ON THE ASYMPTOTIC PROPERTIES OF A SYSTEM ARISING IN NON-EQUILIBRIUM THEORY OF OUTPUT REGULATION

C. I. BYRNES, A. ISIDORI

and L. PRALY

REPORT No. 18, $2002/2003,\,{\rm spring}$

ISSN 1103-467X ISRN IML-R- -18-02/03- -SE+spring

INSTITUT MITTAG-LEFFLER THE ROYAL SWEDISH ACADEMY OF SCIENCES

On the Asymptotic Properties of a System Arising in Non-equilibrium Theory of Output Regulation *

C.I. Byrnes $^{\dagger},$ A. Isidori $^{\dagger\ddagger},$ L. Praly $^{\circ}$

June 24, 2003

[†]Department of Systems Science and Mathematics, Washington University, St. Louis, MO. [‡]Dipartimento di Informatica e Sistemistica, Università "La Sapienza", Rome, Italy. ° École des Mines de Paris, Fontainebleau, France.

Abstract

This paper provides a self-contained proof of the fact that certain systems arising in the non-equilibrium theory of output regulation, which possess a locally exponentially stable compact attractor, are input-to-state stable (with respect to the attractor, with restrictions) with a linear gain function.

Keywords: Lyapunov Functions, Input-to-State Stability, Regulation, Tracking, Nonlinear Control.

1 Terminology and Notations

Consider an *autonomous* ordinary differential equation

$$\dot{x} = f(x) \tag{1}$$

with $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, and let

$$\phi: (t,x) \mapsto \phi(t,x)$$

define its flow. A set X is locally invariant under the flow of (1) if, for any $x \in X$, there exists an open interval I of 0 in \mathbb{R} such that $\phi(t, x) \in X$ for all $t \in I$. A set X is forward invariant under the flow of (1) if, for any $x \in X$, $\phi(t, x)$ is defined for all for all $t \ge 0$ and $\phi(t, x) \in X$ for all $t \ge 0$. A set X is backward invariant under the flow of (1) if, for any

^{*}This work was partially supported by the Mittag-Leffler Institute, by AFORS, by the Boeing-McDonnell Douglas Foundation, and by ONR under grant N00014-03-1-0314.

 $x \in X$, $\phi(t, x)$ is defined for all for all $t \leq 0$ and $\phi(t, x) \in X$ for all $t \leq 0$. A set X is *invariant* under the flow of (1) if it is backward and forward invariant.

Let B be a fixed subset of \mathbb{R}^n and suppose that, for all $p \in B$, the map $t :\to \phi(t, x)$ is defined for all $t \ge 0$. The *positive orbit* of B is the set

$$\mathcal{O}^+(B) := \bigcup_{x \in B} \bigcup_{t \ge 0} \phi(t, x)$$

The ω -limit set of a subset $B \subset \mathbb{R}^n$, written $\omega(B)$, is the totality of all points $x \in \mathbb{R}^n$ for which there exists a sequence of pairs (x_k, t_k) , with $x_k \in B$ and $t_k \to \infty$ as $k \to \infty$, such that

$$\lim_{k \to \infty} \phi(t_k, x_k) = x \,.$$

In case $B = \{x_0\}$ the set thus defined, $\omega(x_0)$, is precisely the ω -limit set, as defined by G.D.Birkhoff, of the point x_0 . With a given set B, is it is also convenient to associate the set

$$\psi(B) = \bigcup_{x_0 \in B} \omega(x_0)$$

i.e. the union of the ω -limits set of all points of B. By definition $\psi(B) \subset \omega(B)$, but the equality may not hold.

Let |x| denote the Euclidean norm of a vector $x \in \mathbb{R}^n$. Let A be a closed subset of \mathbb{R}^n and, for any $x \in \mathbb{R}^n$ let

$$|x|_{\mathcal{A}} := \min_{y \in \mathcal{A}} |y - x|$$

denote the distance of x from \mathcal{A} . The A is said to uniformly attract a set B under the flow of (3) if for every $\varepsilon > 0$ there exists a time \overline{t} such that

 $|\phi(t,x)|_{\mathcal{A}} \leq \varepsilon$, for all $t \geq \overline{t}$ and for all $x \in B$.

Then the following holds (see [4] and, for the second property, [3] or [7]).

Lemma 1.1 If B is a nonempty connected bounded set whose positive orbit is bounded, then $\omega(B)$ is a nonempty, connected, compact, invariant set which uniformly attracts B. Moreover, if $\omega(B) \in int(B)$, then $\omega(B)$ is stable in the sense of Lyapunov.

2 Preliminaries

The purpose of this paper is to analyze the consequence of certain asymptotic properties of a system of the form

$$\begin{aligned} \dot{z} &= f_0(z, w) \\ \dot{w} &= s(w) \end{aligned}$$
 (2)

in which $z \in \mathbb{R}^n$, $w \in \mathbb{R}^r$.

The functions $f_0(z, w)$ and s(w) in (2) are C^k (with k sufficiently large) functions. Initial conditions for w are allowed to range over a fixed compact set W. Moreover, the following assumptions are supposed to hold.

Assumption 0. The set W is invariant for $\dot{w} = s(w)$ and $W = \psi(W)$.

Note that, since W is invariant for $\dot{w} = s(w)$, the closed cylinder $\mathcal{C} = \mathbb{R}^n \times W$ is locally invariant for (2). Hence, it is natural regard (2) as a system defined on \mathcal{C} and endow the latter with the subset topology. Let now Z be a fixed compact set of \mathbb{R}^n .

Assumption 1a. The positive orbit of $Z \times W$ under the flow of (2) is bounded.

