# ON THE ASYMPTOTIC PROPERTIES OF A SYSTEM ARISING IN NON-EQUILIBRIUM THEORY OF OUTPUT REGULATION 

C. I. BYRNES, A. ISIDORI and L. PRALY

REPORT No. 18, 2002/2003, spring
ISSN 1103-467X
ISRN IML-R- -18-02/03--SE+spring


INSTITUT MITTAG-LEFFLER
THE ROYAL SWEDISH ACADEMY OF SCIENCES

# On the Asymptotic Properties of a System Arising in Non-equilibrium Theory of Output Regulation * 

C.I. Byrnes ${ }^{\dagger}$, A. Isidori ${ }^{\dagger}$, L. Praly ${ }^{\circ}$

June 24, 2003

${ }^{\dagger}$ Department of Systems Science and Mathematics, Washington University, St. Louis, MO. $\ddagger$ Dipartimento di Informatica e Sistemistica, Università "La Sapienza", Rome, Italy.<br>- École des Mines de Paris, Fontainebleau, France.


#### Abstract

This paper provides a self-contained proof of the fact that certain systems arising in the non-equilibrium theory of output regulation, which possess a locally exponentially stable compact attractor, are input-to-state stable (with respect to the attractor, with restrictions) with a linear gain function.


Keywords: Lyapunov Functions, Input-to-State Stability, Regulation, Tracking, Nonlinear Control.

## 1 Terminology and Notations

Consider an autonomous ordinary differential equation

$$
\begin{equation*}
\dot{x}=f(x) \tag{1}
\end{equation*}
$$

with $x \in \mathbb{R}^{n}, t \in \mathbb{R}$, and let

$$
\phi: \quad(t, x) \mapsto \phi(t, x)
$$

define its flow. A set $X$ is locally invariant under the flow of (1) if, for any $x \in X$, there exists an open interval $I$ of 0 in $\mathbb{R}$ such that $\phi(t, x) \in X$ for all $t \in I$. A set $X$ is forward invariant under the flow of (1) if, for any $x \in X, \phi(t, x)$ is defined for all for all $t \geq 0$ and $\phi(t, x) \in X$ for all $t \geq 0$. A set $X$ is backward invariant under the flow of (1) if, for any

[^0]$x \in X, \phi(t, x)$ is defined for all for all $t \leq 0$ and $\phi(t, x) \in X$ for all $t \leq 0$. A set $X$ is invariant under the flow of (1) if it is backward and forward invariant.

Let $B$ be a fixed subset of $\mathbb{R}^{n}$ and suppose that, for all $p \in B$, the map $t: \rightarrow \phi(t, x)$ is defined for all $t \geq 0$. The positive orbit of $B$ is the set

$$
\mathcal{O}^{+}(B):=\bigcup_{x \in B} \bigcup_{t \geq 0} \phi(t, x)
$$

The $\omega$-limit set of a subset $B \subset \mathbb{R}^{n}$, written $\omega(B)$, is the totality of all points $x \in \mathbb{R}^{n}$ for which there exists a sequence of pairs $\left(x_{k}, t_{k}\right)$, with $x_{k} \in B$ and $t_{k} \rightarrow \infty$ as $k \rightarrow \infty$, such that

$$
\lim _{k \rightarrow \infty} \phi\left(t_{k}, x_{k}\right)=x
$$

In case $B=\left\{x_{0}\right\}$ the set thus defined, $\omega\left(x_{0}\right)$, is precisely the $\omega$-limit set, as defined by G.D.Birkhoff, of the point $x_{0}$. With a given set $B$, is it is also convenient to associate the set

$$
\psi(B)=\bigcup_{x_{0} \in B} \omega\left(x_{0}\right)
$$

i.e. the union of the $\omega$-limits set of all points of $B$. By definition $\psi(B) \subset \omega(B)$, but the equality may not hold.

Let $|x|$ denote the Euclidean norm of a vector $x \in \mathbb{R}^{n}$. Let $A$ be a closed subset of $\mathbb{R}^{n}$ and, for any $x \in \mathbb{R}^{n}$ let

$$
|x|_{\mathcal{A}}:=\min _{y \in \mathcal{A}}|y-x|
$$

denote the distance of $x$ from $\mathcal{A}$. The $A$ is said to uniformly attract a set $B$ under the flow of (3) if for every $\varepsilon>0$ there exists a time $\bar{t}$ such that

$$
|\phi(t, x)|_{\mathcal{A}} \leq \varepsilon, \quad \text { for all } t \geq \bar{t} \text { and for all } x \in B
$$

Then the following holds (see [4] and, for the second property, [3] or [7]).
Lemma 1.1 If $B$ is a nonempty connected bounded set whose positive orbit is bounded, then $\omega(B)$ is a nonempty, connected, compact, invariant set which uniformly attracts $B$. Moreover, if $\omega(B) \in \operatorname{int}(B)$, then $\omega(B)$ is stable in the sense of Lyapunov.

