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Abstract
We study an electromagnetic actuator controlling the valve po-
sition on a camless engine. This actuator is made of a pair of
electromagnets and a pair of springs. It forces the displacements
up and down of a plate, itself pushing the armature related to the
valve’s shutter. The landing must be silent which implies that the
landing velocity must be small enough to avoid hitting the cylin-
der head. This terminal phase is particularly delicate since the
force delivered by the electromagnets is large and poorly known.
A reference trajectory and a feedback law including an observer
are designed to realize the required displacements with soft land-
ing. Simulations are presented.

Valve closing Valve opening

moving plate

upper electromagnet

lower electromagnet

Figure 1: The actuator during the valve closing phase
(right) et and the opening one (left).

1 INTRODUCTION

We study an electromagnetic actuator controlling the valve
position on a camless engine. This actuator is made of a
pair of electromagnets and a pair of springs. It forces the
displacements up and down of a plate, itself pushing the ar-
mature related to the valve’s shutter (see Fig. 1). This setup
has been proposed to save energy, to be simpler to produce
than usual mechanical cams, and to potentially improve the
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motor control. Prototypes of such an equipment have been
designed and tested by several firms among which are Ford
and PSA Peugeot Citroën.

However, three important drawbacks have been noted:
first, the actuator is efficient only within a small domain,
the springs producing a much bigger force than the electro-
magnets up to a small distance of the final position. Sec-
ond, unwanted noise is produced by the valve’s shutter hit-
ting the cylinder head. It results from the fact that, in ter-
minal phase, the air gap of the electromagnets being close
to zero, the electromagnetic force is suddenly very large
and particularly badly known. Thus, soft (and silent) land-
ing means slowing down the shutter fast enough with pre-
cise positionning, which is not easy with such an inaccurate
force. Finally, the frequency of the PWM unit, supposed to
produce the desired current in the coils, is limited and cur-
rent rate saturations may result: when the electromagnetic
force becomes large enough, near the end point, to effec-
tively control the plate’s motion, the current has to grow at
a rate which is not allowed by the PWM unit. Therefore,
a feedforward trajectory of the current is needed to obtain
the required force at the required place and time. This is
why we propose a control approach based on a reference
trajectory design on the one hand and a feedback design,
including an observer, on the other hand, the feedback it-
self reacting too slowly according to the above PWM limi-
tation.

This problem has been studied in various ways, in partic-
ular by iterative learning control [4, 5]. We propose here a
different approach using nonlinear control methods. More
precisely, based on flatness ([3]), we construct a feasible
reference trajectory in the phase plane (thus independent of
the motor’s rotation speed), rather than with respect to time,
ensuring fast opening and closing and soft landing, and
then a robust feedback law by potential methods ([2, 1]),
that makes the reference trajectory an attractive invariant
manifold. Since we only measure the plate’s position and
the current and voltage, this feedback can be implemented
thanks to an observer of the velocity and the flux.

This paper is organized as follows: a model of the ac-
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tuator is presented in section 2, followed by the study of
the trajectory planning in section 3. In section 4, the feed-
back control synthesis is given, the tuning aspects being
analyzed in section 5. Section 6 is devoted to the design of
a velocity and flux observer and is followed by simulations
in section 7 and concluding remarks.

2 MODEL OF THE ACTUATOR

Let us denote by x, v, m the vertical position, velocity and
mass of the plate respectively, and i the coil’s current. The
absolute value of the electromagnetic force produced by the
coils, if we neglect the magnetic losses, is given by

F = M
i2

(N− sx)2

the constants M and particularly N being inaccurately
known. Thus, the plate’s dynamics are given by:

ẋ = v

v̇ =− k
m

x−
c f

m
v−g+ s

M
m

i2

(N− sx)2
(1)

where s = 1 in the shutting phase and s =−1 in the opening
one1.