This assumption implies that the set $\mathcal{A} := \omega(Z \times W)$ i.e the ω -limit set – under the flow of (2) – of the set $Z \times W$, is a nonempty, compact, invariant subset of \mathcal{C} which uniformly attracts $Z \times W$ under the flow of (2). Moreover, Assumption 0 implies that for any $w \in W$ there is a $z \in Z$ such that $(z, w) \in \mathcal{A}$. In other words, the projection map $P : (z, w) \mapsto w$ carries \mathcal{A} onto W(see [1]).

Assumption 1b. There exists a number $d_0 > 0$ such that

$$\mathcal{B}_0 := \{ (z, w) \in \mathbb{R}^n \times W : |(z, w)|_{\mathcal{A}} \le d_0 \} \subset Z \times W .$$

This assumption implies that the set \mathcal{A} is stable in the sense of Lyapunov, under the flow of (2).

For convenience, in what follows we rewrite (2) in the form of a single autonomous system

$$\dot{p} = f(p) \tag{3}$$

in which p := (z, w), and we let $\phi(t, p)$ denote its flow. Consistently, we set $\mathcal{P} := Z \times W$ (and note that $\mathcal{A} = \omega(\mathcal{P})$).

As observed above, a consequence of Assumptions 1a and 1b is that \mathcal{A} is stable in the sense of Lyapunov and uniformly attracts \mathcal{P} , under the flow of (3). Hence, there exist a strictly increasing function $\delta(\cdot)$, carrying $\mathbb{R}_{\geq 0}$ into $\mathbb{R}_{\geq 0}$ and vanishing at zero, such that

$$|p|_{\mathcal{A}} \leq \delta(\varepsilon) \qquad \Rightarrow \qquad |\phi(t,p)|_{\mathcal{A}} \leq \varepsilon \qquad \forall t \geq 0 \,, \ \forall p \in \mathcal{P}$$

and a continuous and strictly decreasing function $T(\cdot)$, carrying $\mathbb{R}_{>0}$ onto itself, such that

$$|\phi(t,p)|_{\mathcal{A}} \leq \varepsilon \qquad \forall t \geq T(\varepsilon), \ \forall p \in \mathcal{P}.$$

We define the domain of attraction of \mathcal{A} as the set \mathcal{D} of all points $p \in \mathcal{C}$ such that $\lim_{t\to\infty} |\phi(t,p)|_{\mathcal{A}} = 0$. The set \mathcal{D} , open in the subset topology of \mathcal{C} , is forward invariant for (3) and, obviously, $\mathcal{P} \subset \mathcal{D}$. In what follows we let $\overline{\mathcal{D}}$ denote the complement of \mathcal{D} in \mathcal{C} and let $\partial \mathcal{D}$ denote the boundary of \mathcal{D} (in the subset topology).

Appropriate adaptations of the arguments of [9] and [6] can be used to show the existence, for system (3), of a Lyapunov function. In the present note, we consider a "perturbed" version of (3), namely a system of the form

$$\dot{p} = f(p) + r(p, u)u$$

in which $u \in \mathbb{R}$ is an external input, and we are interested in determining its input-to-state stability properties (with restrictions) with respect to the compact set \mathcal{A} (see [7]), with an input-to-state gain function which is linear at the origin. To this end, it is convenient to assume that the set \mathcal{A} is locally exponentially stable.

Assumption 2. There exists numbers $M \geq 1$ and $\lambda > 0$ such that, for all $p \in \mathcal{B}_0$,

 $|\phi(t,p)|_{\mathcal{A}} \le M e^{-\lambda t} |p|_{\mathcal{A}}, \qquad \forall t \ge 0.$

Note that, in this case, there is no loss of generality in assuming that the function $\delta(\cdot)$ is linear at the origin, in particular that $\delta(\varepsilon) = (1/M)\varepsilon$ for all $\varepsilon \in [0, Md_0]$.

3 Lyapunov functions for (3)

3.1 The rescaled-time system

System (3) is not necessarily (backward and forward) complete. Since completeness plays an important role in the construction of Lyapunov functions, as in [6] we construct a complete system as follows. Let $a_f : \mathbb{R}^{n+r} \to \mathbb{R}$ be a smooth function satisfying

$$a_f(p) = 1, \qquad \text{for all } p \text{ such that } |p|_{\mathcal{A}} \le d_0$$

$$a_f(p) \ge 1 + |f(p)|, \qquad \text{for all } p \text{ such that } |p|_{\mathcal{A}} \ge 2d_0.$$

Indeed, the system

$$\dot{p} = \frac{1}{a_f(p)} f(p) \tag{4}$$

is complete. In what follows, we denote by $\psi(t, p)$ its flow.

Proposition 3.1 The sets C and A are invariant for (4).

Proof. The two sets are locally invariant for (3) and hence, since f(p) and $f(p)/a_f(p)$ only differ by a scalar factor, these sets are also locally invariant for (4). To prove that C is forward invariant, take $p \in C$, observe that $\psi(t, p)$ is defined for all $t \in \mathbb{R}$, let \overline{C} denote the complement of C in $\mathbb{R}^n \times \mathbb{R}^r$ and suppose, by contradiction, that the set

$$S = \{t > 0 : \psi(t, p) \in \overline{\mathcal{C}}\}$$

is not empty. Let t^* denote the lower bound of S. Note that S is open, because $\overline{\mathcal{C}}$ is open and $\psi(t, p)$ is continuous in t. Thus, $t^* \notin S$ and $\psi(t^*, p) \in \mathcal{C}$. But, as \mathcal{C} is locally invariant, $\psi(t, p) \in \mathcal{C}$ for all t in a neighborhhod of t^* . This contradicts the fact that t^* is a lower bound of S. An identical argument shows that \mathcal{C} is backward invariant. The same proof shows also that \mathcal{A} , a closed locally invariant set, is invariant. **Proposition 3.2** The set \mathcal{A} uniformly attracts \mathcal{P} under the flow of (4).