## 2 Preliminaries

The purpose of this paper is to analyze the consequence of certain asymptotic properties of a system of the form

$$
\begin{align*}
\dot{z} & =f_{0}(z, w) \\
\dot{w} & =s(w) \tag{2}
\end{align*}
$$

in which $z \in \mathbb{R}^{n}, w \in \mathbb{R}^{r}$.

The functions $f_{0}(z, w)$ and $s(w)$ in (2) are $C^{k}$ (with $k$ sufficiently large) functions. Initial conditions for $w$ are allowed to range over a fixed compact set $W$. Moreover, the following assumptions are supposed to hold.
Assumption 0. The set $W$ is invariant for $\dot{w}=s(w)$ and $W=\psi(W)$.
Note that, since $W$ is invariant for $\dot{w}=s(w)$, the closed cylinder $\mathcal{C}=\mathbb{R}^{n} \times W$ is locally invariant for (2). Hence, it is natural regard (2) as a system defined on $\mathcal{C}$ and endow the latter with the subset topology. Let now $Z$ be a fixed compact set of $\mathbb{R}^{n}$.
Assumption 1a. The positive orbit of $Z \times W$ under the flow of (2) is bounded.
This assumption implies that the set $\mathcal{A}:=\omega(Z \times W)$ i.e the $\omega$-limit set - under the flow of (2) - of the set $Z \times W$, is a nonempty, compact, invariant subset of $\mathcal{C}$ which uniformly attracts $Z \times W$ under the flow of (2). Moreover, Assumption 0 implies that for any $w \in W$ there is a $z \in Z$ such that $(z, w) \in \mathcal{A}$. In other words, the projection map $P:(z, w) \mapsto w$ carries $\mathcal{A}$ onto $W$ (see [1]).
Assumption 1b. There exists a number $d_{0}>0$ such that

$$
\mathcal{B}_{0}:=\left\{(z, w) \in \mathbb{R}^{n} \times W:|(z, w)|_{\mathcal{A}} \leq d_{0}\right\} \subset Z \times W
$$

This assumption implies that the set $\mathcal{A}$ is stable in the sense of Lyapunov, under the flow of (2).

For convenience, in what follows we rewrite (2) in the form of a single autonomous system

$$
\begin{equation*}
\dot{p}=f(p) \tag{3}
\end{equation*}
$$

in which $p:=(z, w)$, and we let $\phi(t, p)$ denote its flow. Consistently, we set $\mathcal{P}:=Z \times W$ (and note that $\mathcal{A}=\omega(\mathcal{P})$ ).

As observed above, a consequence of Assumptions 1a and 1 b is that $\mathcal{A}$ is stable in the sense of Lyapunov and uniformly attracts $\mathcal{P}$, under the flow of (3). Hence, there exist a strictly increasing function $\delta(\cdot)$, carrying $\mathbb{R}_{\geq 0}$ into $\mathbb{R}_{\geq 0}$ and vanishing at zero, such that

$$
|p|_{\mathcal{A}} \leq \delta(\varepsilon) \quad \Rightarrow \quad|\phi(t, p)|_{\mathcal{A}} \leq \varepsilon \quad \forall t \geq 0, \quad \forall p \in \mathcal{P}
$$

and a continuous and strictly decreasing function $T(\cdot)$, carrying $\mathbb{R}_{>0}$ onto itself, such that

$$
|\phi(t, p)|_{\mathcal{A}} \leq \varepsilon \quad \forall t \geq T(\varepsilon), \quad \forall p \in \mathcal{P} .
$$

We define the domain of attraction of $\mathcal{A}$ as the set $\mathcal{D}$ of all points $p \in \mathcal{C}$ such that $\lim _{t \rightarrow \infty}|\phi(t, p)|_{\mathcal{A}}=0$. The set $\mathcal{D}$, open in the subset topology of $\mathcal{C}$, is forward invariant for (3) and, obviously, $\mathcal{P} \subset \mathcal{D}$. In what follows we let $\overline{\mathcal{D}}$ denote the complement of $\mathcal{D}$ in $\mathcal{C}$ and let $\partial \mathcal{D}$ denote the boundary of $\mathcal{D}$ (in the subset topology).