Recall that the magnetic permeance Λ, still neglecting
the magnetic losses, is given by

M
(N− sx)

= n2
Λ, (2)

n being the number of loops of the coil, and that the mag-
netic flux ϕ accross the plate is given by:

ϕ = 2nΛi = µ0S
ni

N− sx
. (3)

The flux dynamics are:

ϕ̇ =
1
n

u− r
2n2Λ

ϕ (4)

where r is the resistance of the coil and u its input voltage.
Let us denote by Φ the square root of the elecromagnetic

acceleration:

Φ
2 =

M
m

i2

(N− sx)2 . (5)

Thus: Φ =
1√

2mµ0S
ϕ =

n
2
√

mM
ϕ. This proves that Φ is

proportional to the flux and, with an understandable abuse
of language, we call it the flux from now on. Its dynamics
are:

Φ̇ =
1

n
√

2mµ0S
u− r(N− sx)

n2µ0S
Φ (6)

1We indeed have s2 = 1.

The complete model, expressed with respect to the vari-
ables (x,v,Φ), is thus given by:

ẋ = v

v̇ =− k
m

x−
c f

m
v+ sΦ

2

Φ̇ =
1

2
√

mM
u− r

2M
(N− sx)Φ.

(7)

According to (3) or (5), the current is subject to the state
constraint:

|i| =
√

m
M
|Φ(N− sx)| ≤ imax (8)

and the voltage must also satisfy the constraint:

|u| ≤ umax. (9)

On the real set-up, the electrical dynamics of ϕ or Φ can-
not be modified by the user. The only external control vari-
able is the current, the internal control loop being imple-
mented in hardware by a PWM unit.

3 TRAJECTORY PLANNING

We are looking for an open-loop trajectory
(xr(t),vr(t),Φr(t),ur(t)) satisfying (7), (8) and (9)
and softly landing. In fact, expressing the trajectory
with respect to time is nowhere needed. On the contrary,
expressing the desired trajectory with respect to x is
useful since its expression is independent of the motor’s
regime and since, the velocity being corrupted by errors,
the positionning precision with respect to time may be
degraded. Finally, this is possible since the system is flat
with x as flat output: eliminating the time, the new system
is flat with v (now function of x) as flat output since (7)
reads:

vv′ =− k
m

x−
c f

m
v−g+ sΦ

2

vΦ
′ =

1
2
√

mM
u− r

2M
(N− sx)Φ

(10)

with v′ = dv
dx and Φ′ = dΦ

dx . Thus,

Φ
2 = s(vv′+

k
m

x+
c f

m
v+g) (11)

and

u = 2
√

mMvΦ
′+ r

√
m
M

(N− sx)Φ. (12)

Since Φ′ is also a function of v,v′,v′′, with v′′ = dv′
dx = d2v

dx2 ,
we have proved that Φ and u can be expressed as functions
of x,v,v′,v′′, and thus that the system (10) is flat. It re-
sults that any trajectory of (10) may be obtained, without
integration of the system’s equations, as a function of the
corresponding trajectory x 7→ v(x) of the flat output.
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From now on, we denote by ϑ, φ and ν the functions
x 7→ v, x 7→ Φ and x 7→ u respectively, to avoid confusing
with time functions.

It remains thus to determine the curve x 7→ ϑ(x).
At the initial position x0, the initial velocity v0 is deduced

by the fact that we start with zero current, i.e. i0 = 0, at x0.
The initial voltage u0 is also given. Thus:

ϑ(x0) = v0, φ(x0) = 0 (13)

and using the fact that v′ = v̇
v , we get:

ϑ
′(x0) =− k

m
x0

v0
−

c f

m
∆= v′0. (14)

In addition, using (10),

φ
′(x0) =

1
2
√

mM

(
u0

v0

)
. (15)

Differentiating twice the expression of v′ in (10) we get:

ϑ
′′(x0) =− 1

v0

(
v′0
(

v′0 +
c f

m

)
+

k
m

)
∆= v′′0 (16)

ϑ
′′′(x0) =− 1

v0

[
v′′0
(

3v′0 +
c f

m

)
−2sφ

′2(x0)
]

∆= v′′′0 .

(17)

At the final position x1 = x, the velocity is ϑ(x1) = v1

and, to control the landing, we impose the final slope
v′1 = ϑ′(x1) and curvature v′′1 = ϑ′′(x1). We compute x1

by imposing the relation:

x1 = x = xs +
vs

v′1
, (18)

wherexs is the position of the support and vs the admissible
impact velocity on the support, which means that the final
velocity is enough to guarantee that the valve closes.

