A new observer for an unknown harmonic oscillator
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Abstract—In this paper we consider the problem of esti- also [1]). In this method the observer is given by a mem-
mating amplitude, phase and frequency of a pure sinusoid oryless transformation of the state of an Hurwitz system
following the nonlinear observer theory presented in [7] and  yiyen py the measured signal. The apparent advantage in
[1]. We show how the estimation can be carried out by . . . . .
processing, through a static nonlinear function, the state of pur§umg this strategy is that the Hur\/\{|tz system is able
an Hurwitz system of suitable dimension. Simulation results to filter the effect of measurement noise by thus show-
are also presented showing the effectiveness of the method ing certain robustness features to high-frequency additive
also in presence of high frequency noise superimposed to the disturbances. In this paper these robustness features are
estimated sinusoid. exhibited by simulation investigation. The proposed results
represent only preliminary achievements which must be
improved in several directions. First of all the proposed

This paper deals with the problem of asymptoticallymethod is inherently limited to the estimation of a single
estimating amplitude, frequency and phase of a sinusoidgihusoid. In this respect future attempts will be directed to
signal by adopting the theory of observers proposed iflentify a possible interconnection of elementary units of
[7] and further investigated in [1] (see also [8] and [6]).the kind presented in this paper to estimate periodic/quasi-
The theory in question leads to an observer which is giveperiodic signals given by the superimposition of different
by a linear Hurwitz system of suitable dimension whos@éarmonics. Furthermore the explicit observer form is given
state is processed by a nonlinear map to yield the desireéider the assumption that the actual frequency lies within
estimates. a known (possibly large) compact set. Global frequency

The problem of frequency, amplitude and phase estestimation results are still missing and will be investigated
mation of a sinusoidal signal has attracted a remarkabie the future. Finally the aforementioned robustness proper-
research attention in the past and current literature (séies with respect to additive noise is not yet proved formally
[9]). The reasons of this interest rely on several engineerintgut only supported by intuition and simulation results.
applications where an effective and robust solution to thi$his is a further theoretical improvement, which will be
problem is crucial. To mention few, it is worth mentioningaddressed in the future, involving the investigation of the
problems of harmonic disturbance compensation in awegularity properties of the memoryless output transforma-
tomatic control, design of phase-looked loop circuits irtion which characterizes the proposed observer. Moreover,
telecommunication, adaptive filtering in signal processindhecause of the very simple structure of the system and the
etc. many solutions proposed to solve the observation problem,

In [3] the authors propose an adaptive notch filter foit could very well be that our observer is nothing but an
global estimation of the frequency of a sinusoidal signaklready available one (or a variation of it) but expressed
The problem can also be addressed by means of classigala completely different way. A very deep and specific
adaptive control techniques as, e.g., in[5], [4]. This isnalysis is needed to check this point.

motivated by the fact that a signal consisting of a finite sum The paper is organized as follows. In the next section
of sinusoids with unknown frequencies can be thought afe nonlinear Luenberger observer theory as originally
generated by the output of a linear system with uncertaisroposed in [7] and refined in [1] is briefly recalled.
parameters. In this framework, the problem of estimatiOSection Il presents the main result of the paper, name|y
of frequencies can be cast as problem of parameters estie explicit form of the observer in the case of amplitude,
mation and, as expected, the theory of adaptive observgiRase and frequency estimation of a pure sinusoid. The
can be successfully proposed as a tool. Recently, in [2],rasult is proved in Section IV while simulation results are

global dynamic estimator of frequency and amplitude o§hown in Section V. Finally Section VI with final remarks
a single sinusoidal signal has been presented. As showRd future developments.

by the author, the proposed solution can be cast in terms
of adaptive observers and it is potentially very sensitive to

I. INTRODUCTION

measurement noise. To reduce noise sensitivity, in [2] an |l. THE NONLINEAR LUENBERGEROBSERVER
higher order estimator making use of filtered variables is
proposed. In this section we briefly review the structure of the