Appropriate adaptations of the arguments of [9] and [6] can be used to show the existence, for system (3), of a Lyapunov function. In the present note, we consider a "perturbed" version of (3), namely a system of the form

$$
\dot{p}=f(p)+r(p, u) u
$$

in which $u \in \mathbb{R}$ is an external input, and we are interested in determining its input-to-state stability properties (with restrictions) with respect to the compact set $\mathcal{A}$ (see [7]), with an input-to-state gain function which is linear at the origin. To this end, it is convenient to assume that the set $\mathcal{A}$ is locally exponentially stable.
Assumption 2. There exists numbers $M \geq 1$ and $\lambda>0$ such that, for all $p \in \mathcal{B}_{0}$,

$$
|\phi(t, p)|_{\mathcal{A}} \leq M e^{-\lambda t}|p|_{\mathcal{A}}, \quad \forall t \geq 0
$$

Note that, in this case, there is no loss of generality in assuming that the function $\delta(\cdot)$ is linear at the origin, in particular that $\delta(\varepsilon)=(1 / M) \varepsilon$ for all $\varepsilon \in\left[0, M d_{0}\right]$.

## 3 Lyapunov functions for (3)

### 3.1 The rescaled-time system

System (3) is not necessarily (backward and forward) complete. Since completeness plays an important role in the construction of Lyapunov functions, as in [6] we construct a complete system as follows. Let $a_{f}: \mathbb{R}^{n+r} \rightarrow \mathbb{R}$ be a smooth function satisfying

$$
\begin{array}{ll}
a_{f}(p)=1, & \text { for all } p \text { such that }|p|_{\mathcal{A}} \leq d_{0} \\
a_{f}(p) \geq 1+|f(p)|, & \\
\text { for all } p \text { such that }|p|_{\mathcal{A}} \geq 2 d_{0} .
\end{array}
$$

Indeed, the system

$$
\begin{equation*}
\dot{p}=\frac{1}{a_{f}(p)} f(p) \tag{4}
\end{equation*}
$$

is complete. In what follows, we denote by $\psi(t, p)$ its flow.
Proposition 3.1 The sets $\mathcal{C}$ and $\mathcal{A}$ are invariant for (4).

Proof. The two sets are locally invariant for (3) and hence, since $f(p)$ and $f(p) / a_{f}(p)$ only differ by a scalar factor, these sets are also locally invariant for (4). To prove that $\mathcal{C}$ is forward invariant, take $p \in \mathcal{C}$, observe that $\psi(t, p)$ is defined for all $t \in \mathbb{R}$, let $\overline{\mathcal{C}}$ denote the complement of $\mathcal{C}$ in $\mathbb{R}^{n} \times \mathbb{R}^{r}$ and suppose, by contradiction, that the set

$$
S=\{t>0: \psi(t, p) \in \overline{\mathcal{C}}\}
$$

is not empty. Let $t^{*}$ denote the lower bound of $S$. Note that $S$ is open, because $\overline{\mathcal{C}}$ is open and $\psi(t, p)$ is continuous in $t$. Thus, $t^{*} \notin S$ and $\psi\left(t^{*}, p\right) \in \mathcal{C}$. But, as $\mathcal{C}$ is locally invariant, $\psi(t, p) \in \mathcal{C}$ for all $t$ in a neighborhhod of $t^{*}$. This contradicts the fact that $t^{*}$ is a lower bound of $S$. An identical argument shows that $\mathcal{C}$ is backward invariant. The same proof shows also that $\mathcal{A}$, a closed locally invariant set, is invariant. $\triangleleft$

Proposition 3.2 The set $\mathcal{A}$ uniformly attracts $\mathcal{P}$ under the flow of (4).

Proof. Pick any $p_{0} \in \mathbb{R}^{n+r}$. Since $a_{f}\left(\psi\left(t, p_{0}\right)\right)$ takes values in $[1,+\infty)$ and is locally Lipschitz in the argument $t$, there exists a unique solution $\tau_{0}(t)$ of the initial value problem

$$
\begin{equation*}
\dot{\tau}=a_{f}\left(\psi\left(\tau, p_{0}\right)\right), \quad \tau(0)=0 \tag{5}
\end{equation*}
$$

maximally defined over an open interval $\left(t_{0}, t_{1}\right)$ of 0 in $\mathbb{R}$. In particular $\lim _{t \rightarrow t_{1}} \tau_{0}(t)=+\infty$. Indeed this follows from the fact that if $t_{1}$ is finite, then $\tau_{0}(t)$ goes to $\infty$ by the maximality of $\left(t_{0}, t_{1}\right)$, while if $t_{1}$ is infinite, the result follows from $\tau_{0}(t) \geq t$. Similar arguments show that $\lim _{t \rightarrow t_{0}} \tau_{0}(t)=-\infty$.