We thus have 4 initial conditions and 3 final conditions
and the desired trajectory x 7→ ϑ(x) may be obtained, by
interpolation, as a 6th degree polynomial:

ϑ(x) = v0 + v′0Xξ(x)+ v′′0
2 X2ξ2(x)

+
v′′′0
6

X3
ξ

3(x)+a4ξ
4(x)

+a5ξ
5(x)+a6ξ

6(x)

(19)

with X = x1 − x0 = x− x0, ξ(x) = x−x0
X , the coefficients

a4,a5,a6 being:

a4 = 15(v1− v0)−5(v′1 +2v′0)X

+
1
2
(v′′1−6v′′0)X

2− 1
2

v′′′0 X3

a5 = −24(v1− v0)+3(3v′1 +5v′0)X

−(v′′1−4v′′0)X
2 +

1
2

v′′′0 X3

a6 = 10(v1− v0)−2(2v′1 +3v′0)X

+
1
2
(v′′1−3v′′0)X

2− 1
6

v′′′0 X3.

(20)
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Figure 2: Graph of ϑ and associated current and voltage

Since in these formulae M and N are not precisely
known, we replace them by estimates noted M̂ and N̂. Note
that these estimations are only needed to compute the ref-
erence voltage. An explicit construction of an estimator of
N̂ is presented in section 6.

Indeed, from this trajectory, a time-parameterized trajec-
tory is easily deduced: if t0 is the duration to travel from the
opposite support to x0, the total travelling time is:

T = t0 +
Z xs

x0

1
ϑ(ξ)

dξ (21)

since dt
dx = 1

ϑ(x) .
The 4 free parameters x0, u0, v′1 et v′′1 may be chosen such

that the constraints on i and Φ are satisfied with a travelling
time T as short as possible. It is interesting to remark that
with u0 = 0 we start close to the initial open-loop situation,
which indeed doesn’t hit the saturations. At the other end
of the trajectory, increasing |v′1| accelerates the landing and
decreasing |x0| decreases the duration T .

The graphs of ϑ and the associated current and voltage
are displayed in figure 2, in the opening case with the fol-
lowing parameters:

x0 =−2 mm, v0 =−2.91 m/s, u0 = 0 V
x1 =−4.0018 mm, v′1 =−2800 1/s.

Since, in this example, we have’nt imposed the curvature
v′′1 , ϑ is a 5th degree polynomial.

4 CONTROL SYNTHESIS

The functions (ϑ,φ) previously designed define an invari-
ant set of system (7). Indeed, for any initial condition
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(x,v,Φ) satisfying:

(v,Φ) = (ϑ(x),φ(x)) (22)

the control:
u = ν(x) (23)

satisfies (9) and is such that the corresponding solution
(x(t),v(t),Φ(t)) satisfies for all time t:

(v(t),Φ(t)) = (ϑ(x(t)),φ(x(t))). (24)

Moreover, this trajectory coincides with the planned refer-
ence trajectory.

On this set, the dynamics reduce to:

ẋ = ϑ(x) (25)

Outside this set, we have:

ẋ = v = ϑ(x) + (v−ϑ(x)). (26)

Thus, it suffices to asymptotically stabilize the invariant set
v = ϑ(x). According to (10),

˙︷ ︷
v−ϑ(x) =

[
− k

m x− c f
m v+ sΦ2

]
−ϑ′(x)v

=−sφ(x)2 +
[
ϑ′(x)ϑ(x)+ k

m x+ c f
m ϑ(x)

]
+
[
− k

m x− c f
m v+ sΦ2

]
−ϑ′(x)v

=−
[
ϑ′(x)+ c f

m

]
[v−ϑ(x)]+ s

[
Φ2−φ(x)2

]
.

(27)

Assuming that Φ2 is a control variable, the invariant set
may be stabilized by choosing:

Φ
2 = φ(x)2− sg(x) [v−ϑ(x)] (28)

where g is an arbitrary function satisfying

g(x)+
[
ϑ
′(x)+

c f

m

]
> 0. (29)

In fact, since Φ is not a control variable, but, according to
(5), the corresponding current is:

i2 =
m

M̂
(N̂− sx)2 (

φ(x)2− sg(x) [v−ϑ(x)]
)
, (30)

where M̂ and N̂ are estimates of M and N. Since these
estimates produce various consequences on the closed-loop
behavior, we decompose the expression of i2 as the sum of
a constant, a linear term in x− x1 and a linear term in v.
From (11) we have:

i2 = s m
M̂

(N̂− sx)2
(
ϑ′(x)ϑ(x)+ k

m x
+ c f

m ϑ(x)−g(x)[v−ϑ(x)]
)
.

