(x) 6= 0,
LgV (x)

LgM(x)
δ(x) > |LfV (x)| , (10)

we have that
LgV (x)
LgM(x) ℓ

′(V (x)) is not in the image of

the function z 7→ 2zm′(z2).s
2) For all non-zero x satisfying

LgV (x) = LgM(x) = 0 ,

any µ that is in the image of the function z 7→
2zm′(z2) satisfies

µδ(x) < ℓ′(V (x))|LfV (x)| .
More conservatively, conditions (9) are satisfied if we choose

the functions ℓ and m satisfying :

2|z||δ(x)|
|LfV (x)| <

ℓ′(V (x))

m′(z2)
∀x 6= 0 . (11)

By condition (7) and since V is radially unbounded, it is

always possible to select ℓ and m such that condition (11)

holds. The selection relies upon the following statement

established in [6] and the proof of which is given in the

appendix for convenience.

Lemma 1: Under condition (7), there exists a C1 function

ℓ : R+ → R+ with non-decreasing and non-integrable

derivative ℓ′ satisfying :

|δ(x)| ≤ ℓ′(V (x)) |LfV (x)| ∀x ∈ R
n . (12)

Once ℓ has been selected as in Lemma 1, the selection

m(s) =
√

1 + s − 1 (13)

is such that condition (11) holds.

B. Motivating dynamic scaling

The left hand side of equation (11) is x dependent, whereas

the right hand side is V (x) dependent. This means that,

in general, there is no tight solution to the inequality (11),

whereas we are interested in a tight solution. The main reason

for the satisfaction of the tight inequality is as follows. The

“nominal” feedback resulting from the use of the statically

scaled control Lyapunov function is of the form :

u = −2L0(x, z)
[

ℓ′(V (x))LgV (x) − 2zm′(z2)LgM(x)
]T
,
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with L0 a continuous function, the values of which are

positive definite symmetric matrices5. In this feedback the

contribution of z is reduced by the fact that zm′(z2) is

bounded (see (11)) and ℓ′(V (x)) is larger.

Finally note that, around the origin, the nominal control

is approximated by

u ≈ −2L0(0, 0)

[

ℓ′(0)xT ∂
2V

∂x2
(0)g(0) − ∂M

∂x
(0)g(0)z

]T

(14)

where according to (12), ℓ′(0) is constrained by the inequal-

ity

ℓ′(0) ≥ lim sup
x→0

|δ(x)|
|LfV (x)| .

Since ℓ′(0) dictates the relative importance of the z-term in

the approximation of the control around the origin, it may be

difficult to select ℓ to match the gain of z of a (given) linear

stabilizing feedback (designed on the linear approximation

of the system around the origin).

To possibly increase the contribution of z in the feedback,

we exploit the idea in [1] and we take advantage of the

dynamic extension ṙ = ψ, with r taking values in R+∗. As

in [1], r plays the role of the ratio
ℓ′(V (x))

m′(z) .

This leads to consider the partial control Lyapunov func-

tion (see [7]):

U(x, y, r) = V (x) +
z2

r
. (15)

We use the term partial since U is positive definite and proper

in x and z√
r

only.

III. MAIN RESULTS

In this section we employ the partial control Lyapunov

function (15) to design dynamic stabilizing control laws

of the form (5). We present three alternative designs, each

relying on a set of data on the system (4) and on the scaling

function ℓ.

A. Design I – ℓ known, K non-positive definite.

The simplest design relies on the knowledge of the

function ℓ satisfying the condition of Lemma 1. Precisely,

suppose we know a C1 function κ : R+ → R+, which is zero

at zero, with non-decreasing and non-integrable derivative κ′,
satisfying :

2|δ(x)|
|LfV (x)| <

√

κ′(V (x)) ∀x ∈ R
n \ {0} . (16)

Define the function

U(x, y, r) = [r − r∗ log(r) − r∗ + r∗ log(r∗)]

+
κ(U(x, y, r))

α
,

with α ∈ (0, 1) and r∗ > 0 design parameters. Note

that U is positive definite in (x, y, r − r∗) and proper on

R
n × R × R+∗. Its derivative along the solutions of system

5Again it is sufficient that only the symmetric parts be positive definite.