Proof. Pick any $p_0 \in \mathbb{R}^{n+r}$. Since $a_f(\psi(t, p_0))$ takes values in $[1, +\infty)$ and is locally Lipschitz in the argument t, there exists a unique solution $\tau_0(t)$ of the initial value problem

$$\dot{\tau} = a_f(\psi(\tau, p_0)), \quad \tau(0) = 0,$$
(5)

maximally defined over an open interval (t_0, t_1) of 0 in \mathbb{R} . In particular $\lim_{t\to t_1} \tau_0(t) = +\infty$. Indeed this follows from the fact that if t_1 is finite, then $\tau_0(t)$ goes to ∞ by the maximality of (t_0, t_1) , while if t_1 is infinite, the result follows from $\tau_0(t) \ge t$. Similar arguments show that $\lim_{t\to t_0} \tau_0(t) = -\infty$.

It is easy to check that

$$\psi(\tau_0(t), p_0) = \phi(t, p_0), \quad \forall t \in (t_0, t_1).$$
 (6)

In fact

$$\frac{\mathrm{d}}{\mathrm{d}t}\psi(\tau_0(t), p_0) = \frac{1}{a_f(\psi(\tau_0(t), p_0))} f(\psi(\tau_0(t), p_0)) \frac{\mathrm{d}}{\mathrm{d}t}\tau_0(t) = f(\psi(\tau_0(t), p_0)),$$

and, by uniqueness, (6) follows. The function $\tau_0(t)$ is continuously differentiable and strictly increasing. Therefore, there exists a function $\tau_0^{-1}(t)$ defined on $(-\infty, +\infty)$ such that

$$\tau_0^{-1} \circ \tau_0(t) = t, \quad \forall t \in (t_0, t_1)$$

and

$$\tau_0^{-1}(t) \le t$$
, $\tau_0 \circ \tau_0^{-1}(t) = t$, $\forall t \in (-\infty, +\infty)$.

Clearly

$$\psi(t, p_0) = \phi(\tau_0^{-1}(t), p_0) \qquad \forall t \in (-\infty, +\infty).$$

$$\tag{7}$$

By Assumption 1a, there exists a number K such that $|\phi(t, p_0)| \leq K$ for all $t \geq 0$ and all $p_0 \in \mathcal{P}$. Hence, from (7) we obtain

$$|\psi(t, p_0)| \le K$$
, $\forall t \in [0, \infty), \forall p_0 \in \mathcal{P}$.

Let now

$$N = \max_{|p| \le K} a_f(p)$$

Thus, for all $p_0 \in \mathcal{P}$, we have $\tau_0(t) \leq Nt$ for all $t \in [0, t_1)$, which in turn implies $t_1 = \infty$. Set now $\tilde{T}(\epsilon) = NT(\epsilon)$ and note that $t \geq \tilde{T}(\epsilon)$ implies $t \geq \tau_0(T(\epsilon))$, i.e. $\tau_0^{-1}(t) \geq T(\epsilon)$. Therefore

$$t \ge T(\epsilon) \qquad \Rightarrow \qquad |\psi(t, p_0)|_{\mathcal{A}} = |\phi(\tau_0^{-1}(t), p_0)|_{\mathcal{A}} \le \epsilon$$

for all $p_0 \in \mathcal{P}$ and this proves that \mathcal{A} uniformly attracts \mathcal{P} under the flow of (4).

Proposition 3.3 The set \mathcal{D} is the set of all points $p \in \mathcal{C}$ such that $\lim_{t\to\infty} |\psi(t,p)|_{\mathcal{A}} = 0$.

Proof. First of all, we observe that, if $p_0 \in \mathcal{D}$, there exists a number K_0 such that $|\phi(t, p_0)| \leq K_0$ for all $t \geq 0$. Thus, the same argument used in the proof of Proposition 3.2, setting $N_0 = \max_{|p| \leq K_0} a_f(p)$, shows that $\tau_0(t) \leq N_0 t$ so long as $\tau_0(t)$ is defined, which in turn implies that the function in question is defined for all $t \geq 0$ (and $\lim_{t\to\infty} \tau_0^{-1}(t) = \infty$). Thus

$$\lim_{t \to \infty} |\psi(t, p_0)|_{\mathcal{A}} = \lim_{t \to \infty} |\phi(\tau_0^{-1}(t), p_0)|_{\mathcal{A}} = 0,$$

i.e. all points in \mathcal{D} are such that $\lim_{t\to\infty} |\psi(t,p)|_{\mathcal{A}} = 0$. It remains to show that no other point of \mathcal{C} has this property. To this end, it suffices to show that \mathcal{D} is invariant under the flow of (4). Pick any $p \in \mathcal{D}$ and any $s \in \mathbb{R}$, and set $p_1 := \psi(s, p)$. Clearly,

$$\lim_{t \to \infty} |\psi(t, p_1)|_{\mathcal{A}} = 0.$$

As $\psi(t, p_1)$ is bounded on $[0, \infty)$, arguments identical to those used above show that the solution $\tau_1(t)$ of

$$\dot{\tau} = a_f(\psi(\tau, p_1)), \quad \tau(0) = 0$$

is defined for all $t \ge 0$ (and $\lim_{t\to\infty} \tau_1(t) = \infty$). Thus

$$\lim_{t \to \infty} |\phi(t, p_1)|_{\mathcal{A}} = \lim_{t \to \infty} |\psi(\tau_1(t), p_1)|_{\mathcal{A}} = 0.$$

This shows that $\psi(s, p) \in \mathcal{D}$, i.e. that \mathcal{D} is invariant under the flow of (4).

