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Abstract— The main goal of the paper is to complement
the theory of nonlinear output regulation without immersion
presented in [7] with results useful for practical design of the
regulator. In a general framework relying only on an assump-
tion about stabilizability of the zero dynamics of the controlled
plant, we present explicit expressions of the regulator and a
practical design procedure leading to a regulator achieving
practical regulation uniformly in the local gain of the stabilizer
and in the dimension of the internal model.

I. INTRODUCTION

This paper complements the theory of output regulation
presented in [7] with additional results regarding the practical
implementation of the regulator. In [7] the problem of output
regulation has been addressed in a fairly general framework
consisting of a class of controlled systems and exosystems
required to satisfy only an appropriate assumption about
stabilizability of the zero dynamics by output feedback.
The emphasis in that work was placed on the fact that the
so-called immersion assumption, characterizing in different
forms all the previous literature on this topic and limiting in a
substantial way the applicability of the theory in a nonlinear
context, was not necessary to solve a problem of output
regulation. The design methodology underlying [7], induced
by the approach pioneered in [2] (see also [3]), is based
on the reformulation of the problem of output regulation
into a problem of output feedback stabilization of compact
attractors and on the use of the theory of nonlinear observers
for internal model design. In [8] the design methodology
behind [7] has been also extended to a more general frame-
work regarding output feedback stabilization of compact
attractors for nonlinear systems. In plain words the main
achievement in [8] has been to show that the steady state
input rendering invariant a compact attractor to be stabilized
by output feedback can be dynamically generated, in a robust
framework, by an appropriately designed regulator without
any specific condition on this input (required, on the contrary,
in the past through the so-called immersion assumption). In
achieving this result a big role has been played by the theory
of nonlinear observers developed in [11], [1].

The developments in [7] and [8] was deliberately focused
on issues regarding the existence of the regulator and no
special attention was given on real design aspects. In this
paper we aim to fill this lack. More specifically we present
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explicit expressions of the regulator and we address possible
practical implementations of it for real design purposes.
In proposing practical implementation of the regulator we
implicitly solve a problem of practical output regulation
namely the design of a regulator achieving arbitrarily small
asymptotic regulation error. Several attempts have been
done in the past literature along this direction. One way
of approaching the problem of practical output regulation
is the one pursued, besides others, in [5] and [11] (see
also [4], section 2.5). Here the idea is to use polynomial
approximation and/or power series expansion of the so-
called regulator equations to identify an approximation of
the desired steady state control input, with a degree of
accuracy depending on the bound of the residual error,
which can be dynamically reproduced by means of a linear
internal model. The main drawback in pursuing this strategy
is that the dimension of the internal model is, in general,
dependent on the desired bound of the regulation error and
tends to growth indefinitely as the desired bound tends
to zero. A different control philosophy to steer regulation
error to arbitrarily small values is to use high-gain error
feedback (see [6] and related literature). In general this kind
of strategies, not relying upon the use of internal models
and applicable to a wide class of reference/disturbance
signals, present the typical problems linked to high-gain
control structures, such as sensitivity to measurement noise
and minimum-phase constraints, which substantially limit
the range of applications. On the contrary, in this paper, we
present practical design procedures leading to a regulator
achieving practical regulation uniformly in the local gain of
the stabilizer and in the dimension of the internal model.
For reasons of space in this paper we limit ourself to present
the main results without providing detailed proofs which
can be found, along with extra discussions, results and
examples, in the expanded journal version which is under
submission.

Notation. For x ∈ IRn, |x| denotes the Euclidean norm and,
for C a closed subset of IRn, |x|C = miny∈C |x− y| denotes
the distance of x from C. For S a subset of IRn, intS is the
interior of S respectively. For a locally Lipschitz function
V (t) we define the Dini’s derivative of V at t as

D+V (t) = lim
h→0+

sup
1

h
[V (t + h) − V (t)] .

By extension, when V (t) is obtained by evaluating V along
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a solution x(t, x0), we denote also

D+V (x0) = lim
h→0+

sup
1

h
[V (x(h, x0)) − V (x0)] . (1)

II. THE FRAMEWORK

We focus on the class of systems

ż = f(w, z, ζ)

ζ̇ = q(w, z, ζ) + u

e = h(w, z, ζ)
y = k(w, z, ζ) .