(4)-(5) is :

˙︷ ︷

U(x, y, r) =
r − r∗
r

ψ

+
κ′(U(x, y, r))

α

[

LfV (x) +
2zδ(x)

r
+N

(

x,
z

r

)

u− z2

r2
ψ

]

,

where

N
(

x,
z

r

)

= LgV (x) − 2z

r
LgM(x) . (17)

Selecting the nominal control

u = φ
(

x,
z

r

)

= −2L
(

x,
z

r

)

N
(

x,
z

r

)T

, (18)

where L is a continuous function, the values of which are

positive definite symmetric matrices, yields

˙︷ ︷

U(x, y, r) =

(

r − r∗
r

− κ′(U(x, y, r))

α

z2

r2

)

ψ

−κ
′(U(x, y, r))

α

[

|LfV (x)| − 2zδ(x)

r

]

−2
κ′(U(x, y, r))

α
N

(

x,
z

r

)

L
(

x,
z

r

)

N
(

x,
z

r

)T

,

where using (16) and the property that κ′ is non decreasing,

we have :

2|zδ(x)|
r

− √
α |LfV (x)|

≤ √
α|LfV (x)|

[
√

κ′(V (x))
α

|z|
r
− 1

]

,

≤ √
α|LfV (x)|

[
√

κ′(U(x,y,r))
α

|z|
r
− 1

]

,

≤ α|LfV (x)|

[

κ′(U(x,y,r))
α

|z|2
r2 − r−r∗

r

]

− r∗

r
√

κ′(V (x)) |z|
r

+
√
α

.

Hence, with ψ as control, the function U is a control

Lyapunov function satisfying the small control property. It

follows that ψ can be selected using one of the universal

formulae [8], [2]. For instance, selecting

ψ =







−A+
√
A2 +B4

B
if B 6= 0

0 if B = 0
(19)

where :

A = −κ
′(U(x, y, r))

α

[√
α|LfV (x)| − 2zδ(x)

r

]

,

B =
r − r∗
r

− κ′(U(x, y, r))

α

z2

r2
,

yields

˙︷ ︷

U(x, y, r) ≤ −
(

r − r∗
r

− κ′(U(x, y, r))

α

z2

r2

)2

−1 −√
α

α
κ′(U(x, y, r)|LfV (x)|

−2
κ′(U(x, y, r))

α
N

(

x,
z

r

)

L
(

x,
z

r

)

N
(

x,
z

r

)T

.

Hence
˙︷ ︷

U(x, y, r) is negative definite in (x, y, r−r∗) on R
n×

R × R+∗. This establishes that the dynamic feedback given
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by (18), (19) is asymptotically stabilizing the point (0, 0, r∗)
with R

n × R × R+∗ as domain of attraction.

Finally note that, close to this equilibrium point, the

control can be approximated by

u ≈ −2L(0, 0)

[

xT ∂
2V

∂x2
(0)g(0) − ∂M

∂x
(0)g(0)

2z

r∗

]T

(20)

where as opposed to ℓ′(0) in (14), r∗ is a free design para-

meter which may be selected to adjust the gain multiplying

z, and hence to possibly recover a linear feedback that has

been designed for the linearized system around the origin.

B. Design II – ℓ unknown, K positive definite

In this section we deal with the case in which the function

ℓ is unknown (although it exists). Let u be as in (18). Using

(6), we have

˙︷ ︷

U(x, y, r) = −W (x) +
2zδ(x)

r
− z2

r2
ψ

−2N
(

x,
z

r

)

L
(

x,
z

r

)

N
(

x,
z

r

)T

−LgV (x)K(x)LgV (x)T ,

where, by (6) and (12), we have, for all α ∈ (0, 1),

−αW (x) +
2zδ(x)

r
≤ δ(x)2

αW (x)

z2

r2

≤ ℓ′(V (x))2

α
W (x)

z2

r2
. (21)

So, with ψ as control, U is a partial control Lyapunov

function which satisfies the small control property. As a

result, one could design ψ using universal formulae as in

(19). However, since U is only a partial Lyapunov function,

care should be taken to make sure that r is bounded, and

possibly converges to some value r∗. This motivates the

following computations to get an alternative expression.