The goal of this paper is to suggest a further contributiogbserver proposed in [1]. Given an observed system
to this rich scenario by showing how to solve the problem
at hand through the observer’s theory proposed in [7] (see = f(x) y = h(x) Q)



with statex € R C R"”, and outputy € R, the observer is In this way, the problem of estimating amplitude, fre-
chosen as quency and phase of a sinusoidal signal can be translated
E=Fe+ Gy z=~(&) (2) into the problem of state observation of the system (4).
According to the results sketched in the previous section,
we consider an observer of the form (2) in which, G)
are chosen as

in which F' is an Hurwitz matrix of suitable dimension
m X m, (F,G) is a controllable pairyy : R™ — R™ is a
continuous map and € R™ represents an estimate of
Following [1], the intuition behind this choice is to design F = —diag(A1, A2, ... Ap) G=(1,1,...1)
the map~(-) to be a left inverse of a continuous map.

) o in which \;, i = 1,...,m are positive design parameters.
T: R~ R™ satisfying In this specific case the expression of the rifapatisfying
dig(;) (z) = FT(z) + Gh(z). (3) (3 can be proved to be
T
T(z)=( Ti(z) To(z) ... Tn(z)) (5)

As a matter of fact, it is easy to show that,if is any
map satisfying (3) for all- € R, so long as the trajectory in which

of (1) exists and it is finite, T RS — R i=1,...,m
tlilgo |€(t) — T(x(t))] =0. v AiZ1 + T2 ' (6)
)\12 + x3

Designing the map so that it is uniformly continuous on

some open neighborhood of B{R) and such that The result which will be proved in the paper is that the

map T defined in (5)-(6) turns out to be injective on any
vyoT(z)==x VzeR, compact subset of the open set

it turns out thatt asymptotically converges to the true state O:={xcR® : 2}+23#0, 23>0 (7)
2 and (2) qualifies as a possible state observer.
The crucial result in this context (see [1]) is thatnif

— the dimension of the observer — is chosen sufficientl
large, and certainbservability conditionare satisfied (see
[1] for more details), the mag” is injective and hence
possesses a left-inverse. The big practical obstacle, thou
in the design of such an observer is the actual constructi
of the map~. This will be addressed in the next part of"
the paper in the specific case system (1) is an uncerta

provided thatm > 4 and the);’s are mutually distinct. It
is worth noting that the requirement thate O, qualifying
s apersistence of excitation conditiprepresents, in this
specific setting, the required observability condition needed
o} haveT (-) injective and, as a consequence, to design the
gmaép ~(-). As far as the latter is concerned, the crucial
result which will be proved in the paper is that if the
rHtlaI condition of z3 is known to range in a bounded
set [z3, Z3] with z, and zs arbitrary positive numbers,

oscillator. and the dimensiom is chosen equal tew = 4, a possible
[1l. THE RESULT expression of the magp is given by
The main goal of the paper is use the approach of [1] d(E)TILT(E)F2¢ if € e RY\ {0}
in the specific case in which the observed system (1) is a Y(§) = { _ 8)
system of the form 7o if&=0
i = —xy in which ~q is an arbitrary real number,
51:72 = 311 (@) () = (LTQLE) + &)
o= 0 Lo = (A1 -¢)
=
Y ! with .
with statez := (x1,79,23) € R and measured output A= (M X A3 )
y € R. The output of this system, generated from an initial 1 = (1111 )T )
condition (z19, 720, ¥30) € R?, is given by the sinusoidal . . .
signaly(t) = Asin(wt + ®) with amplitude I'the 4 x 4 identity matrix and
p(€) = max{l|¢|* —2|M¢f?, 0} 9)
A= \/(x%ox?)o +a3) /230 , ith
) ) wi
frequency and phase respectively given by 0 MM M—As As— A
W = /230, d = tan™ («/1‘3 xlo/l‘go) M = )\4—)\3 0 )\1—)\4 )\3—)\1
)\2—/\4 )\4—)\1 0 )\1—)\2
11t turns out that a possible expression®fsatisfying (3) is given by A3—Xa A1 —A3 Ao — N\ 0
-0
T(x) =/ e TS Gh(pw(s,x))ds, and ¢ obtained by solving the following minimization
e problem
in which ¢ (s,z) denotes the value of the trajectory of (1) at time /= inf |MT( )‘ (10)

