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Abstract

This paper provides a self-contained proof of the fact that certain systems arising in
the non-equilibrium theory of output regulation, which possess a locally exponentially
stable compact attractor, are input-to-state stable (with respect to the attractor, with
restrictions) with a linear gain function.
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1 Terminology and Notations

Consider an autonomous ordinary differential equation

&= f(z) (1)

with x € R, t € R, and let
¢: (t,x) — ot )

define its flow. A set X is locally invariant under the flow of (1) if, for any x € X, there
exists an open interval I of 0 in R such that ¢(t,z) € X for all t € I. A set X is forward
invariant under the flow of (1) if, for any = € X, ¢(¢, x) is defined for all for all ¢ > 0 and
¢(t,x) € X for all t > 0. A set X is backward invariant under the flow of (1) if, for any
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x € X, ¢(t,x) is defined for all for all £ < 0 and ¢(¢t,z) € X for all t < 0. A set X is
invariant under the flow of (1) if it is backward and forward invariant.

Let B be a fixed subset of R™ and suppose that, for all p € B, the map t :— ¢(t,x) is
defined for all ¢t > 0. The positive orbit of B is the set

0*(B):=J et x).

xeBt>0

The w-limit set of a subset B C R", written w(B), is the totality of all points z € R" for
which there exists a sequence of pairs (z, %), with 2 € B and t; — oo as k — oo, such
that

In case B = {x¢} the set thus defined, w(xg), is precisely the w-limit set, as defined by
G.D.Birkhoff, of the point zy,. With a given set B, is it is also convenient to associate the

set
v(B) = | w(xo)

ro€EB

i.e. the union of the w-limits set of all points of B. By definition ¢(B) C w(B), but the
equality may not hold.

Let |z| denote the Euclidean norm of a vector x € R™. Let A be a closed subset of R"
and, for any x € R" let

[#].4 := min |y — =]

denote the distance of = from A. The A is said to uniformly attract a set B under the flow
of (3) if for every € > 0 there exists a time ¢ such that

lp(t, )| 4 < e, for all t > ¢ and for all z € B.

Then the following holds (see [4] and, for the second property, [3] or [7]).

Lemma 1.1 If B is a nonempty connected bounded set whose positive orbit is bounded,
then w(B) is a nonempty, connected, compact, invariant set which uniformly attracts B.
Moreover, if w(B) € int(B), then w(B) is stable in the sense of Lyapunov.

2 Preliminaries

The purpose of this paper is to analyze the consequence of certain asymptotic properties of
a system of the form
2 = folz,w)
(2)

w = s(w)

in which z € R", w € R".



The functions fy(z,w) and s(w) in (2) are C* (with k sufficiently large) functions. Initial
conditions for w are allowed to range over a fixed compact set W. Moreover, the following
assumptions are supposed to hold.

Assumption 0. The set W is invariant for w = s(w) and W = p(W).

Note that, since W is invariant for @ = s(w), the closed cylinder C = R™ x W is locally
invariant for (2). Hence, it is natural regard (2) as a system defined on C and endow the
latter with the subset topology. Let now Z be a fixed compact set of R™.

Assumption la. The positive orbit of Z x W under the flow of (2) is bounded.

This assumption implies that the set A := w(Z x W) i.e the w-limit set — under the flow
of (2) — of the set Z x W, is a nonempty, compact, invariant subset of C which uniformly
attracts Z x W under the flow of (2). Moreover, Assumption 0 implies that for any w € W
there is a z € Z such that (z,w) € A. In other words, the projection map P : (z,w) — w
carries A onto W (see [1]).

Assumption 1b. There exists a number dy > 0 such that
By :={(z,w) e R" x W : |(z,w)|a < do} CZ xW.

This assumption implies that the set A is stable in the sense of Lyapunov, under the flow of

2).

For convenience, in what follows we rewrite (2) in the form of a single autonomous system

p=f(p) (3)

in which p := (z,w), and we let ¢(t,p) denote its flow. Consistently, we set P := Z x W
(and note that A = w(P)).

As observed above, a consequence of Assumptions la and 1b is that A is stable in the
sense of Lyapunov and uniformly attracts P, under the flow of (3). Hence, there exist a
strictly increasing function J(-), carrying R>g into Rx( and vanishing at zero, such that

pla<idle) = |otp)la<e VE>0, VpeP
and a continuous and strictly decreasing function 7'(+), carrying R+ onto itself, such that
o(t,p)la<e VE>T(e), VpeP.