Consider the inequality

LgV KLgV
T +NLNT

= LgV KLgV
T +

[

LgV − 2z

r
LgM

]

L

[

LgV − 2z

r
LgM

]T

≥ 4z2

r2
LgML(K + L)−1KLgM

T ,

and let

P
(

x,
z

r

)

= (22)

LgM(x)L
(

x, z
r

) (

K(x) + L
(

x, z
r

))−1
K(x)LgM(x)T .

Since K and L are assumed to be positive definite, the matrix

L (K + L)−1K is symmetric and positive definite as well.

This yields

˙︷ ︷

U(x, y, r) ≤ −N
(

x,
z

r

)

L
(

x,
z

r

)

N
(

x,
z

r

)T

−W (x) +
2zδ(x)

r
− z2

r2

[

ψ + 4P
(

x,
z

r

)]

.

We select ψ as

ψ(x, z, r) =

































−4P
(

x,
z

r

) r − r∗
r

+
max

{

−αW (x) + 2zδ(x)
r

+ z4

r4W (x), 0
}

r2

z2

if z 6= 0 ,

−4P (x, 0)
r − r∗
r

if z = 0 ,

where α is chosen in (0, 1) and r∗ is the nominal value

we choose for r. It follows from (21) that this function is

continuous on R
n×R×R+∗. Note also that the expression of

ψ involves only known data. Observe that, for any β in (0, 1],
ṙ is non-negative when r ≤ βr∗, hence the set r ≥ βr∗ is

forward invariant for the closed-loop system.

To study the behavior of the solutions of the closed-loop

system, we define the function

U(x, y, r) =
[

log(r) + r∗

r

]

+ κ(U(x, y, r)) ,

where κ is to be chosen as a C1 class K∞ function. U is

positive definite in (x, y, r−r∗) and proper on R
n×R×R+∗.

Its derivative along the solutions of the closed-loop system

satisfies :

˙︷ ︷

U(x, y, r) ≤

+
r − r∗
r2

ψ(x, z, r) − κ′(U(x, y, r))×

×
[

N
(

x,
z

r

)

L
(

x,
z

r

)

N
(

x,
z

r

)T

+

([

(1 − α) +
z4

r4

]

W (x) + 4P
(

x,
z

r

) z2

r2
r∗
r

)]

.

Since, in the expression of ψ, we have, for z 6= 0,

max
{

−αW (x) + 2zδ(x)
r

+ z4

r4W (x), 0
}

r2

z2

≤
[

ℓ′(V (x))2

α
+
z2

r2

]

W (x) ,

by completing squares, we obtain, for r ≥ βr∗,

r − r∗
r2

ψ(x, z, r) ≤ −4P
(

x,
z

r

) (r − r∗)2

r2

+

[

ℓ′(V (x))2

αβr∗
+

z4

2r4
+

1

2β2r2∗

]

W (x) .

This yields, for r ≥ βr∗,

˙︷ ︷

U(x, y, r) ≤ (23)

−4P
(

x,
z

r

)

[

(r − r∗)2

r2
+ κ′(U(x, y, r))

z2

r2
r∗
r

]

−κ′(U(x, y, r))N
(

x,
z

r

)

L
(

x,
z

r

)

N
(

x,
z

r

)T

−
[

(1 − α)κ′(U(x, y, r)) − ℓ′(V (x))2

αβr∗
− 1

2β2r2∗

]

W (x)

−
[

κ′(U(x, y, r)) − 1

2

]

z4

r4
W (x) .

By condition (8), equations (17) and (22), and since K
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and L are positive definite,
˙︷ ︷

U(x, y, r) is negative definite

in (x, y, r− r∗) on R
n×R×R+∗ provided κ′ is chosen non

decreasing and satisfying :

κ′(v) ≥ max

{

1

2
,

2

1 − α

[

ℓ′(V (x))2

αβr∗
+

1

2β2r2∗

]}

.

The inequality (23) is established only for r ≥ βr∗ and κ

and therefore U depend on β. But β is arbitrary in (0, 1] and

the closed-loop system does not depend on this real number.

Hence we have proved the asymptotic stability of the point

(0, 0, r∗) with R
n × R × R+∗ as domain of attraction.