(2)

with state (z, ζ) ∈ IRn × IR, control input u ∈ IR, regulated
output e ∈ IR, measured output y ∈ IR and exogenous
(disturbance) input w ∈ IRr generated by an exosystem

ẇ = s(w) . (3)

The functions f(w, z, ζ), q(w, z, ζ) and s(w) are Ck

functions (for some large k) of their arguments. The initial
conditions of (2) range on a set Z × E, in which Z and
E are fixed compact subsets of IRn and, respectively, IR.
The initial conditions of the exosystem (3) range on a
compact subset W of IRr which, according to standard
output regulation theory, is supposed to be (forward
and backward) invariant for (3). The problem of output
regulation for system (2)-(3), which amounts in designing
an output (y) feedback controller achieving boundedness of
the closed-loop trajectories and steering the regulation error
to zero asymptotically, has been solved in [7] under the
following assumption involving stabilizability of the zero
dynamics in appropriate sense.

Assumption. There exists a bounded subset B of W × IRn, a
Ck function α : IRr×IRn → IR and a Ck map Φ : IRp → IR

such that:
(a1) the set B contains the positive orbit of the set W × Z

under the flow of

ẇ = s(w)
ż = f(w, z, α(w, z)) .

(4)

Moreover, the consequent ω-limit set ω(W ×Z) of the
set W × Z of initial conditions (see [2]), is such that
there exists a number d1 > 0 such that

(w, z) ∈ W × IRn

|(w, z)|ω(W×Z) ≤ d1

⇒ (w, z) ∈ W × Z .

(a2) h(w, z, α(w, z)) = 0 for all (w, z) ∈ ω(W × Z).
(a3) Φ(k(w, z, ζ)) = ζ − α(w, z) for all (w, z, ζ) ∈ IRr ×

IRn × IR.
We refer the reader to [7] and related literature for

comments to this assumption. From now on we denote

A0 := ω(W × Z) .

The regulator proposed in [7] is of the form

ξ̇ = Fξ + Gu

u = γ(ξ) + v

v = −κ(y) ,

(5)

in which (F,G) ∈ IRm×m × IRm is a controllable pair with
F Hurwitz and γ : IRm → IR and κ : IR → IR are suitable
continuous maps. In particular a crucial role in (5) is played
by the function γ(·) which is required to satisfy the design
formula

q0(z) + γ ◦ τ(z) = 0 ∀ z ∈ A0 (6)

having defined z = col(w, z),

q0(z) = q(w, z, α(w, z)) +
∂α

∂w
s(w) +

∂α

∂z
f(w, z, α(w, z))

and with the function τ : A0 → IRm solution of the PDE

dτ(z)

dz
f0(z) = Fτ(z) − Gq0(z) z ∈ A0 (7)

where f0(z) := col(s(w), f(w, z, α(w, z)). The motivation
behind (6), is that, after the change of variables ζ �→ χ :=
ζ −α(w, z) and η �→ x := η −Gζ, the closed-loop system
(2), (3), (5) can be written in the form

ẇ = s(w)
ṗ = M(w, p) + N(w, p, χ)
χ̇ = H(w, p) + K(w, p, χ) + v

(8)

p = col(z, x), N(w, p, χ) and K(w, p, χ) are suitably
defined functions vanishing at χ = 0 for any p ∈ IRn+m

and w ∈ W and

M(w, p) =

(
f(w, z, α(w, z))
Fx − Gq0(z)

)

H(w, p) = q0(z) + γ(x) .

The crucial property exhibited by this system is that, by the
fact that the set A0 is invariant for (4) and by (6), (7), the
set

graph(τ ) × {0} = {(z, x, χ) ∈ A0 × IRm × IR :

x = τ(z) , χ = 0}
(9)

is an invariant set for (8) (with v ≡ 0) on which, by assump-
tion (a2), the regulation error e is identically zero. According
to this, the design of the regulator (5) can be completed by
taking any output feedback v = κ(y) rendering the set (9)
asymptotically stable with a domain of attraction containing
the set of initial conditions. To this purpose, in [7], it has been
shown that a stabilizer of the form v = −kχ = −kΦ(y)
with k sufficiently large succeeds in the stabilization goal
provided that the set A0 is locally exponentially stable for (4)
and the function γ satisfying (6) is locally Lipschitz. In the
case these two additional assumptions fail, the results in [8]
can be used to prove the existence of a continuous function
v = κ(χ) = κ(Φ(y)), not necessarily linear at the origin,
rendering the set (9) asymptotically stable1. In general, any
design procedure leading to an output feedback control
law able to asymptotically stabilize (9) can be adopted to
successfully complete the regulator design.