Finally, set $d_1 := d_0/M$ and

$$\mathcal{B}_1 = \{ p \in \mathcal{B}_0 : |p|_{\mathcal{A}} \le d_1 \}$$

As system (3) and system (4) agree on \mathcal{B}_0 , it is seen from Assumption 2 that for all $p \in \mathcal{B}_1$

$$|\psi(t,p)|_{\mathcal{A}} \le M e^{-\lambda t} |p|_{\mathcal{A}}, \qquad \forall t \ge 0.$$
(8)

In particular, the function $\delta : [0, d_0] \to \mathbb{R}$ defined as $\delta(\varepsilon) = (1/M)\varepsilon$ is such that, for all $p \in \mathcal{B}_1$,

$$|p|_{\mathcal{A}} \leq \delta(\varepsilon) \qquad \Rightarrow \qquad |\psi(t,p)|_{\mathcal{A}} \leq \varepsilon \quad \forall t \geq 0.$$

3.2 Wilson's Lyapunov function for (4)

We follow Wilson's construction [9]. First of all, define $g: \mathcal{B}_1 \to \mathbb{R}$ by

$$g(p) = \inf_{t \le 0} \{ |\psi(t, p)|_{\mathcal{A}} \}.$$

Lemma 3.1 The function g has the following properties:

- 1. $g(p) \ge g(\psi(t, p))$ for all $t \ge 0$.
- 2. $\delta(|p|_{\mathcal{A}}) \leq g(p) \leq |p|_{\mathcal{A}}.$
- 3. There is a time T > 0 such that, for all $p \in \mathcal{B}_1$, $g(p) = \min_{t \in [-T,0]} \{ |\psi(t,p)|_{\mathcal{A}} \}$.
- 4. The function g is Lipschitz on \mathcal{B}_1 .

Proof. Property 1 is a direct consequence of the definition. In Property 2, the inequality on the right is a direct consequence of the definition. The inequality on the left is proven by contradiction. Suppose it is not true. Then there exists $t_0 \leq 0$ such that $|\psi(t_0, p)|_{\mathcal{A}} < \delta(|p|_{\mathcal{A}})$. As $\delta(\cdot)$ is strictly increasing, it is always possible to find $0 < \varepsilon < |p|_{\mathcal{A}}$ such that

$$|\psi(t_0, p)|_{\mathcal{A}} < \delta(\varepsilon) < \delta(|p|_{\mathcal{A}}).$$

This implies

$$|p|_{\mathcal{A}} = |\psi(-t_0, \psi(t_0, p))|_{\mathcal{A}} \le \varepsilon < |p|_{\mathcal{A}}$$

which is a contradiction.

To prove Property 3, recall (8) and set

$$T := \frac{1}{\lambda} \log M \,.$$

We claim that

$$t < -T \qquad \Rightarrow \qquad |\psi(t,p)|_{\mathcal{A}} \ge |p|_{\mathcal{A}}.$$
 (9)

The property is indeed true for all t < 0 such that $|\psi(t, p)|_{\mathcal{A}} > d_1$, because $d_1 \ge |p|_{\mathcal{A}}$ for all $p \in \mathcal{B}_1$. Consider now a t < -T such that $|\psi(t, p)|_{\mathcal{A}} \le d_1$ and, by contradiction, suppose $|\psi(t, p)|_{\mathcal{A}} < |p|_{\mathcal{A}}$. Set $t = -T - \epsilon$, with $\epsilon > 0$, and use (8) to obtain

$$|p|_{\mathcal{A}} = |\psi(-t,\psi(t,p))|_{\mathcal{A}} = |\psi(T+\epsilon,\psi(t,p))|_{\mathcal{A}} \le Me^{-\lambda(T+\epsilon)}|\psi(t,p)|_{\mathcal{A}} \le e^{-\lambda\epsilon}|p|_{\mathcal{A}}.$$

This is a contradiction, and hence (9) is true. This property, since $g(p) \leq |p|_{\mathcal{A}}$, shows that

$$\inf_{t \le 0} \{ |\psi(t, p)|_{\mathcal{A}} \} = \min_{t \in [-T, 0]} \{ |\psi(t, p)|_{\mathcal{A}} \}.$$
(10)

Finally, to see that Property 4 holds, pick any two points η and ζ in \mathcal{B}_1 and, in view of Property 3, let $\bar{t} \in [-T, 0]$ be a time at which the minimum in (10) is reached, i.e. such that $g(\zeta) = |\psi(\bar{t}, \zeta)|_{\mathcal{A}}$. Observe also that $g(\eta) \leq |\psi(\bar{t}, \eta)|_{\mathcal{A}}$. Thus

$$g(\eta) - g(\zeta) \le |\psi(\bar{t}, \eta)|_{\mathcal{A}} - |\psi(\bar{t}, \zeta)|_{\mathcal{A}} \le |\psi(\bar{t}, \eta) - \psi(\bar{t}, \zeta)|.$$

It is known (see e.g. [2]) that there is a constant C, which only depends on T and \mathcal{B}_1 , such that

$$|\psi(t,\eta) - \psi(t,\zeta)| \le C|\eta - \zeta|$$

for all $|t| \leq T$ and all $\eta, \zeta \in \mathcal{B}_1$. Thus, the previous inequality yields

$$g(\eta) - g(\zeta) \le C|\eta - \zeta|.$$

Reversing the roles of η and ζ yields $g(\zeta) - g(\eta) \leq C|\eta - \zeta|$ and this proves the desired property. \triangleleft