We define the domain of attraction of A as the set D of all points p € C such that
limg .o |@¢(t,p)|a = 0. The set D, open in the subset topology of C, is forward invariant
for (3) and, obviously, P C D. In what follows we let D denote the complement of D in C
and let 0D denote the boundary of D (in the subset topology).

Appropriate adaptations of the arguments of [9] and [6] can be used to show the existence,
for system (3), of a Lyapunov function. In the present note, we consider a “perturbed” version
of (3), namely a system of the form

p=f(p) +r(p,uwu
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in which v € R is an external input, and we are interested in determining its input-to-state
stability properties (with restrictions) with respect to the compact set A (see [7]), with an
input-to-state gain function which is linear at the origin. To this end, it is convenient to
assume that the set A is locally exponentially stable.

Assumption 2. There exists numbers M > 1 and XA > 0 such that, for all p € By,

lp(t,p)|a < Me M[p|a, vt > 0.

Note that, in this case, there is no loss of generality in assuming that the function o(-) is
linear at the origin, in particular that 6(g) = (1/M)e for all € € [0, Md,).

3 Lyapunov functions for (3)

3.1 The rescaled-time system

System (3) is not necessarily (backward and forward) complete. Since completeness plays an
important role in the construction of Lyapunov functions, as in [6] we construct a complete
system as follows. Let as : R"™*" — R be a smooth function satisfying

ar(p) = 1, for all p such that |p|4 < dp
ar(p) > 14+ |f(p)l, for all p such that |p|4 > 2d,.
Indeed, the system
1
p= f(p) (4)
ar(p)

is complete. In what follows, we denote by (¢, p) its flow.

Proposition 3.1 The sets C and A are invariant for (4).

Proof.  The two sets are locally invariant for (3) and hence, since f(p) and f(p)/ar(p)
only differ by a scalar factor, these sets are also locally invariant for (4). To prove that C is
forward invariant, take p € C, observe that (¢, p) is defined for all ¢ € R, let C denote the
complement of C in R™ x R" and suppose, by contradiction, that the set

S={t>0:¢(p) €C}

is not empty. Let t* denote the lower bound of S. Note that S is open, because C is open
and 1(t, p) is continuous in ¢. Thus, t* ¢ S and ¥(t*,p) € C. But, as C is locally invariant,
¥(t,p) € C for all ¢ in a neighborhhod of ¢t*. This contradicts the fact that ¢t* is a lower bound
of S. An identical argument shows that C is backward invariant. The same proof shows also
that A, a closed locally invariant set, is invariant. <



Proposition 3.2 The set A uniformly attracts P under the flow of (4).

Proof. Pick any py € R™"". Since as(1(t, po)) takes values in [1, +00) and is locally Lipschitz
in the argument ¢, there exists a unique solution 74(¢) of the initial value problem

7 =as(Y(7,p0)), 7(0)=0, (5)

maximally defined over an open interval (to, ;) of 0 in R. In particular lim, ., 70(t) = +o0.
Indeed this follows from the fact that if ¢; is finite, then 74(¢) goes to oo by the maximality
of (tg,t1), while if ¢; is infinite, the result follows from 79(¢) > ¢. Similar arguments show

that lim; 4, 79(t) = —oc.
It is easy to check that
¥(10(t), po) = (1, po) » Vvt € (to, t1) - (6)
In fact
1 d

S rult), o) = P lt), ) r70(t) = @ (o(0) o)

ar(¥(7o(t), po))

and, by uniqueness, (6) follows. The function 7y(¢) is continuously differentiable and strictly
increasing. Therefore, there exists a function 7, *(¢) defined on (—o0, +00) such that

ol om(t) =t, VtE (to,t)

and
M) <t, Tomyl(t)=t, Vte (—o0,+00).
Clearly
W(t,po) = ¢(15 (1), p0) ¥t € (=00, +00). (7)

By Assumption la, there exists a number K such that |¢(t,po)| < K for all £ > 0 and all
po € P. Hence, from (7) we obtain

W(t,po)| < K,  Vte[0,00), Vpo € P.