1The stabilization procedures described in [7] and generalized in [8] adopt
small gain arguments to prove the desired results using the fact that system
(8) has relative degree one (with respect to the output χ and input v) and
zero dynamics characterized by an asymptotically stable compact attractor.
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The important result established in [7] is that a function γ

satisfying (6) always exists provided that the dimension m

of F and its eigenvalues are properly chosen. Instrumental
in proving this result is the following proposition, proven in
detail in [8], which details the properties required to F to
have the function τ satisfying a partial injectivity condition
and, in turn, to guarantee the existence of γ satisfying (6).

Proposition 1: Set m ≥ 2(r+n)+2. There exist an � > 0
and a set S ⊂ CI of zero Lebesgue measure such that if
σ(F ) ⊂ {λ ∈ CI : Reλ ≤ −�} \ S then the function
τ(·) : A0 → IRm defined as

τ(z) = −

∫ 0

−∞

e−FsGq0(z(s, z))ds , (10)

in which z(t, z0) denotes the solution at time t of ż = f0(z)
passing through z0 at time t = 0, is differentiable, is the
unique solution of (7), and satisfies the partial injectivity
condition

|q0(z1) − q0(z2)| ≤ �(|τ(z1) − τ(z2)|)
for all z1, z2 ∈ A0

(11)

where �(·) is a class-K function.

Remark Following the proof of Proposition 3 in [8], it turns
out the requirement of choosing F , besides Hurwitz, with
a certain stability margin fixed in the previous proposition
by the positive real number �, represents only a technical
assumption needed to guarantee differentiability of the func-
tion τ . In this sense the assumption in question must be not
confused with an “high gain” requirement on the choice of F .
In other words any choice of F such that (10) is differentiable
is an appropriate choice. �

By the previous discussion it turns out that the bottleneck
in the design procedure proposed in [7] is the design of γ

satisfying (6). Apart the existence result, the practical design
of the function γ is an issue left open in [7] which will be
dealt with in this paper.

III. EXPRESSIONS OF γ

In this part we present possible expressions of γ satisfying
(6) in terms of the function τ fulfilling the PDE (7).

Our first expression is strongly inspired by [10] (see, in
particular, Lemma 4 in the quoted reference). It can be
written upon the assumption that the set A0 is not locally
thin2. To give it, it is appropriate to associate to each x ∈
IRm, one of the closest points in τ(A0), namely we associate

z̄x ∈ arg min
z∈A0

|x − τ(z)| .

Also, we introduce a function ω : A0 × IRm \ τ(A0) → IR+

as :

ω(ξ, x) =
1

|x − τ(ξ)|r+1 .

2A0 is said to be not locally thin if there exist positive constants c and ε0

such that
∫
A0∩Bε(ξ)

dΞ ≥ c
∫
Bε(ξ)

dΞ for all ξ ∈ A0 and ε ∈ (0, ε0],

in which Bε(ξ) := {s ∈ IRr : |s − ξ| < ε} (see [10]).

with r = s + n.

Proposition 2: Let τ be a function which is Lipschitz on
A0 and satisfies (11). Assume the set A0 be not locally thin.
Then

γ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−

∫
A0

q0(ξ)ω(ξ, x) dΞ

∫
A0

ω(ξ, x) dΞ

∀x ∈ IRm \ τ(A0)

−q0(z̄x) ∀x ∈ τ(A0) ,
(12)

with Ξ the Lebesgue measure pf IRr, defines properly a
continuous function on IRm which satisfies (6).

We present now a result, inspired by [9], showing a
different expression of γ. In formulating the expression of γ

it is argued that the class-K function �(·) satisfies

�(|x3 − x1|) ≤ �(|x3 − x2|) + �(|x1 − x2|)

∀(x1, x2, x3) ∈ IR3m .
(13)

This, indeed, can be assumed without loss of generality
as it can be shown by means of computations omitted for
reasons of space.

Proposition 3: Let τ be fulfilling (11) with a function �

satisfying (13). Then the function γ : IRm → IR defined by

γ(x) = inf
z∈A

−q0(z) + �(|τ(z) − x|) (14)

is continuous and such that (6) is satisfied.