passing through: at time s = 0. €0, |T(x)|=



having denoted where

- a _ .b
O,={zeR®: 2} +23#0, 23 € [z3, 73]}. (11) i;—i%’
2~ T

a b _a b _a b
. . . VX1, L1,L9, Lo, Tq,T =
The mapy so defined will be proved to be continuous on (21, 27, 25, 23, 25, 23) Bt — 282

R*\ {0} and to satisfyy o T(z) = x for any x € O,. By — 282
Thus, according to the previous discussion, the propose(
observer asymptotically estimates the state of (4) provide 5 )
that its initial condition is constrained on tfmvariant set AT AT A1
R C O, defined as : : S

d wheredd denotes th&/andermonde matrix

R={zeR’:r<azi+a3 <R, z3€ [z3, T3]}. : : S

: - " . ; DA C D V|

with r, R arbitrary positive real numbers. Details regarding m.m

the proof of this result are given in the next section. Provided the);’s are mutually distinct, this matrix is left
invertible form > 4. In this case, we have

IV. PROOF |(BT0) 1T [T () — T(zP)]| <

To prove that the expression of the functi@his the

one given in (6), note that, being the dynamics of b . ’T(xa) — T(g;b)‘ .
a component of given by Amin (V1Y) 1
&= “NE + 21, (12) On the other hand, the triangle inequality leads to
a a.b |I.a|+‘zb| a b
in view of the linearity inz; andz, of (4) and (12), the 232t —afay| + = et - ey 2
T;’s are linear in those variables, i.e. |23 | + |2b] | b 2
— |3 — X .
2 3 3
Ti(x) = os(x3)z1 + Bias) xs .
(=) (z3) 21 (3) yielding, for m > 4 and mutually distinct\;’s,
Since, by (3),1; must satisfy a N a a a
) |z — xﬁ’\ + [x5 — $S| + c(ml,x?,xQ,xE’) |x§ — T3
=ML+, < d(a3,28) |T(a%) - T(a®)|
the auxiliary functionsy; and 3; are solutions of where
—za ai(w3) + w3 w1 Biws) = c(a?, 2P, 28, ab) = 28] + o8] + |of] + |o3)]
—>\1‘ [Oéi(l'g).’bl +ﬂ1(1'3)12] + 12 2
. a b712 a b
or equivalently - [maxi 2 + W} {1 i %}
d(z§, z3) = T 1
r3fBi(z3) = —Niai(zs) + 1, Amin (V7D)
a(m3) = NifBi(ws) This proves the desired result, namely that the funcfios
. . Lipschitz injective on any compact subset@f Note that
which, solved fora; and 3;, yield (6). it is not Lipschitz-injective or® as its Lipschitz constant
We prove now that ifm > 4 the mapx — T =  would tend to infinity asr; would go to infinity or(z1, z2)
(T1,...,T,) is Lipschitz injectivé on any compact subset would go to the origin.
of O defined in (7). For, let:* and 2z be two points in We prove now that the map — ~(¢) defined in (8)
R3. We have represents a left inverse @fon 7'(0). To this purpose note
Ti(z®) — T(aP) = that thge problﬁgn c;f cgmgn;tir:g ?szt inversel(bfamount)s,
given { = COl({1,82,83,84), 10 TINA x = COl(x1, T2, X3
(A7 + 28] [Niad + 28] — [\ + 2] [Nz} + ab] possibly solution of
[\? + 23][A7 + 23] Niz1 + o _
yielding & = Py i=1,...,4
U v(zy, b, 8, 25, 23, 2b) or equivalently, as\? + z3 > 0 on O,

T(a*) ~T(z") = 2 . b2 1 42
A7 + 23] (A7 + 23] GNP 4m3) — Nz — 22 =0 i=1,...,4.