It is easy to check that

$$
\begin{equation*}
\psi\left(\tau_{0}(t), p_{0}\right)=\phi\left(t, p_{0}\right), \quad \forall t \in\left(t_{0}, t_{1}\right) . \tag{6}
\end{equation*}
$$

In fact

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \psi\left(\tau_{0}(t), p_{0}\right)=\frac{1}{a_{f}\left(\psi\left(\tau_{0}(t), p_{0}\right)\right)} f\left(\psi\left(\tau_{0}(t), p_{0}\right)\right) \frac{\mathrm{d}}{\mathrm{~d} t} \tau_{0}(t)=f\left(\psi\left(\tau_{0}(t), p_{0}\right)\right)
$$

and, by uniqueness, (6) follows. The function $\tau_{0}(t)$ is continuously differentiable and strictly increasing. Therefore, there exists a function $\tau_{0}^{-1}(t)$ defined on $(-\infty,+\infty)$ such that

$$
\tau_{0}^{-1} \circ \tau_{0}(t)=t, \quad \forall t \in\left(t_{0}, t_{1}\right)
$$

and

$$
\tau_{0}^{-1}(t) \leq t, \quad \tau_{0} \circ \tau_{0}^{-1}(t)=t, \quad \forall t \in(-\infty,+\infty)
$$

Clearly

$$
\begin{equation*}
\psi\left(t, p_{0}\right)=\phi\left(\tau_{0}^{-1}(t), p_{0}\right) \quad \forall t \in(-\infty,+\infty) \tag{7}
\end{equation*}
$$

By Assumption 1a, there exists a number $K$ such that $\left|\phi\left(t, p_{0}\right)\right| \leq K$ for all $t \geq 0$ and all $p_{0} \in \mathcal{P}$. Hence, from (7) we obtain

$$
\left|\psi\left(t, p_{0}\right)\right| \leq K, \quad \forall t \in[0, \infty), \forall p_{0} \in \mathcal{P}
$$

Let now

$$
N=\max _{|p| \leq K} a_{f}(p) .
$$

Thus, for all $p_{0} \in \mathcal{P}$, we have $\tau_{0}(t) \leq N t$ for all $t \in\left[0, t_{1}\right)$, which in turn implies $t_{1}=\infty$. Set now $\tilde{T}(\epsilon)=N T(\epsilon)$ and note that $t \geq \tilde{T}(\epsilon)$ implies $t \geq \tau_{0}(T(\epsilon))$, i.e. $\quad \tau_{0}^{-1}(t) \geq T(\epsilon)$. Therefore

$$
t \geq \tilde{T}(\epsilon) \quad \Rightarrow \quad\left|\psi\left(t, p_{0}\right)\right|_{\mathcal{A}}=\left|\phi\left(\tau_{0}^{-1}(t), p_{0}\right)\right|_{\mathcal{A}} \leq \epsilon
$$

for all $p_{0} \in \mathcal{P}$ and this proves that $\mathcal{A}$ uniformly attracts $\mathcal{P}$ under the flow of (4). $\triangleleft$

Proposition 3.3 The set $\mathcal{D}$ is the set of all points $p \in \mathcal{C}$ such that $\lim _{t \rightarrow \infty}|\psi(t, p)|_{\mathcal{A}}=0$.

Proof. First of all, we observe that, if $p_{0} \in \mathcal{D}$, there exists a number $K_{0}$ such that $\left|\phi\left(t, p_{0}\right)\right| \leq K_{0}$ for all $t \geq 0$. Thus, the same argument used in the proof of Proposition 3.2, setting $N_{0}=\max _{|p| \leq K_{0}} a_{f}(p)$, shows that $\tau_{0}(t) \leq N_{0} t$ so long as $\tau_{0}(t)$ is defined, which in turn implies that the function in question is defined for all $t \geq 0$ (and $\lim _{t \rightarrow \infty} \tau_{0}^{-1}(t)=\infty$ ). Thus

$$
\lim _{t \rightarrow \infty}\left|\psi\left(t, p_{0}\right)\right|_{\mathcal{A}}=\lim _{t \rightarrow \infty}\left|\phi\left(\tau_{0}^{-1}(t), p_{0}\right)\right|_{\mathcal{A}}=0
$$

i.e. all points in $\mathcal{D}$ are such that $\lim _{t \rightarrow \infty}|\psi(t, p)|_{\mathcal{A}}=0$. It remains to show that no other point of $\mathcal{C}$ has this property. To this end, it suffices to show that $\mathcal{D}$ is invariant under the flow of (4). Pick any $p \in \mathcal{D}$ and any $s \in \mathbb{R}$, and set $p_{1}:=\psi(s, p)$. Clearly,

$$
\lim _{t \rightarrow \infty}\left|\psi\left(t, p_{1}\right)\right|_{\mathcal{A}}=0
$$