Let now

N = maxa .
max 7(p)

Thus, for all py € P, we have 7o(t) < Nt for all ¢ € [0,¢1), which in turn implies ¢; = co.
Set now T'(€) = NT(e) and note that ¢ > T(e) implies ¢t > 70(T'(€)), i.e. 5 1(t) > T(e).
Therefore .

t>T() = [(tpo)la=6(r5"(t),po)la < e

for all pg € P and this proves that A uniformly attracts P under the flow of (4). <«



Proposition 3.3 The set D is the set of all points p € C such that limy . |¢(t,p)|a = 0.

Proof. First of all, we observe that, if py € D, there exists a number K, such that
|p(t, po)| < Ko for all t > 0. Thus, the same argument used in the proof of Proposition 3.2,
setting Ny = maxy<k, ay(p), shows that 74(t) < Nt so long as 7(t) is defined, which in
turn implies that the function in question is defined for all t > 0 (and lim; ., 7 (t) = 00).
Thus

T [t po)la = Jim [6(75" (), po)]a = 0,

i.e. all points in D are such that lim; . [1(¢,p)|4 = 0. It remains to show that no other
point of C has this property. To this end, it suffices to show that D is invariant under the
flow of (4). Pick any p € D and any s € R, and set p; := 9(s,p). Clearly,

tliglo |w(t7p1)|./4 =0.

As 9(t,p1) is bounded on [0,00), arguments identical to those used above show that the
solution 71 (t) of

T =ap((r,p1)), 7(0)=0
is defined for all ¢ > 0 (and lim; .o, 71 () = c0). Thus

Jim [o(t, pr)|a = lim [(7(8), pr)[a = 0.

This shows that (s, p) € D, i.e. that D is invariant under the flow of (4). <
Finally, set dy := dy/M and

B :{pGBo:|p|A§d1}.
As system (3) and system (4) agree on By, it is seen from Assumption 2 that for all p € B,
[U(t,p)la < Me™Mpla,  VE20. (8)

In particular, the function ¢ : [0,dy] — R defined as §(¢) = (1/M)e is such that, for all
p S Bla
pPla<idle) = [Ep)la<e VE=0.

3.2 Wilson’s Lyapunov function for (4)
We follow Wilson’s construction [9]. First of all, define g : B; — R by

g(p) = ;gg{ltb(t,p)lA} :

Lemma 3.1 The function g has the following properties:



1. g(p) = g(¥(t,p)) for all t > 0.

2. 6(|pla) < g(p) < Ipla.
3. There is a time T > 0 such that, for all p € By, g(p) = minge—7,0{|1(t, p)|a}-

4. The function g is Lipschitz on By.

Proof. Property 1 is a direct consequence of the definition. In Property 2, the inequality
on the right is a direct consequence of the definition. The inequality on the left is proven by
contradiction. Suppose it is not true. Then there exists ¢ty < 0 such that [1(¢g, p)|a < 6(|p|a)-
As 0(+) is strictly increasing, it is always possible to find 0 < € < |p| 4 such that

|9 (to, p)a < 6(g) < d(|pla)-
This implies
|p|.A = |w(_t07,¢)(t07p))|¢4 S €< |p|A7

which is a contradiction.
To prove Property 3, recall (8) and set

1
T = XlogM.

We claim that
t<-T = [U(t,p)|a > |pla. 9)

The property is indeed true for all ¢ < 0 such that |¢(t,p)|a4 > di, because d; > |p|4 for all
p € By. Consider now a t < —T such that |¢(t,p)|a < di and, by contradiction, suppose
|Y(t, p)|a < |pla. Set t = =T — €, with € > 0, and use (8) to obtain

[pla = [9(=t, 0 (t,p))|a = [(T + e, p))|a < MM TH(t,p) |4 < e [pla

This is a contradiction, and hence (9) is true. This property, since g(p) < |p|4, shows that

mf{[Y(t, p)la} = min {[(t p)la}- (10)

te[—T,0]

Finally, to see that Property 4 holds, pick any two points n and ¢ in B; and, in view of
Property 3, let ¢ € [T, 0] be a time at which the minimum in (10) is reached, i.e. such that

g(¢) = |¥(t,¢)|a. Observe also that g(n) < |¢(t,n)| 4. Thus

9(n) — g(Q) < [W(En)]a = [¢(E C)la < [(E,n) — (£ )]

It is known (see e.g. [2]) that there is a constant C', which only depends on T and B, such
that
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for all |t| < T and all n,{ € By. Thus, the previous inequality yields

g(n) —g(¢) <Cln—(|.