~ ?Afunction f : A — B on metric spaces! and B is said Lipschitz  |n compact form the previous set of equations rewrites as
injective if there exists a positive real numbrsuch that, for any pair

(a,b) in A, we have: L(&)x — F2§ =0. (13)
da(a,b) < Ldp(f(a), f(b))- Lipschitz injectivity of the functionl” guarantees that this
set of equations has a solutionéfe T'(O). In particular



it turns out thatL(¢) is left invertible onT(O) and the Because the,; are mutually distinct, the left hand side is a
solution of (13) is given by positive definite quadratic form i1, z2,) with a unique
 (LT(OL(EN LT (6 F2 T . global minimizer. Because of the Vandermonde §tructure,
7= (L)) (OF7¢ £€T(0) its global minimum can be smaller thae, with ¢ arbitrary
To extend the solution outsid&(O), we look for a solution only if ¢ = b = 0. £ having norm1, this leads to a
of (13) in a mean square sense. Specifically, we look fatontradiction.
the vectorz = col(Z1, 22, £3) minimizing the function From this, we conclude that [f\/¢|? is strictly smaller
5 . .
T = |L6)i — F2¢)? AT than£|§| L then¢ canngt be in’(O,.). Hen_ce, _the cr_]qce
! | Ok £| ) (9) satisfies (14) and yields a matdx &) which is positive

wherep(-) is an arbitrary positive function satisfying definite for allé € R*\ {0}.

u€) =0 VEeT(0) (14) V. SIMULATION RESULTS
designed to extend the solution outsii@)). In particular, We have implemented the proposed observer in order
as the minimizer is solution of to check the reliability of the estimation in presence of

T s _ 7T 2 high frequency noise superimposed to a low frequency
[L (©)L(E) +M(§)I] B =LIOF¢ (15) pure sinusoid. The observer has been implemented with
we designu(§) satisfying (14) so that the matriR() =  the values of)\; setto); = 1, s = 2, A3 = 3 and
LT (&)L(E) + u(é)I is invertible for all & € R*\ {0}. ), = 4. It turns out that the bandwidth of the linear system
Indeed, in the next part of the proof, we prove that (9) i$F, ) is approximatelyl rad/sec. The nonlinear output
a possible choice fulfilling the previous requirements. Foinap ~ in (8) has been tuned with = 5 according to
we first note that the matribX(¢) is not left invertible, 3 trial and error procedure to satisfy (10). The observer
namely L™ (¢)L(¢) is singular, if and only if¢ satisfies has been driven with a “low frequency” sinusoid with

Mg =0. amplitude 2 and frequency3 rad/sec perturbed with an
Furthermore, in case det (¢)L(¢) = 0, namelyM¢{ = higher frequency harmonic with amplitude2 (10% of
0, then necessarily there existand b such that the main amplitude) and frequency setl® rad/sec,102
E=a\+0b1. rad/sec and 0® rad/sec in three subsequent experiments.

) i . . ) The high frequency components have been chosen to be
With this and the definition (11) in mind, we show Now oqpectively1, 2 and 3 decades after the bandwidth of
that 'gg is in T'(Oy) (|.2e. satisfies (13)), a lower bound for ¢ fijter. Simulation results regarding the amplitude and
[ M¢|* in the forn_1£|§| _W'th 4 _stnctly positive, defmt_ad In frequency estimation are shown respectively in figures
(10). To prove this claim, we first observe that (13) implies; 5 3 514 figures 4,5,6 in the three different noise scenarios
(change(zy, z2) in (az1,az2) ) described above. From these figures it can be noted that

EeT(0,) = af €T(0,) Va. the steady state estimation error is approximatg,
Furthermore, from (10), we have 1% and0.1% of the respective nominal values with mean
' N ' and standard deviation steady state values specified in the
|ME| Ve eT(0)\ {0} . caption of the figures.