As $\psi\left(t, p_{1}\right)$ is bounded on $[0, \infty)$, arguments identical to those used above show that the solution $\tau_{1}(t)$ of

$$
\dot{\tau}=a_{f}\left(\psi\left(\tau, p_{1}\right)\right), \quad \tau(0)=0
$$

is defined for all $t \geq 0$ (and $\lim _{t \rightarrow \infty} \tau_{1}(t)=\infty$ ). Thus

$$
\lim _{t \rightarrow \infty}\left|\phi\left(t, p_{1}\right)\right|_{\mathcal{A}}=\lim _{t \rightarrow \infty}\left|\psi\left(\tau_{1}(t), p_{1}\right)\right|_{\mathcal{A}}=0
$$

This shows that $\psi(s, p) \in \mathcal{D}$, i.e. that $\mathcal{D}$ is invariant under the flow of (4). $\triangleleft$
Finally, set $d_{1}:=d_{0} / M$ and

$$
\mathcal{B}_{1}=\left\{p \in \mathcal{B}_{0}:|p|_{\mathcal{A}} \leq d_{1}\right\} .
$$

As system (3) and system (4) agree on $\mathcal{B}_{0}$, it is seen from Assumption 2 that for all $p \in \mathcal{B}_{1}$

$$
\begin{equation*}
|\psi(t, p)|_{\mathcal{A}} \leq M e^{-\lambda t}|p|_{\mathcal{A}}, \quad \forall t \geq 0 \tag{8}
\end{equation*}
$$

In particular, the function $\delta:\left[0, d_{0}\right] \rightarrow \mathbb{R}$ defined as $\delta(\varepsilon)=(1 / M) \varepsilon$ is such that, for all $p \in \mathcal{B}_{1}$,

$$
|p|_{\mathcal{A}} \leq \delta(\varepsilon) \quad \Rightarrow \quad|\psi(t, p)|_{\mathcal{A}} \leq \varepsilon \quad \forall t \geq 0
$$

### 3.2 Wilson's Lyapunov function for (4)

We follow Wilson's construction [9]. First of all, define $g: \mathcal{B}_{1} \rightarrow \mathbb{R}$ by

$$
g(p)=\inf _{t \leq 0}\left\{|\psi(t, p)|_{\mathcal{A}}\right\}
$$

Lemma 3.1 The function $g$ has the following properties:

1. $g(p) \geq g(\psi(t, p))$ for all $t \geq 0$.
2. $\delta\left(|p|_{\mathcal{A}}\right) \leq g(p) \leq|p|_{\mathcal{A}}$.
3. There is a time $T>0$ such that, for all $p \in \mathcal{B}_{1}, g(p)=\min _{t \in[-T, 0]}\left\{|\psi(t, p)|_{\mathcal{A}}\right\}$.
4. The function $g$ is Lipschitz on $\mathcal{B}_{1}$.

Proof. Property 1 is a direct consequence of the definition. In Property 2, the inequality on the right is a direct consequence of the definition. The inequality on the left is proven by contradiction. Suppose it is not true. Then there exists $t_{0} \leq 0$ such that $\left|\psi\left(t_{0}, p\right)\right|_{\mathcal{A}}<\delta\left(|p|_{\mathcal{A}}\right)$. As $\delta(\cdot)$ is strictly increasing, it is always possible to find $0<\varepsilon<|p|_{\mathcal{A}}$ such that

$$
\left|\psi\left(t_{0}, p\right)\right|_{\mathcal{A}}<\delta(\varepsilon)<\delta\left(|p|_{\mathcal{A}}\right) .
$$

This implies

$$
|p|_{\mathcal{A}}=\left|\psi\left(-t_{0}, \psi\left(t_{0}, p\right)\right)\right|_{\mathcal{A}} \leq \varepsilon<|p|_{\mathcal{A}},
$$

which is a contradiction.
To prove Property 3, recall (8) and set

$$
T:=\frac{1}{\lambda} \log M .
$$

We claim that

$$
\begin{equation*}
t<-T \quad \Rightarrow \quad|\psi(t, p)|_{\mathcal{A}} \geq|p|_{\mathcal{A}} . \tag{9}
\end{equation*}
$$