Set now

$$\mathcal{B}_2 := \{ p \in \mathcal{B}_1 : |p|_{\mathcal{A}} \le d_1/M \}$$

and define $U: \mathcal{B}_2 \to \mathbb{R}$ by

$$U(p) = \sup_{t \ge 0} \{g(\psi(t, p))k(t)\}$$

in which

$$k(t) = \frac{1+2t}{1+t}.$$

Lemma 3.2 The function U has the following properties:

1. For all $p \in \mathcal{B}_2$

$$\frac{1}{M}|p|_{\mathcal{A}} \le U(p) \le 2|p|_{\mathcal{A}}.$$
(11)

- 2. There is a time $T^* > 0$ such that, for all $p \in \mathcal{B}_2$, $U(p) = \max_{t \in [0,T^*]} \{g(\psi(t,p))k(t)\}$.
- 3. The function U is Lipschitz on \mathcal{B}_2 .
- 4. There is a number $\kappa > 0$ such that, for all $p \in int(\mathcal{B}_2)$,

$$\limsup_{h \to 0^+} \frac{U(\psi(h, p)) - U(p)}{h} \le -\kappa U(p) \,. \tag{12}$$

Proof. Since $U(p) \ge g(p)$ by definition, and $\delta(\varepsilon) = \varepsilon/M$, the estimate on the left in Property 2 of g yields the estimate on the left in (11). Likewise, as Property 1 of g implies $g(\psi(t,p))k(t) \le g(\psi(t,p))2 \le g(p)2$, the estimate on the right in Property 2 of g yields the estimate on the right in (11).

To prove Property 2, set

$$T^* = \frac{1}{\lambda} \log(2M^2) \,.$$

Suppose the property is false. Then, there exists a time $\bar{t} > T^*$ such that

$$\frac{1}{M}|p|_{\mathcal{A}} \le g(p) \le g(\psi(\bar{t},p)) \le |\psi(\bar{t},p)|_{\mathcal{A}} \le Me^{-\lambda\bar{t}}|p|_{\mathcal{A}},$$

having used the property (8). This yields

$$|p|_{\mathcal{A}} \le M^2 e^{-\lambda \bar{t}} |p|_{\mathcal{A}} < M^2 e^{-\lambda T^*} |p|_{\mathcal{A}} \le (1/2) |p|_{\mathcal{A}},$$

which is a contradiction.

To prove Property 3, pick any two points η and ζ in \mathcal{B}_2 and, in view of Property 2, let $\overline{t} \in [0, T^*]$ be a time such that $U(\zeta) = g(\psi(\overline{t}, \zeta))k(\overline{t})$. Observe also that $U(\eta) \ge g(\psi(\overline{t}, \eta))k(\overline{t})$. Thus

$$U(\zeta) - U(\eta) \le g(\psi(\bar{t},\zeta))k(\bar{t}) - g(\psi(\bar{t},\eta))k(\bar{t}) \le 2|g(\psi(\bar{t},\zeta)) - g(\psi(\bar{t},\eta))|.$$

Both points $\psi(\bar{t},\zeta)$ and $\psi(\bar{t},\eta)$ are in \mathcal{B}_1 . Hence, by Property 4 of g,

$$|g(\psi(\bar{t},\zeta)) - g(\psi(\bar{t},\eta))| \le C|\psi(\bar{t},\zeta) - \psi(\bar{t},\eta)|.$$

Using again the properties of $\psi(t, p)$ as in the proof of the previous Proposition, we know that there exist a constant C^* , which only depends of T^* and \mathcal{B}_2 such that $|\psi(\bar{t}, \zeta) - \psi(\bar{t}, \eta)| \leq C^* |\zeta - \eta|$ and this yields

$$U(\zeta) - U(\eta) \le D|\zeta - \eta$$

with $D = 2CC^*$. Reversing the roles of ζ and η , we finally obtain

$$|U(\zeta) - U(\eta)| \le D|\zeta - \eta|$$

To prove Property 4, it is shown first that for $p \in int(\mathcal{B}_2)$ and sufficiently small h > 0

$$\frac{U(\psi(h,p)) - U(p)}{h} \le -\frac{1}{(1+2T^*+2h)^2}U(p).$$
(13)

In fact, set $p' = \psi(h, p)$ and let t' be a point such that $U(p') = g(\psi(t', p'))k(t')$ (recall that $0 \le t' \le T^*$). Then, setting t = h + t', we have

$$\begin{split} U(p') &= g(\psi(t',p'))k(t') = g(\psi(t',\psi(h,p)))k(t') = g(\psi(t,p))k(t)\frac{k(t')}{k(t)} \\ &\leq U(p)\frac{k(t')}{k(t)} = U(p)\Big[1 - \frac{k(t) - k(t')}{k(t)}\Big] \leq U(p)\Big[1 - \frac{h}{(1+t')(1+2t'+2h)}\Big] \,. \end{split}$$

As $t' \leq T^*$,

$$1 - \frac{h}{(1+t')(1+2t'+2h)} \le 1 - \frac{h}{(1+2T^*+2h)^2},$$

and therefore

$$U(p') \le U(p) \left[1 - \frac{h}{(1+2T^*+2h)^2} \right].$$

This yields (13), which in turn yields (12). \triangleleft

As in [9], the function U can be extended to \mathcal{D} in the following way.