1|2 In order to compare the performances of the proposed
For the sake of obtaining a contradiction, assuime 0. observer with the ones of recently-proposed frequency
This implies the existence of a sequerigein 7(0,) and  estimators, we have implemented tfith order adaptive
with unit norm such thaf//¢,, goes to zero. The sequenceobserver proposed in [2]. This adaptive observer is given
being in the unit sphere, it has an accumulation pgint by the filters

¢ <

which, by continuity, satisfieg*| = 1 and M¢* = 0. So £ = —A\&+3\y
there exista andb and a sequence, in O, such that we :_ A 2\
have S = —A& — 207,

NiZ1n + Ton introduced for measurement noise reduction, and by the

E*:a)\—i—bl, fin:

N+ 25, dynamics (of ordeb) described by
and, for anys, we can findV such that for alw > N, we 21 = % +A§T9A + (14 aX)(A\y?/2 — %)
have ,’22 = )\fTﬁ + Oé()\y2/2 — 21)
> lin = (aXi+0)* < e (16) 0 = Tey?/2—5)

with T' = diag(yo, 71, 72) and~o, 71,72, A anda positive
design parameters. The numerical values of the latters have
been chosen as proposed in the simulation section of [2].
The adaptive observers have been tested in the three noise
Nilw1n — axl] + [won — baj] — Ala — A2b ? < 9 scenarios described above and the results (only regarding
A2 + 3 - " the frequency estimation given bﬂ) are shown in
(27) figures 7,8 and 9 below.

Sincexs,, is in [z3, T3] there is a finite accumulation point
z% in this interval. In this case, for any> 0, there exists
n (large enough), such that we have

>

%




VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

Following the observer theory pioneered in [7] anc
developed in [1], we have presented a new observer fi
an uncertain oscillator. We have shown how amplitude
phase and frequency of a pure harmonic can be estimat
by a memoryless transformation of the steady state of ¢
Hurwitz system, of dimension at leastdriven by the esti-
mated signal. Simulation results showing the effectivene:
of the proposed method and its robustness with respe
to high frequency noise have been also presented. Futt
developments will be mainly focused on extending the
proposed theory to estimate a multi-frequency signal ar
to achieve global convergence in the frequency componel
Further attempts will be directed to rigorously characteriz

the robustness of the proposed observer to high frequency

noise by comparing its properties with respect to the onédg- 1-

of phase-looked loop circuits presented in literature.
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Fig. 7. 7th order adaptive observer described in [2]. Frequency

estimation in case of measurement noisel@trad/sec. The mean and

tandard deviation steady state values of the estimate are respectively
al t02.6677 and 0.8463.

Fig. 4. Frequency estimation in case of high frequency noisé0at
rad/sec. The mean and standard deviation steady state values of
estimate are respectively equal2®956 and0.1164.
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Fig. 8. 7th order adaptive observer described in [2]. Frequency

estimation in case of measurement noisd @t rad/sec. The mean and

tandard deviation steady state values of the estimate are respectively
al t03.7028 and 1.1004.

Fig. 5. Frequency estimation in case of high frequency noise0at
rad/sec. The mean and standard deviation steady state values of
estimate are respectively equal3d® and 0.0142.
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Fig. 9. 7th order adaptive observer described in [2]. Frequency

estimation in case of measurement noisd @t rad/sec. The mean and

tandard deviation steady state values of the estimate are respectively
al t02.8141 and 0.5285.

Fig. 6. Frequency estimation in case of high frequency noisg0at
rad/sec. The mean and standard deviation steady state values of
estimate are respectively equal3® and 0.0014.