Finally note that, also in this second design, in which

no information on ℓ has been exploited, the control can be

approximated, locally around the origin, as in equation (20).

C. Design III – ℓ unknown, K non-positive definite, ℓ′(0)
known

In section III-A, the knowledge of ℓ allowed us to dom-

inate the term
zδ(x)

r
with an appropriate choice of ψ. In

section III-B, we took advantage of the negative definite

term in z
r

provided by the definite negativeness of K . We

consider now the case in which the function ℓ in Lemma

1 is unknown (although it exists) and K may be singular.

Fortunately, when ℓ′(0) is known, it is possible to modify

the technique introduced in Section III-A to obtain a global

asymptotic stability result. To show this we assume that

we know a pair of strictly positive real numbers (v0, κ0)
satisfying :

2|δ(x)|
|LfV (x)| <

√
κ0 ∀x : V (x) ∈ (0, v0] . (24)

Then, let σ : R+ → [0, 1] be a C1 function, with a non-

positive derivative, such that6

σ(v) = 1 if v = 0 ,

∈ [0, 1] if 0 < v < 1,

= 0 if 1 ≤ v ,

and define

Uloc(x, y, r) = λσ

(

U(x, y, r)

v0

)

(r − r∗)2

1 + (r − r∗)2

+U(x, y, r) ,

with7

λ < min

{

8α

3
√

3κ0

,
v0

2 maxv∈[0,1] |σ′(v)|

}

,

where α in chosen in (0, 1
4 ). As opposed to the func-

tions U we introduced in sections III-A and III-B, Uloc

is positive definite and proper only in (x, z√
r
). Therefore

complementary arguments are needed to derive a stability

result. Nevertheless with the nominal control u given in (18),

6For example, we could select σ(v) = 2(1 − v)2 − (1 − v)4 for
v ∈ [0, 1] and = 0 elsewhere.

7The bound is obtained observing that the derivative of the function r2

1+r2

is upper-bounded by 3
√

3

8
.

this functions gives

˙︷ ︷

Uloc(x, y, r) = (25)
(

λσ

(

U(x, y, r)

v0

)

2(r − r∗)

(1 + (r − r∗)2)2
− z2

r2

)

ψ

−
[

λ

v0
σ′

(

U(x, y, r)

v0

)

(r − r∗)2

1 + (r − r∗)2
+ 1

]

×

×
[

|LfV (x)| + 2N
(

x, z
r

)

L
(

x, z
r

)

N
(

x, z
r

)T − 2zδ(x)
r

]

.

By completing squares and using the properties

2(r − r∗)

(1 + (r − r∗)2)2
≤ 3

√
3

8
≤ α

λκ0
,

σ

(

U(x, y, r)

v0

)

= 0 ⇒ |δ(x)|2 ≤ κ0 |LfV (x)|2 ,

we have

−2
√
α|LfV (x)| + 2zδ(x)

r

≤ −
√
α|LfV (x)| + δ(x)2√

α|LfV (x)|
z2

r2

≤ δ(x)2√
α|LfV (x)|×

×
(

z2

r2
− λσ

(

U(x, y, r)

v0

)

2(r − r∗)

(1 + (r − r∗)2)2

)

In addition the selection of λ is such that

3

2
≥

[

λ

v0
σ′

(

U(x, y, r)

v0

)

(r − r∗)2

1 + (r − r∗)2
+ 1

]

≥ 1

2
.

By (12), this proves that, with ψ as control, Uloc satisfies

the property of being a control Lyapunov function8 and the

small control property. Hence ψ can be selected using the

universal formula (19) with

A =

[

2
√
α|LfV (x)| − 2zδ(x)

r

]

×

×
[

λ

v0
σ′

(

U(x, y, r)

v0

)

(r − r∗)2

1 + (r − r∗)2
+ 1

]

and

B = λσ

(

U(x, y, r)

v0

)

2(r − r∗)

(1 + (r − r∗)2)2
− z2

r2
.