Reversing the roles of 7 and ¢ yields g(¢) — g(n) < C|n — (| and this proves the desired
property. <

Set now

By:={peB:|pla<di/M}

and define U : By — R by
U(p) = sup{g(¥(t, p))k(1)}

>0

in which
o Ll+2t

k) =TT

Lemma 3.2 The function U has the following properties:
1. For allp € B,
7Pl < U() < 2l (1)
2. There is a time T* > 0 such that, for all p € By, U(p) = maxcjor-){g((t,p))k(t)} .
3. The function U is Lipschitz on Bs.

4. There is a number k > 0 such that, for all p € int(By),
Uy (h,p)) = U(p)
h

lim sup < —krU(p). (12)

h—0+

Proof.  Since U(p) > g(p) by definition, and §(¢) = /M, the estimate on the left in
Property 2 of g yields the estimate on the left in (11). Likewise, as Property 1 of g implies
g((t,p))k(t) < g(¥(t,p))2 < g(p)2, the estimate on the right in Property 2 of g yields the
estimate on the right in (11).

To prove Property 2, set

1
T = 3 log(2M?) .

Suppose the property is false. Then, there exists a time ¢ > T™ such that

1 i . o
7717l < 9(p) < g(¥(Ep)) < [(Ep)la < Me|pla,
having used the property (8). This yields

Ipla < M2 Mpla < M2e™ p|la < (1/2)|p|a,

8



which is a contradiction.

To prove Property 3, pick any two points n and ¢ in By and, in view of Property 2, let
t € [0,7*] be a time such that U(¢) = g(1(t, ())k(t). Observe also that U(n) > g((t,n))k(t).
Thus

U(Q) = Um) < g(&(t Q)k(t) — g(e(t,m)k(t) < 2lg(v(t ¢)) — g(b(E,m)] -
Both points (¢, ¢) and 1 (t,n) are in By. Hence, by Property 4 of g,

9((t, Q) = g((E,m)| < Cle(E, ¢) — (&)l .

Using again the properties of ¢(¢, p) as in the proof of the previous Proposition, we know that
there exist a constant C*, which only depends of T* and B; such that |¢(¢,¢) — ¥(t,n)| <
C*|¢ — n| and this yields

U(¢) = Uln) < DIC =

with D = 2C'C*. Reversing the roles of ¢ and 7, we finally obtain
U(C) = Um)| < DIC —nl.
To prove Property 4, it is shown first that for p € int(Bs) and sufficiently small h > 0

U((h,p)) —U(p) 1
h STy 2h)2U(p) ' (13)

In fact, set p’ = ¥(h,p) and let ¢’ be a point such that U(p') = g(¢ (¥, p"))k(t") (recall that
0 <t <T%). Then, setting t = h + t', we have

Up') = g, p)EE) =g, ¢(h,p)))k') = g(¥(t, p))k(t)

k(1) k(1) — k() h
S T] <U) [1 ()12t 2h))
Ast/ < T,
h h
()2t +20) T (1427 + 20)2°
and therefore A
VW) <UD = qop s 2h)2] '

This yields (13), which in turn yields (12). <

As in [9], the function U can be extended to D in the following way.

By Property 1, it follows that there is a d > 0 such that U~*(d) C int(B,). It easy to
prove that every trajectory of (3) with initial condition in D\ A intersects U~*(d) in a single
point. In fact, consider the set

U; =U([0,d]).

9



For any p € Uy \ A, there must exist some time ¢ < 0 at which ¢(¢,p) € D \ U, because,
otherwise, p would be a point in w(Uy), which contradicts the fact that w(U;) C w(P) = A.
On the other hand, for any p € D \ Uy, the integral curve (¢, p) must intersect U~1(d) at
some time t, > 0, as |¢(t,p)|4 — 0 as t — oco. Property 4 implies that, if (¢, p) € int(Bs)
for all t € (to,t1),

DYU(y(t,p)) <0, Vit € (to,t1)

and hence U(¢(t,p)) is strictly decreasing on (o, ¢;). Form this, and the fact that U~ (d) C
int(By), it is concluded that the time ¢, is unique.
Define now a function V : D — R as

U(p) if pel,
Vip) = .
d+t, iftpeD\U,.

Lemma 3.3 The function V has the following properties.
1. It is continuous.
2. 1t is locally Lipschitz on D\ Uy.