IV. APPROXIMATED DESIGN AND

PRACTICAL REGULATION

The expressions (12) and (14) represent formulas to design
γ which are explicit if we know the set A0, the function
τ solution of (7) and the volume integrals characterizing
(12) and the inf characterizing (14). This, indeed, may be
a difficult task even in simple cases. For this reason, in this
section, we look for an approximated expression of γ which
results in a practical regulator yielding an arbitrarily small
regulation error. In order to properly state the problem, we
argue the existence of an ideal regulator

η̇ = Fη + Gu

u = γ(η) + v v = κ(y)
(15)

yielding exact regulation. In particular, following the
discussion in section 2, the function γ is supposed to
satisfy condition (6) while the function κ is supposed
to asymptotically stabilize the set (9). In this framework
we suppose the function κ given and we look for an
approximation of the function γ in order to have and
arbitrarily small regulation error. The next proposition
details the properties required to the approximated γ in
order to obtain a practical regulator. In this we denote by
X the compact set characterizing the initial condition of the
state variable x.
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Proposition 4: There exists a compact set X̂ ⊃ X and, for
any ε > 0, there exists an δε > 0, such that if γa : IRm → IR

is a continuous function satisfying

|γa(x) − γ(x)| ≤ δε ∀x ∈ X̂

the trajectories of (2) in closed loop with the controller

η̇ = Fη + Gu u = γa(η) + κ(y) (16)

are bounded and such that

lim
t→∞

sup |(w(t), p(t), χ(t))|gr( τ )×{0} ≤ ε .

Proof: The system obtained by (2) in closed loop with
(16) has the form

ẇ = s(w)
ṗ = M(w, p) + N(w, p, χ)
χ̇ = H(w, p) + K(w, p, χ) + κ(y) + ∆γ(p)

(17)

in which
∆γ(p) := γε(x) − γ(x) .

By assumption the set gr(τ ) × {0} is asymptotically stable
for system (17) in the case ∆γ(p) ≡ 0. From this the result
of the proposition follows by the total stability result reported
in the appendix.

Remark As h(w, z, ζ) defining the regulation error e is a
continuous function vanishing on the set (9), it turns out that
a practical implementation of the regulators allows one to
solve a problem of practical output regulation. In particular
it turns out that for any ν > 0 there exists a ε� > 0 such that
for any positive ε ≤ ε� the closed-loop trajectories obtained
by implementing (16) are such that limt→∞ |e(t)| ≤ ν. In
this respect note that, by the fact that the stabilizer κ in (16) is
constrained to be equal to the one of the ideal regulator (15),
the solution of a practical output regulation problem does not
necessarily rely upon stabilizers which are high-gain local to
the zero error manifold unlike the cases in which also the
ideal regulator relies upon a not locally Lipschitz stabilizer.
�

Motivated by this in the next part we look for an ap-
proximated expressions of γ in the sense of the previous
proposition. For reasons of space we limit ourself to present
an approximated expression of (14). The first instrumental
step amounts to approximate the set A0. To this purpose,
the idea is to introduce a grid of points {zi}i∈I , I :=
{1, 2, . . . , N}, satisfying the property

|zi|A0
≤ ν ∀ i ∈ I and

∀ z ∈ A0 , ∃ i ∈ I : |zi − z| ≤ ν
(18)

for a positive number ν which is a design parameter. The
second instrumental step is to approximate the function τ

solution of (7) on the grid {zi}i∈I . As zi not necessarily
belongs to A0 on which τ is defined, we let z̄i be the
projection of zi on A0 and define a set of points Ti supposed
to approximate τ(zi), for all i ∈ I , as

sup
i∈I

|Ti−τ(z̄i)| ≤ ν z̄i := argminz∈A0
|z−zi| . (19)

We refer the interested reader to the expanded journal
version of this paper for the presentation of efficient
algorithms to compute the previous sets. Here we limit
ourself to present the following proposition which presents
an approximated expression of γ on the basis of the grids
{zi}i∈I and {Ti}i∈I .

Proposition 5: For a positive ν let {zi}i∈I and {Ti}i∈I

be two finite family of points which satisfy (18) and (19).
Furthermore let γ be the function defined in (14). For any
ε > 0 there exist ν� > 0 such that for any positive ν ≤ ν�

the function

γε(x) = min
i∈I

−q0(zi) + �(|τν(zi) − x|) (20)

satisfies

|γε(x) − γ(x)| ≤ ε ∀x ∈ IRm .

V. CONCLUSIONS

We have presented possible explicit expressions of
the nonlinear regulator proposed in [7] in the context
of nonlinear output regulation in absence of immersion
assumptions. An approximated expression of the regulator,
suitable for real design purposes, has been also presented
yielding practical convergence to zero of the regulation
error uniformly in the local gain of the stabilizer and in the
dimension of the internal model.