(31)

Since, by construction, the function ϑ vanishes at x1, we
deduce that:

i2 = s k
M̂

(N̂− sx1)2x1

+ sk(x−x1)
M̂

[
(N̂− sx)2− sx1(2N̂− s(x+ x1))

]
+ sm(N̂−sx)2

M̂

[(
ϑ′(x)+ c f

m

)
ϑ(x)−g(x)(v−ϑ(x)

]
.

(32)

In the first term of the right-hand side, the parameters M̂
and N̂ may be used to move the equilibrium point. In the
other terms, their contribution is to change the position and
velocity gains, and therefore the convergence rates. There-
fore, we introduce two values M̂1 and N̂1 a priori distinct
from M̂ et N̂ respectively. We therefore get:

ĩ2 = s k
M̂1

(N̂1− sx1)2x1

+ sk(x−x1)
M̂

[
(N̂− sx)2− sx1(2N̂− s(x+ x1))

]
+ sm(N̂−sx)2

M̂

[(
ϑ′(x)+ c f

m

)
ϑ(x)−g(x)(v−ϑ(x))

]
.

(33)

Taking into account the constraint (8), we obtain:

icons =
√

max
{

0,min
{

i2max, ĩ2
}}

. (34)

5 PHASE PORTRAIT ANALYSIS AND TUNING
PROCEDURE

Let us assume for a moment that the current loop is perfect,
i.e. i = icons, that the constraint on i2 is satisfied, i.e. icons =
ĩ, and that the mass m and the coefficient M are perfectly
known: M̂1 = M̂ = M.

To study the closed-loop behavior in presence of estima-
tion errors on N, we rewrite v̇ as follows:

v̇ = −U ′(x) − k(x)v , (35)

where U ′ is the derivative of a function U , interpreted as a
potential, with the total energy defined by:

E(x,v) =
1
2

v2 + U(x) (36)

or
Ė = −k(x)v . (37)

Thus, the energy is dissipated by the system if the func-
tion k is non negative. According to the Legendre-Dirichlet
Theorem, if the critical points of U , i.e. the points that are
solutions of U ′(x) = 0, are equilibrium points and they are
stable and attractive if they correspond to a local minimum
of U . If such a point is unique in the domain of interest, i.e.
on (−∞,N) for s = 1 and (−N,+∞), for s =−1, and if the
potential is proper on this domain, this point is a globally
asymptotically stable equilibrium.

For k, we directly have:

k(x) =
c f

m
+g(x)

(N̂− sx)2

(N− sx)2 . (38)

The system is thus always dissipative if g is non negative,
which implies (29).

The potential U(x) may be directly determined by com-
puting v̇. These computations are ommitted here. We just
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Figure 4: Equilibrium points and associated eigenvalues
locus.

indicate that there exist values of M̂,M̂1, N̂, N̂1 such that the
potential U is given by the curve of Figure 3.

The critical points of the obtained Uare the roots of a 3rd
degree polynomial. The left column of Figure 4 shows the
root locus function of N̂ for 5 different values of N̂1. The
right column shows the real part of the eigenvalues of the
tangent linearization at the largest equilibrium. The vertical
and horizontal lines are respectively the true values of N,
x1 and of the eigenvalues. We observe that for N̂ > N, we
only have one globally asymptotically stable equilibrium
point, all the closest of x1 since N̂ is large. When N̂1 > N,
the equilibrium point is beyond the cylinder head, which
means that a shock occurs. When N̂1 < N, the equilibrium
point is below the cylinder head, which means levitation.

To conclude, we may choose N̂1 as close as possible to
N and N̂ > N large, such that N2 +4NN̂− N̂2 < 0,

Also, g can be chosen as g(x) = −gϑ ϑ′(x), with gϑ not
too large to avoid saturations.