The property is indeed true for all $t<0$ such that $|\psi(t, p)|_{\mathcal{A}}>d_{1}$, because $d_{1} \geq|p|_{\mathcal{A}}$ for all $p \in \mathcal{B}_{1}$. Consider now a $t<-T$ such that $|\psi(t, p)|_{\mathcal{A}} \leq d_{1}$ and, by contradiction, suppose $|\psi(t, p)|_{\mathcal{A}}<|p|_{\mathcal{A}}$. Set $t=-T-\epsilon$, with $\epsilon>0$, and use (8) to obtain

$$
|p|_{\mathcal{A}}=|\psi(-t, \psi(t, p))|_{\mathcal{A}}=|\psi(T+\epsilon, \psi(t, p))|_{\mathcal{A}} \leq M e^{-\lambda(T+\epsilon)}|\psi(t, p)|_{\mathcal{A}} \leq e^{-\lambda \epsilon}|p|_{\mathcal{A}} .
$$

This is a contradiction, and hence (9) is true. This property, since $g(p) \leq|p|_{\mathcal{A}}$, shows that

$$
\begin{equation*}
\inf _{t \leq 0}\left\{|\psi(t, p)|_{\mathcal{A}}\right\}=\min _{t \in[-T, 0]}\left\{|\psi(t, p)|_{\mathcal{A}}\right\} . \tag{10}
\end{equation*}
$$

Finally, to see that Property 4 holds, pick any two points $\eta$ and $\zeta$ in $\mathcal{B}_{1}$ and, in view of Property 3 , let $\bar{t} \in[-T, 0]$ be a time at which the minimum in (10) is reached, i.e. such that $g(\zeta)=|\psi(\bar{t}, \zeta)|_{\mathcal{A}}$. Observe also that $g(\eta) \leq|\psi(\bar{t}, \eta)|_{\mathcal{A}}$. Thus

$$
g(\eta)-g(\zeta) \leq|\psi(\bar{t}, \eta)|_{\mathcal{A}}-|\psi(\bar{t}, \zeta)|_{\mathcal{A}} \leq|\psi(\bar{t}, \eta)-\psi(\bar{t}, \zeta)| .
$$

It is known (see e.g. [2]) that there is a constant $C$, which only depends on $T$ and $\mathcal{B}_{1}$, such that

$$
|\psi(t, \eta)-\psi(t, \zeta)| \leq C|\eta-\zeta|
$$

for all $|t| \leq T$ and all $\eta, \zeta \in \mathcal{B}_{1}$. Thus, the previous inequality yields

$$
g(\eta)-g(\zeta) \leq C|\eta-\zeta|
$$

Reversing the roles of $\eta$ and $\zeta$ yields $g(\zeta)-g(\eta) \leq C|\eta-\zeta|$ and this proves the desired property.

Set now

$$
\mathcal{B}_{2}:=\left\{p \in \mathcal{B}_{1}:|p|_{\mathcal{A}} \leq d_{1} / M\right\}
$$

and define $U: \mathcal{B}_{2} \rightarrow \mathbb{R}$ by

$$
U(p)=\sup _{t \geq 0}\{g(\psi(t, p)) k(t)\}
$$

in which

$$
k(t)=\frac{1+2 t}{1+t}
$$

Lemma 3.2 The function $U$ has the following properties:

1. For all $p \in \mathcal{B}_{2}$

$$
\begin{equation*}
\frac{1}{M}|p|_{\mathcal{A}} \leq U(p) \leq 2|p|_{\mathcal{A}} \tag{11}
\end{equation*}
$$

2. There is a time $T^{*}>0$ such that, for all $p \in \mathcal{B}_{2}, U(p)=\max _{t \in\left[0, T^{*}\right]}\{g(\psi(t, p)) k(t)\}$.
3. The function $U$ is Lipschitz on $\mathcal{B}_{2}$.
4. There is a number $\kappa>0$ such that, for all $p \in \operatorname{int}\left(\mathcal{B}_{2}\right)$,

$$
\begin{equation*}
\limsup _{h \rightarrow 0^{+}} \frac{U(\psi(h, p))-U(p)}{h} \leq-\kappa U(p) \tag{12}
\end{equation*}
$$

Proof. Since $U(p) \geq g(p)$ by definition, and $\delta(\varepsilon)=\varepsilon / M$, the estimate on the left in Property 2 of $g$ yields the estimate on the left in (11). Likewise, as Property 1 of $g$ implies $g(\psi(t, p)) k(t) \leq g(\psi(t, p)) 2 \leq g(p) 2$, the estimate on the right in Property 2 of $g$ yields the estimate on the right in (11).