By Property 1, it follows that there is a d > 0 such that $U^{-1}(d) \subset \operatorname{int}(\mathcal{B}_2)$. It easy to prove that every trajectory of (3) with initial condition in $\mathcal{D} \setminus \mathcal{A}$ intersects $U^{-1}(d)$ in a single point. In fact, consider the set

$$\mathcal{U}_d = U^{-1}([0,d]) \,.$$

For any $p \in \mathcal{U}_d \setminus \mathcal{A}$, there must exist some time t < 0 at which $\psi(t, p) \in \mathcal{D} \setminus \mathcal{U}_d$ because, otherwise, p would be a point in $\omega(\mathcal{U}_d)$, which contradicts the fact that $\omega(\mathcal{U}_d) \subset \omega(\mathcal{P}) = \mathcal{A}$. On the other hand, for any $p \in \mathcal{D} \setminus \mathcal{U}_d$, the integral curve $\psi(t, p)$ must intersect $U^{-1}(d)$ at some time $t_p > 0$, as $|\psi(t, p)|_{\mathcal{A}} \to 0$ as $t \to \infty$. Property 4 implies that, if $\psi(t, p) \in int(\mathcal{B}_2)$ for all $t \in (t_0, t_1)$,

$$D^+U(\psi(t,p)) < 0, \qquad \forall t \in (t_0,t_1)$$

and hence $U(\psi(t, p))$ is strictly decreasing on (t_0, t_1) . Form this, and the fact that $U^{-1}(d) \subset int(\mathcal{B}_2)$, it is concluded that the time t_p is unique.

Define now a function $V : \mathcal{D} \to \mathbb{R}$ as

$$V(p) = \begin{cases} U(p) & \text{if } p \in \mathcal{U}_d \\ d + t_p & \text{if } p \in \mathcal{D} \setminus \mathcal{U}_d \end{cases}$$

Lemma 3.3 The function V has the following properties.

- 1. It is continuous.
- 2. It is locally Lipschitz on $\mathcal{D} \setminus \mathcal{U}_d$.
- 3. $V^{-1}(a) = \psi(d a, U^{-1}(d))$ for all $a \ge d$, and $\lim_{n\to\infty} V(p_n) = \infty$ for any sequence p_n in $\mathcal{D} \setminus \mathcal{U}_d$ which has its limit on $\partial \mathcal{D}$, or whose distance from \mathcal{A} becomes infinite.
- 4. For all $p \in \mathcal{D} \setminus \mathcal{U}_d$,

$$\limsup_{h \to 0^+} \frac{V(\psi(h, p)) - V(p)}{h} = -1.$$
(14)

Proof. For Properties 1,3,4, see [9]. To prove Property 2, pick a point $p \in \mathcal{D} \setminus \mathcal{U}_d$, a neighborhood $N \subset \mathcal{D} \setminus \mathcal{U}_d$ of p and two points $p_1, p_2 \in N$. Let t_1 and t_2 be the (unique) times such that

$$d = U(\psi(t_1, p_1)) = U(\psi(t_2, p_2))$$

and, without loss of generality, assume $t_2 \ge t_1$. Note that, by definition

$$|t_2 - t_1| = |V(p_2) - V(p_1)|.$$

Thus, since V is continuous and $\psi(t, p)$ is continuous in the argument t, if N is small enough, $\psi(t_1 - t_2, \psi(t_2, p_2)) = \psi(t_1, p_2) \in int(\mathcal{B}_2)$. Using the fact that U is Lipschitz and that $\psi(t_1, p)$ is Lipschitz in the argument p, it is seen that for some M_0

$$|U(\psi(t_1, p_1)) - U(\psi(t_1, p_2))| \le M_0 |p_1 - p_2|.$$
(15)

Next, we show that

$$U(\psi(t_2, p_2)) \le U(\psi(t_1, p_2)) - \kappa c |t_2 - t_1|.$$
(16)

In fact, using Property 4 of U (which is legitimate because $\psi(t_1, p_2) \in int(\mathcal{B}_2)$), note that

$$D^+U(\psi(t,p_2)) \le -\kappa U(\psi(t,p_2)) \le -\kappa c, \qquad \forall t \in [t_1,t_2]$$

from which, by the Comparison Lemma (see [8]), (16) follows. Using the latter and (15) we obtain

$$\begin{aligned} c\kappa |V(p_2) - V(p_1)| &= \kappa c |t_2 - t_1| &\leq U(\psi(t_1, p_2)) - U(\psi(t_2, p_2)) \\ &= U(\psi(t_1, p_2)) - U(\psi(t_1, p_1)) + U(\psi(t_1, p_1)) - U(\psi(t_2, p_2)) \\ &\leq M_0 |p_1 - p_2| + d - d \,, \end{aligned}$$

which proves Property 2. \triangleleft

Remark. Note that, since $U^{-1}(d) \subset \operatorname{int}(\mathcal{B}_2)$, it is possible to find a number b > d such that $U^{-1}(b) \subset \operatorname{int}(\mathcal{B}_2)$. Moreover, it is possible to find numbers number $c_1 > c_2 > d$ such that

$$V^{-1}(c_i) \subset \{ p \in \mathcal{B}_2 : d < U(p) < b \} \qquad i = 1, 2. \quad \triangleleft$$

3.3 Back to system (3)

We recall a result from [10]. Consider a system

$$\dot{p} = f(t, p) \,,$$

in which $f : \mathbb{R} \times D \to \mathbb{R}^n$, with D an open set in \mathbb{R}^n , is continuous. Let $p : I \to \mathbb{R}^n$, with I an open interval in \mathbb{R} , be a solution. Let $V : D \to \mathbb{R}$ be a locally Lipschitz function. Then

$$\limsup_{h \to 0^+} \frac{1}{h} [V(p(t+h)) - V(p(t))] = \limsup_{h \to 0^+} \frac{1}{h} [V(p(t) + hf(t, p(t))) - V(p(t))].$$
(17)