Acknowledgements. Our special thanks go to Alberto Isidori
for the number of discussions and suggestions which strongly
inspired and conditioned this paper. We are also very grateful
to Alain Rapaport for suggesting to use of the Mc Shane’s
formula for γ in the case the function � is linear. The
expression (14) has been obtained as a generalization of this
formula.

APPENDIX

Consider system

ẇ = s(w)

ṗ = F (w, p)
(21)

with initial conditions in W × IRq, W ⊂ IRr invariant for
ẇ = s(w), with F (·, ·) a continuous function. As W is an
invariant set for ẇ = s(w) the closed cylinder C := W ×IRn

is locally invariant and it is natural to regard (21) as a
system defined on C and endow the latter with the subset
topology. This indeed is assumed in the following. Let
B ⊂ IRr × IRq be an asymptotically stable compact set for
(21) with domain of attraction W ×D, D an open subset of
IRq. Then the following holds.

Proposition 6: Consider the perturbed system

ẇ = s(w)

ṗ = F (w, p) + ∆(w, p)
(22)
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in which ∆(·, ·) is a continuous function. For any compact
set P ⊂ D there exists a P̂ ⊃ P and, for any ε > 0, there
exists a δε > 0, such that if

|∆(w, p)| ≤ δε ∀ (w, p) ∈ W × P̂

the trajectories of (22) originating from W ×P are bounded
and

lim
t→∞

sup |((w(t), p(t))|B ≤ ε .

Proof: Let p̄ := col(w, p) and rewrite system (21) in
the compact form

˙̄p = f(p̄) + ∆(p̄)

in which f(p̄) := col(s(w), F (w, p)), δ(p̄) :=
col(0, ∆(w, p)). Let

|p̄|B\D :=

(
1 +

1

|p|∂clD

)
|p̄|B . (23)

By Theorem 4 in [8] there exists a continuous function V :
W ×D → IR with the following properties:
(a) there exist class K∞ functions a(·), a(·) such that

a(|p̄|B/D) ≤ V (p̄) ≤ a(|p̄|B/D) ∀ p̄ ∈ W ×D ;

(b) there exists c > 0 such that

D+V (p̄1) = lim
h→0+

sup
1

h
[V (p̄(h, p̄1)) − V (p̄1)]

≤ −cV (p̄1) ∀ p̄1 ∈ D ,

having denoted by p̄(h, p̄1) the trajectories of (21) at
time h passing through p̄1 at h = 0;

(c) for all α > 0 there exists Lα > 0 such that for all p̄1,
p̄2 ∈ W × D such that |p̄1|B/D ≤ α, |p̄2|B/D ≤ α the
following holds

|V (p̄1) − V (p̄2)| ≤ Lα|p̄1 − p̄2| .

Now, given ε > 0, let a, b be positive numbers (with
a > b) such that

V −1([0, b]) ⊂ intBε Bε := {p̄ ∈ W × IRn : |p̄|B ≤ ε}

and P ⊂ int Projw(V −1([0, a])), Projw(·) being the projec-
tion operator along the w direction. These numbers exist by
property (a) above and by definition (23). Furthermore let
α > 0 be a number such that p̄ ∈ V −1([0, a]) ⇒ |p̄|B\D < α.

By denoting with p̄(h, p̄1) the solution of (22) with initial
condition p̄1 and by bearing in mind properties (b) and (c)
above, it turns out that, so long as p̄1 ∈ V −1([0, a]),

D +V (p̄1) = lim sup
h→0+

1

h
[V (p̄(h, p̄1)) − V (p̄1)]

= lim sup
h→0+

1

h
[V (p̄1 + hf(p̄1) + hδ(p̄1)) − V (p̄1)]

≤ lim sup
h→0+

1

h
[V (p̄1 + hf(p̄1) + hδ(p̄1)) − V (p̄1+

hf(p̄1))] + lim sup
h→0+

1

h
[V (p̄1 + hf(p̄1)) − V (p̄1)]

≤ lim sup
h→0+

1

h
Lαh|δ(p̄1)| − cV (p̄1)

= Lα|δ(p̄1)| − cV (p̄1) . (24)

From this, by applying the appropriate comparison lemma
and by standard arguments, it turns out that if

|δ(p̄1)| ≤ δε :=
cb

2Lα
∀ p̄1 ∈ V −1([0, a])

the set V −1([0, a]) is forward invariant for (22) and the set
V −1([0, b]) is reached in finite time. This, in turn, yields the
desired result with P̂ = Projw(V −1([0, a]))
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