To prove Property 2, set

$$
T^{*}=\frac{1}{\lambda} \log \left(2 M^{2}\right) .
$$

Suppose the property is false. Then, there exists a time $\bar{t}>T^{*}$ such that

$$
\frac{1}{M}|p|_{\mathcal{A}} \leq g(p) \leq g(\psi(\bar{t}, p)) \leq|\psi(\bar{t}, p)|_{\mathcal{A}} \leq M e^{-\lambda \bar{t}}|p|_{\mathcal{A}}
$$

having used the property (8). This yields

$$
|p|_{\mathcal{A}} \leq M^{2} e^{-\lambda \bar{t}}|p|_{\mathcal{A}}<M^{2} e^{-\lambda T^{*}}|p|_{\mathcal{A}} \leq(1 / 2)|p|_{\mathcal{A}}
$$

which is a contradiction.
To prove Property 3 , pick any two points $\eta$ and $\zeta$ in $\mathcal{B}_{2}$ and, in view of Property 2 , let $\bar{t} \in\left[0, T^{*}\right]$ be a time such that $U(\zeta)=g(\psi(\bar{t}, \zeta)) k(\bar{t})$. Observe also that $U(\eta) \geq g(\psi(\bar{t}, \eta)) k(\bar{t})$. Thus

$$
U(\zeta)-U(\eta) \leq g(\psi(\bar{t}, \zeta)) k(\bar{t})-g(\psi(\bar{t}, \eta)) k(\bar{t}) \leq 2|g(\psi(\bar{t}, \zeta))-g(\psi(\bar{t}, \eta))| .
$$

Both points $\psi(\bar{t}, \zeta)$ and $\psi(\bar{t}, \eta)$ are in $\mathcal{B}_{1}$. Hence, by Property 4 of $g$,

$$
|g(\psi(\bar{t}, \zeta))-g(\psi(\bar{t}, \eta))| \leq C|\psi(\bar{t}, \zeta)-\psi(\bar{t}, \eta)| .
$$

Using again the properties of $\psi(t, p)$ as in the proof of the previous Proposition, we know that there exist a constant $C^{*}$, which only depends of $T^{*}$ and $\mathcal{B}_{2}$ such that $|\psi(\bar{t}, \zeta)-\psi(\bar{t}, \eta)| \leq$ $C^{*}|\zeta-\eta|$ and this yields

$$
U(\zeta)-U(\eta) \leq D|\zeta-\eta|
$$

with $D=2 C C^{*}$. Reversing the roles of $\zeta$ and $\eta$, we finally obtain

$$
|U(\zeta)-U(\eta)| \leq D|\zeta-\eta|
$$

To prove Property 4, it is shown first that for $p \in \operatorname{int}\left(\mathcal{B}_{2}\right)$ and sufficiently small $h>0$

$$
\begin{equation*}
\frac{U(\psi(h, p))-U(p)}{h} \leq-\frac{1}{\left(1+2 T^{*}+2 h\right)^{2}} U(p) . \tag{13}
\end{equation*}
$$

In fact, set $p^{\prime}=\psi(h, p)$ and let $t^{\prime}$ be a point such that $U\left(p^{\prime}\right)=g\left(\psi\left(t^{\prime}, p^{\prime}\right)\right) k\left(t^{\prime}\right)$ (recall that $0 \leq t^{\prime} \leq T^{*}$ ). Then, setting $t=h+t^{\prime}$, we have

$$
\begin{aligned}
U\left(p^{\prime}\right) & =g\left(\psi\left(t^{\prime}, p^{\prime}\right)\right) k\left(t^{\prime}\right)=g\left(\psi\left(t^{\prime}, \psi(h, p)\right)\right) k\left(t^{\prime}\right)=g(\psi(t, p)) k(t) \frac{k\left(t^{\prime}\right)}{k(t)} \\
& \leq U(p) \frac{k\left(t^{\prime}\right)}{k(t)}=U(p)\left[1-\frac{k(t)-k\left(t^{\prime}\right)}{k(t)}\right] \leq U(p)\left[1-\frac{h}{\left(1+t^{\prime}\right)\left(1+2 t^{\prime}+2 h\right)}\right]
\end{aligned}
$$

As $t^{\prime} \leq T^{*}$,

$$
1-\frac{h}{\left(1+t^{\prime}\right)\left(1+2 t^{\prime}+2 h\right)} \leq 1-\frac{h}{\left(1+2 T^{*}+2 h\right)^{2}},
$$

and therefore

$$
U\left(p^{\prime}\right) \leq U(p)\left[1-\frac{h}{\left(1+2 T^{*}+2 h\right)^{2}}\right] .
$$