6 SPEED AND FLUX OBSERVER DESIGN AND
ESTIMATOR OF N

To estimate the velocity v from position and current and
voltage measurements without using the constant N, we
set:

z = v− kvx (39)

where kv is an arbitrary positive real. Differentiating, we
get

ż =−
(

k
m

+ kv

(c f

m
+ kv

))
x−
(c f

m
+ kv

)
z+ sΦ

2. (40)

Thus, if we set
ẑ = v̂− kvx (41)

where v̂ is the required estimate of v and ẑ the one of z, with

˙̂z =−
(

k
m

+ kv

(c f

m
+ kv

))
x−
(c f

m
+ kv

)
ẑ+ sΦ̂

2 (42)

we obtain, using the fact that ẑ−z = v̂−v and
˙︷ ︷

ẑ− z =
˙︷ ︷

v̂− v,
the estimation error

˙︷ ︷
v̂− v =−

(c f

m
+ kv

)
(v̂− v)+ s

(
Φ̂

2−Φ
2
)

. (43)

In addition, this observer may be completed by using the
dynamics of Φ, u and i being measured. We set

ζ = Φ− kΦx. (44)

thus
ζ̇ =

1
2
√

mM
(u− ri)− kΦv

and, noting ζ̂ the estimate of ζ, the following system is an
observer

˙̂
ζ =

1
2
√

mM
(u− ri)− kΦv̂ (45)

with
Φ̂ = ζ̂+ kΦx. (46)

Thus, the error dynamics satisfies:

˙̂
ζ− ζ̇ = ˙̂

Φ− Φ̇ =−kΦ (v̂− v) . (47)

To summarize, the following reduced observer has been
constructed:

˙̂z =−
(

k
m

+ kv

(c f

m
+ kv

))
x−
(c f

m
+ kv

)
ẑ+ sΦ̂

2

˙̂
ζ =

1
2
√

mM
(u− ri)− kΦv̂

v̂ = ẑ+ kvx

Φ̂ = ζ̂+ kΦx
(48)
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and the estimation error on v and Φ is given by ˙̂v− v̇−
(c f

m
+ kv

)
(v̂− v)+ s

(
Φ̂+Φ

)(
Φ̂−Φ

)
˙̂
Φ− Φ̇− kΦ (v̂− v) .

(49)
It can be made stable by choosing kv > 0 and kΦ > 0. More
precisely, for every solution of the closed-loop system such
that Φ̂+Φ ≤ Φmax, it suffices that kv and kΦ satisfy:(c f

m
+ kv

)2
> 2(skΦ)Φmax. (50)

In addition, an estimate of N, given M̂ and m̂, is given
by:

N̂ = −x +

√
M̂
m̂

∣∣∣∣ i

Φ̂

∣∣∣∣ . (51)

7 SIMULATION IN THE OPENING PHASE

In Figure 5, we give a simulation displaying a typical open-
ing behavior. The red curves are the references obtained by
ϑ and the associated current and voltage. The blue ones
are the real ones. The magenta ones describe the flux and
velocity estimates.

The function ϑ is the one of Figure 2, obtained with the
parameters: x0 =−2 mm, v0 =−2.91 m/s, u0 = 0 V , x1 =
−4.0018 mm, v′1 =−2800 1/s.

The other parameters used to stabilize the set v = ϑ(x)
are: gϑ = 7 and g(x) = −gϑ ϑ′(x)), kv = 10000, kΦ =
10000 ∗ kv/120, N̂ = 4.25 mm, N̂1 = 4.084 mm, M̂ =
2.47267 10−7.

The phase portrait in the right below graph of Figure 5
shows, on the right of the point marked by a star, the func-
tion ϑ and the real trajectory. When the coil is activated,
the error v−ϑ(x) is significant but has the right sign and
the controller can react by increasing the current (second
graph on the left). Such a current cannot be delivered at
once since the voltage is saturated (3rd graph on the left).
However, the flux increases and catches up with its refer-
ence. The velocity and flux are given in the two first graphs
on the right, showing a satisfactory convergence of the ob-
server.

8 CONCLUSION

We have presented a nonlinear controller able to track a ref-
erence trajectory corresponding to soft landing and playing
the role of an invariant manifold. This control law is com-
pleted by a reduced observer of the velocity and flux. How-
ever, the final precision might be improved by taking into
account the magnetic losses, as in [4].
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Figure 5: Example of valve opening behavior (Simulation)
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