3. V" a) =(d—a,Ud)) for all a > d, and lim,,_.., V(p,) = oo for any sequence p,,
in D\ Uy which has its limit on 0D, or whose distance from A becomes infinite.

4. Forallp € D\ Uy,

lim sup =—1. (14)

h—0t h

Proof.  For Properties 1,3,4, see [9]. To prove Property 2, pick a point p € D\ Uy, a
neighborhood N C D \ Uy of p and two points pi,ps € N. Let t; and 5 be the (unique)
times such that

d=U((t1,p1)) = U(Y(t2, p2))
and, without loss of generality, assume ¢, > t;. Note that, by definition
|t = t1] = [V(p2) = V(p1)|-

Thus, since V' is continuous and 1 (t, p) is continuous in the argument ¢, if N is small enough,
Y(ty —to,Y(ta, p2)) = ¥(t1, pa) € int(Bs). Using the fact that U is Lipschitz and that ¢ (¢, p)
is Lipschitz in the argument p, it is seen that for some M,

\U((t1,p1)) — U((tr, p2))| < Molpr — pal - (15)

Next, we show that
U(¥(t2,p2)) < U((t,p2)) — ket — ta]. (16)

10



In fact, using Property 4 of U (which is legitimate because 1 (t1, p2) € int(Bs)), note that
DYU(t p2)) < —6U(¥(t,p2)) < —kc,  VEE [ty o]

from which, by the Comparison Lemma (see [8]), (16) follows. Using the latter and (15) we
obtain

cklV(p2) = V(p1)| = welts = o] < U(¥(t1,p2)) = U(W(L2; p2))

= U@W(t1,p2)) = U((t1,p1)) + U@(t, p1)) — U((ta, p2))
< Molp1 —po| +d—d,

which proves Property 2. <«

Remark. Note that, since U~!(d) C int(By), it is possible to find a number b > d such that
U~1(b) C int(By). Moreover, it is possible to find numbers number ¢; > ¢y > d such that

Vi e)CT{peBy:d<Ulp) < b} i=1,2. <

3.3 Back to system (3)

We recall a result from [10]. Consider a system

pi(t,p),

in which f: R x D — R", with D an open set in R", is continuous. Let p : I — R", with [
an open interval in R, be a solution. Let V' : D — R be a locally Lipschitz function. Then

imsup 1 [V(p(¢ + 1)) = V(p(0))] = Limsup 1V (p(e) + hF(p(0) = V). (17
Using this result for systems (3) and (4), we get
limsup [V (6(h,p) = Vp)) = limsup 221+ 0 (L) — v p)
h—0+ h ’ h—0+ af<p>}]L_ ff( )CLf(]?)
= as(p) liggp %[V(p + ET&) —V(p)]
= af(p) 1i£21+1p V@ (Gp)) = V(p)].

As a consequence, since af(p) > 1, the function V' constructed in the previous sub-section
is such that

1
lim sup %[V@(h,p)) —V(p)] <-1 forallpeD\U,, (18)
h—0+t
in which now ¢(t, p) is the flow of (3). Likewise, the function U satisfies
1
lim sup E[U(gb(h,p)) —U(p)] < —=kU(p) for all p € int(By). (19)
h—07t
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4 Asymptotic Regulation

In the non-equilibrium theory of nonlinear output regulation (see [1]), one is interested in
the asymptotic behavior of systems of the form

z = folz,w) + fi(z,w,e)e
w = s(w) (20)
é = ho(z,w)+ hi(z,w,e)e — ke,

with z € R", w € R", e € R, in which fo(z,w), fi(z,w,e), s(w), ho(z,w), hi(z,w,e) are C*
functions, s(w) and fy(z,w) are such that Assumptions 0, la, 1b, and 2 hold for some fixed
pair of compact sets W C R” and Z C R", and hgy(z, w) vanishes on A. Let this system be
rewritten in the form

p = fp)+rpe)e

¢ = h(p)+[qlp,e) —kle.

Let E be a closed interval of R. In what follows we prove the following result.

(21)

Proposition 4.1 Suppose h(p) = 0 for all p € A. There exists a number k* such that, if
k > k*, the positive orbit of P x E under the flow of (21) is bounded and lim;_, e(t) = 0.