As a result

˙︷ ︷

Uloc(x, y, r) ≤ − Wloc

(

x,
z

r

)

−
(

λσ

(

U(x, y, r)

v0

)

2(r − r∗)

(1 + (r − r∗)2)2
− z2

r2

)2

where

Wloc =
1

2

(

(1 − 2
√
α)|LfV (x)| + 2N

(

x,
z

r

)

L
(

x,
z

r

))

8Although as already mentioned it is not positive definite and proper in
(x, y, r).
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is a positive definite in (x, z
r
). We take advantage of this

positiveness and modify the function ψ defined above by

adding the term

− βWloc

(

x,
z

r

) r

1 + z2
(r − r∗) ,

with β in (0, 1). This term remains strictly positive as r goes

to 0 except if x and z
r

goes to 0 too. But the remaining part

of ψ given by the universal formula (19) tends to 2λr∗

(1+r2
∗)2 as

(x, z
r
, r) tends to 0. So the set r > 0 is forward invariant for

the closed-loop system. Then, since we have

− βWloc

(

x, z
r

)

r
1+z2 (r − r∗)×

×
(

λσ
(

U(x,y,r)
v0

)

2(r−r∗)
(1+(r−r∗)2)2 − z2

r2

)

≤ βWloc ,

this modification yields

˙︷ ︷

Uloc(x, y, r) ≤ − (1 − β)Wloc(x,
z

r
)

−
(

λσ

(

U(x, y, r)

v0

)

2(r − r∗)

(1 + (r − r∗)2)2
− z2

r2

)2

.

It follows that, along any closed-loop system solution, as

long as it exists in positive time, x, z
r

, φ
(

x, z
r

)

in (18) and,

therefore ẋ and ż, are bounded and

(

λσ

(

U(x, y, r)

v0

)

2(r − r∗)

(1 + (r − r∗)2)2
− z2

r2

)2

and Wloc

(

x, z
r

)

are integrable. As a result, ṙ is upper-

bounded along any solution and all solutions are defined in

[0,+∞). It follows that λσ
(

U(x,y,r)
v0

)

2(r−r∗)
(1+(r−r∗)2)2 − z2

r2 , x

and z
r

tend to 0, as time goes to ∞. Finally, since σ(0) = 1,

we have also that r converges to r∗.

IV. CONCLUSIONS

The stabilization problem for a simple class of feedforward

systems has been revisited. It has been shown that the use

of dynamically scaled control Lyapunov functions yields

new, dynamic, state feedback, stabilizing control laws. To

prove our results we have given expressions for the feedback

which can be evaluated with the knowldege that we have on

the system. In applications specific expressions should be

derived.
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APPENDIX I

PROOF OF LEMMA 1

Let L:R+∗→R be the function defined by :

L(v) = supx : V (x)≤v
δ(x)

|Lf V (x)|
v>0 .

This function is well defined. If not, we would have a strictly

positive real number v∗ and a sequence xk in R
n satisfying :

V (xk) ≤ v∗ ,
δ(xk)

|LfV (xk)| ≥ n .

Since V is continuous and radially unbounded, xk is in a

compact set. Let x∗ be any of its cluster points. By condition

(7), x∗ cannot be the origin since it would contradict the un-

boundedness of the sequence
δ(xk)

|Lf V (xk)| . Then, |LfV | being

positive definite, |LfV (x∗)| is non-zero and the function δ

being continuous, the sequence
δ(xk)

|LfV (xk)| must be bounded,

which is a contradiction.

From its definition, the function L satisfies :

L(V (x)) ≥ δ(x)
|Lf V (x)|

∀x∈R
n\{0} .

In addition, it is non-decreasing, hence it has a limit when

v tends to 0. Let

L(0) = limvց0 L(v) .

Note now that, since δ and LfV are both zero at the origin,

we have :

L(0) |Lf V (0)| ≥ δ(0) .

Finally, the definition of L(0) implies that L is continuous at

0. Actually L is continuous on R+. But proving this is long

and we prefer the shortest path of defining the derivative ℓ′

of ℓ as a smoothed version of L. Specifically, we define ℓ′

as the Riemann integral :

ℓ′(v) =
1

v

∫ 2v

v

max{w,L(w)}dw if v 6= 0 ,

= L(0) if v = 0 .

It is continuous, non-decreasing, non-integrable and satis-

fies :

L(v) ≤ ℓ′(v)

and therefore (12) holds.
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