Using this result for systems (3) and (4), we get

$$\begin{split} \limsup_{h \to 0^+} \frac{1}{h} [V(\phi(h, p)) - V(p)] &= \limsup_{h \to 0^+} \frac{a_f(p)}{a_f(p)h} [V(p + a_f(p)h\frac{f(p)}{a_f(p)}) - V(p)] \\ &= a_f(p) \limsup_{\ell \to 0^+} \frac{1}{\ell} [V(p + \ell \frac{f(p)}{a_f(p)}) - V(p)] \\ &= a_f(p) \limsup_{\ell \to 0^+} \frac{1}{\ell} [V(\psi(\ell, p)) - V(p)]. \end{split}$$

As a consequence, since $a_f(p) \ge 1$, the function V constructed in the previous sub-section is such that

$$\limsup_{h \to 0^+} \frac{1}{h} [V(\phi(h, p)) - V(p)] \le -1 \quad \text{for all } p \in \mathcal{D} \setminus \mathcal{U}_d \,, \tag{18}$$

in which now $\phi(t, p)$ is the flow of (3). Likewise, the function U satisfies

$$\limsup_{h \to 0^+} \frac{1}{h} [U(\phi(h, p)) - U(p)] \le -\kappa U(p) \quad \text{for all } p \in \operatorname{int}(\mathcal{B}_2).$$
(19)

4 Asymptotic Regulation

In the non-equilibrium theory of nonlinear output regulation (see [1]), one is interested in the asymptotic behavior of systems of the form

$$\dot{z} = f_0(z, w) + f_1(z, w, e)e
\dot{w} = s(w)
\dot{e} = h_0(z, w) + h_1(z, w, e)e - ke,$$
(20)

with $z \in \mathbb{R}^n$, $w \in \mathbb{R}^r$, $e \in \mathbb{R}$, in which $f_0(z, w)$, $f_1(z, w, e)$, s(w), $h_0(z, w)$, $h_1(z, w, e)$ are C^k functions, s(w) and $f_0(z, w)$ are such that Assumptions 0, 1a, 1b, and 2 hold for some fixed pair of compact sets $W \subset \mathbb{R}^r$ and $Z \subset \mathbb{R}^n$, and $h_0(z, w)$ vanishes on \mathcal{A} . Let this system be rewritten in the form

$$\dot{p} = f(p) + r(p, e)e
\dot{e} = h(p) + [q(p, e) - k]e.$$
(21)

Let E be a closed interval of \mathbb{R} . In what follows we prove the following result.

Proposition 4.1 Suppose h(p) = 0 for all $p \in A$. There exists a number k^* such that, if $k \ge k^*$, the positive orbit of $\mathcal{P} \times E$ under the flow of (21) is bounded and $\lim_{t\to\infty} e(t) = 0$.

Let $E = [e_0, e_1]$ and set $E_1 = [e_0 - 1, e_1 + 1]$. Pick a number a > 0 such that $\mathcal{P} \subset V^{-1}([0, a])$, which is possible because V is proper on \mathcal{D} , and define

$$h_0 = \max_{p \in V^{-1}([0,a+1])} |h(p)|, \qquad q_0 = \max_{p \in V^{-1}([0,a+1]), e \in E_1} |q(p,e)|$$

Fix $0 < \delta < 1$, pick μ such that $\mu h_0^2 = \delta^2$ and pick k so that

$$\lambda_k := k - q_0 - 1/8\mu > 1$$
.

Then, standard arguments show that, so long as $p(t) \in V^{-1}([0, a+1])^{1}$

$$|e(t)| \le \exp(-\lambda_k t)|e(0)| + \delta.$$
(22)

This shows, in particular, that for any $\varepsilon > 0$ and any T > 0, there is a number $k_{\varepsilon,T}^*$ such that if, $k \ge k_{\varepsilon,T}^*$, then $|e(t)| \le \varepsilon$ for all $t \ge T$, provided that $p(t) \in V^{-1}([0, a + 1])$ for all $t \ge 0$.

Pick numbers b and c_1, c_2 as in specified in the Remark at the end of the sub-section 3.2 and note that, since the function V is locally Lipschitz on $\mathcal{D} \setminus \mathcal{U}_d$ and the set

$$\mathcal{S} = \{ p \in \mathcal{D} : c_2 \le V(p) \le a+1 \}$$

is compact, there is a number \overline{L} such that

$$|V(p) - V(q)| \le \overline{L}|p - q|$$
 for all $p, q \in \mathcal{S}$.

¹See e.g. [5].

Moreover, from (18), it is seen that

$$\limsup_{h \to 0^+} \frac{1}{h} [V(\phi(h, p)) - V(p)] \le -1 \quad \text{for all } p \in \mathcal{S},$$

in which $\phi(h, p)$ is the flow of (3). Finally, let

$$r_0 = \max_{p \in V^{-1}([0,a+1]), e \in E_1} |r(p,e)|.$$

Note that, as p(0) ranges on a compact set, contained in $V^{-1}([0, a])$, there is a time T (independent of (p(0), e(0))) such that, for all $t \in [0, T]$, p(t) exists and satisfies $p(t) \in V^{-1}([0, a + 1/2])$ for all $t \in [0, T]$. Thus, on this time interval (22) holds.