Let £ = [eg, e1] and set Ey = [eg—1,e; +1]. Pick a number a > 0 such that P C V~1([0, a]),
which is possible because V' is proper on D, and define

hg = max h(p)|, = max ,€
’ peV*l([07a+1])| ®)] o pevfl([o,a+1]),eeE1|q(p )

Fix 0 < § < 1, pick p such that ph? = 6% and pick k so that
Ao i =k—qo—1/8u>1.
Then, standard arguments show that, so long as p(t) € V1([0,a + 1]),
e(t)] < exp(—Ad)|e(0)] + 5. (2)

This shows, in particular, that for any ¢ > 0 and any 7" > 0, there is a number k! ;. such that

€

if, k > kX, then |e(t)] < e for all t > T, provided that p(t) € V~'([0,a + 1]) for all t > 0.
Pick numbers b and ¢, ¢y as in specified in the Remark at the end of the sub-section 3.2
and note that, since the function V' is locally Lipschitz on D \ U, and the set

S={peD:c;<V(p) <a+1}
is compact, there is a number L such that

V(p)—V(g)] < Llp—gq| forallp,geS.

1See e.g. [5].
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Moreover, from (18), it is seen that
1
lim sup E[V((b(h,p)) —V(p)]<-1 forallpes,
h—0t

in which ¢(h,p) is the flow of (3). Finally, let

To = max T el .
0 pEV‘l([O,a+1]),e€E1| (p7 )|

Note that, as p(0) ranges on a compact set, contained in V~1([0,a]), there is a time
T (independent of (p(0),e(0))) such that, for all ¢ € [0,T7], p(t) exists and satisfies p(t) €
V=[0,a + 1/2]) for all ¢ € [0, T]. Thus, on this time interval (22) holds.

Note that (see (17) and (18)), so long as p(t) € S and e(t) € Ey,

DV() = Tmsup 1V (p(t+ 1) = V(p(0)

- ngszgp HV () + BI (1) + hy(p(t), e(t))elt)) — V(p(1))

= timsup LV((E) + A (p(0) + hg(plt). ()e(t) = V(p(t) + b (p(D)]
+ Timsup £ V() + 1 (1)) = V(p(t)]

< limsup %Elhg(p(t% e(t))e(®))] + limsup %[V(cb(h,p(t))) - V@)

< Lrgle(t)] — 1.

Pick ¢ > 0 such that Lroe < 1/2, and let k > kZp. Then, it is seen that, so long as
p(t) €S,
DV (p(t)) < ~1/2. (23)

This proves that V(p(t)) is strictly decreasing for ¢ > T and hence p(t) € V1([0,a + 1]) for
all £ > 0. Moreover, it also proves that in finite time p(t) intersects V~'(¢;). In fact, (23)
implies

1

1 1

for ¢ > T and therefore p(t) must enter the set V=1([0, ¢1]) at some time # < 2(a—c¢;)+T +1.
Inequality (23) also proves that the set V71([0,c1]) x {e € R : |e| < &} is invariant in positive
time under the flow of (21).

It remains to show that e(f) — 0 as ¢ — oo. This is a direct consequence of the small-
gain theorem for input-to-state stable systems. First of all note that a calculation identical
to the one above leading to (23) leads (using this time (19), which is legitimate because
p(t) € int(By)) to

DU(1)) < kU (1) + Irole(t)]. (24)
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Thus, by the Comparison Lemma (see [8]),

L
Up(t)) < e “=0 U (p(ty)) + —2 max |e(t)]
K t€lto,t]

for all £ > tq. This, in view of the estimates (11), yields

Ip(t)]| 4 < 2Me ™ 1) |p(t)| 4 + max e(t)] (25)
05

in which v = M Lry/k
On the other hand, assuming k > qq it is easily seen that

le(t)] < emmm=Rlje(tg)| + max |h(p(t))|-

(k — qo) t€lto.t]

Recall now that h(p), a smooth function, vanishes on A. Thus, there exists a number /3
such that |h(p)| < B|p|4 for all p € By. Thus,

e(t)| < e~ kb—a)(t=to) (¢ )| + ma 4. 26
le(t)] < Ip(to)] g Ip(t)] 4 (26)

At this point, comparing (25) and (26), the classical arguments of the small-gain theorem
for input-to-state stable systems prove that, if

k> ~v8+ qo

then e(t) — 0 and [p(t)|4 — 0 as t — oco. This proves the Proposition.
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