Note that (see (17) and (18)), so long as $p(t) \in S$ and $e(t) \in E_1$,

$$\begin{split} D^+V(p(t)) &= \limsup_{h \to 0^+} \frac{1}{h} [V(p(t+h)) - V(p(t))] \\ &= \limsup_{h \to 0^+} \frac{1}{h} [V(p(t) + hf(p(t)) + hg(p(t), e(t))e(t)) - V(p(t))] \\ &= \limsup_{h \to 0^+} \frac{1}{h} [V(p(t) + hf(p(t)) + hg(p(t), e(t))e(t)) - V(p(t) + hf(p(t))] \\ &+ \limsup_{h \to 0^+} \frac{1}{h} [V(p(t) + hf(p(t))) - V(p(t))] \\ &\leq \limsup_{h \to 0^+} \frac{1}{h} \bar{L} |hg(p(t), e(t))e(t))| + \limsup_{h \to 0^+} \frac{1}{h} [V(\phi(h, p(t))) - V(p(t))] \\ &\leq \bar{L}r_0 |e(t)| - 1 \,. \end{split}$$

Pick $\varepsilon > 0$ such that $\overline{L}r_0\varepsilon \leq 1/2$, and let $k \geq k_{\varepsilon,T}^*$. Then, it is seen that, so long as $p(t) \in \mathcal{S}$,

$$D^+V(p(t)) \le -1/2$$
. (23)

This proves that V(p(t)) is strictly decreasing for t > T and hence $p(t) \in V^{-1}([0, a + 1])$ for all $t \ge 0$. Moreover, it also proves that in finite time p(t) intersects $V^{-1}(c_1)$. In fact, (23) implies

$$V(t) \le V(T) - \frac{1}{2}a_0t \le a + \frac{1}{2} - \frac{1}{2}(t - T)$$

for $t \ge T$ and therefore p(t) must enter the set $V^{-1}([0, c_1])$ at some time $\overline{t} \le 2(a-c_1)+T+1$. Inequality (23) also proves that the set $V^{-1}([0, c_1]) \times \{e \in \mathbb{R} : |e| \le \varepsilon\}$ is invariant in positive time under the flow of (21).

It remains to show that $e(t) \to 0$ as $t \to \infty$. This is a direct consequence of the smallgain theorem for input-to-state stable systems. First of all note that a calculation identical to the one above leading to (23) leads (using this time (19), which is legitimate because $p(t) \in int(\mathcal{B}_2)$) to

$$D^+U(p(t)) \le -\kappa U(p(t)) + \bar{L}r_0|e(t)|.$$
 (24)

Thus, by the Comparison Lemma (see [8]),

$$U(p(t)) \le e^{-\kappa(t-t_0)} U(p(t_0)) + \frac{\bar{L}r_0}{\kappa} \max_{t \in [t_0,t]} |e(t)|$$

for all $t \ge t_0$. This, in view of the estimates (11), yields

$$|p(t)|_{\mathcal{A}} \le 2Me^{-\kappa(t-t_0)}|p(t_0)|_{\mathcal{A}} + \gamma \max_{t \in [t_0,t]} |e(t)|$$
(25)

in which $\gamma = M \bar{L} r_0 / \kappa$

On the other hand, assuming $k > q_0$ it is easily seen that

$$|e(t)| \le e^{-(k-q_0)(t-t_0)}|e(t_0)| + \frac{1}{(k-q_0)} \max_{t \in [t_0,t]} |h(p(t))|.$$

Recall now that h(p), a smooth function, vanishes on \mathcal{A} . Thus, there exists a number β such that $|h(p)| \leq \beta |p|_{\mathcal{A}}$ for all $p \in \mathcal{B}_2$. Thus,

$$|e(t)| \le e^{-(k-q_0)(t-t_0)}|p(t_0)| + \frac{\beta}{(k-q_0)} \max_{t \in [t_0,t]} |p(t)|_{\mathcal{A}}.$$
(26)

At this point, comparing (25) and (26), the classical arguments of the small-gain theorem for input-to-state stable systems prove that, if

$$k > \gamma\beta + q_0$$

then $e(t) \to 0$ and $|p(t)|_{\mathcal{A}} \to 0$ as $t \to \infty$. This proves the Proposition.

References

- C.I. Byrnes, A. Isidori, Limit Sets, Zero Dynamics, and Internal Models in the Problem of Nonlinear Output Regulation, *IEEE Trans. Autom. Control*, AC-48: to appear, 2003.
- [2] E.A. Coddington, N. Levinson, Theory of ordinary differential equations. McGraw-Hill (New York), 1955.
- [3] W. Hahn, Stability of Motion, Springer Verlag (Berlin), 1967.
- [4] J.K. Hale, L.T. Magalhães, W.M. Oliva, Dynamics in Infinite Dimensions, Springer Verlag (New York, NY), 2002.
- [5] A. Isidori. Nonlinear Control Systems II. Springer Verlag (New York, NY), 1st edition, 1999.

- [6] Y. Lin, E.D. Sontag, Y. Wang, A smooth converse Lyapunov theorem for robust stability, SIAM J. Contr. Optimiz., 34: 124–160, 1996.
- [7] E.D. Sontag, Y. Lin, On characterizations of input-to-state stability with respect to compact sets, Proc. IEEE Conf. Decision and Control, 226–231, 1996.
- [8] J. Szarski, *Differential Inequalities*, Polska Akademia Nauk (Warszawa), 1967.
- [9] F.W. Wilson, Smoothing derivatives of functions and applications, Trans. Amer. Math. Soc., 139: 413–428.
- [10] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer Verlag (New York, NY), 1975.