This yields (13), which in turn yields (12). $\triangleleft$
As in [9], the function $U$ can be extended to $\mathcal{D}$ in the following way.
By Property 1, it follows that there is a $d>0$ such that $U^{-1}(d) \subset \operatorname{int}\left(\mathcal{B}_{2}\right)$. It easy to prove that every trajectory of (3) with initial condition in $\mathcal{D} \backslash \mathcal{A}$ intersects $U^{-1}(d)$ in a single point. In fact, consider the set

$$
\mathcal{U}_{d}=U^{-1}([0, d]) .
$$

For any $p \in \mathcal{U}_{d} \backslash \mathcal{A}$, there must exist some time $t<0$ at which $\psi(t, p) \in \mathcal{D} \backslash \mathcal{U}_{d}$ because, otherwise, $p$ would be a point in $\omega\left(\mathcal{U}_{d}\right)$, which contradicts the fact that $\omega\left(\mathcal{U}_{d}\right) \subset \omega(\mathcal{P})=\mathcal{A}$. On the other hand, for any $p \in \mathcal{D} \backslash \mathcal{U}_{d}$, the integral curve $\psi(t, p)$ must intersect $U^{-1}(d)$ at some time $t_{p}>0$, as $|\psi(t, p)|_{\mathcal{A}} \rightarrow 0$ as $t \rightarrow \infty$. Property 4 implies that, if $\psi(t, p) \in \operatorname{int}\left(\mathcal{B}_{2}\right)$ for all $t \in\left(t_{0}, t_{1}\right)$,

$$
D^{+} U(\psi(t, p))<0, \quad \forall t \in\left(t_{0}, t_{1}\right)
$$

and hence $U(\psi(t, p))$ is strictly decreasing on $\left(t_{0}, t_{1}\right)$. Form this, and the fact that $U^{-1}(d) \subset$ $\operatorname{int}\left(\mathcal{B}_{2}\right)$, it is concluded that the time $t_{p}$ is unique.

Define now a function $V: \mathcal{D} \rightarrow \mathbb{R}$ as

$$
V(p)= \begin{cases}U(p) & \text { if } p \in \mathcal{U}_{d} \\ d+t_{p} & \text { if } p \in \mathcal{D} \backslash \mathcal{U}_{d}\end{cases}
$$

Lemma 3.3 The function $V$ has the following properties.

1. It is continuous.
2. It is locally Lipschitz on $\mathcal{D} \backslash \mathcal{U}_{d}$.
3. $V^{-1}(a)=\psi\left(d-a, U^{-1}(d)\right)$ for all $a \geq d$, and $\lim _{n \rightarrow \infty} V\left(p_{n}\right)=\infty$ for any sequence $p_{n}$ in $\mathcal{D} \backslash \mathcal{U}_{d}$ which has its limit on $\partial \mathcal{D}$, or whose distance from $\mathcal{A}$ becomes infinite.
4. For all $p \in \mathcal{D} \backslash \mathcal{U}_{d}$,

$$
\begin{equation*}
\limsup _{h \rightarrow 0^{+}} \frac{V(\psi(h, p))-V(p)}{h}=-1 \tag{14}
\end{equation*}
$$

Proof. For Properties $1,3,4$, see [9]. To prove Property 2, pick a point $p \in \mathcal{D} \backslash \mathcal{U}_{d}$, a neighborhood $N \subset \mathcal{D} \backslash \mathcal{U}_{d}$ of $p$ and two points $p_{1}, p_{2} \in N$. Let $t_{1}$ and $t_{2}$ be the (unique) times such that

$$
d=U\left(\psi\left(t_{1}, p_{1}\right)\right)=U\left(\psi\left(t_{2}, p_{2}\right)\right)
$$

and, without loss of generality, assume $t_{2} \geq t_{1}$. Note that, by definition

$$
\left|t_{2}-t_{1}\right|=\left|V\left(p_{2}\right)-V\left(p_{1}\right)\right| .
$$

Thus, since $V$ is continuous and $\psi(t, p)$ is continuous in the argument $t$, if $N$ is small enough, $\psi\left(t_{1}-t_{2}, \psi\left(t_{2}, p_{2}\right)\right)=\psi\left(t_{1}, p_{2}\right) \in \operatorname{int}\left(\mathcal{B}_{2}\right)$. Using the fact that $U$ is Lipschitz and that $\psi\left(t_{1}, p\right)$ is Lipschitz in the argument $p$, it is seen that for some $M_{0}$

$$
\begin{equation*}
\left|U\left(\psi\left(t_{1}, p_{1}\right)\right)-U\left(\psi\left(t_{1}, p_{2}\right)\right)\right| \leq M_{0}\left|p_{1}-p_{2}\right| . \tag{15}
\end{equation*}
$$

Next, we show that

$$
\begin{equation*}
U\left(\psi\left(t_{2}, p_{2}\right)\right) \leq U\left(\psi\left(t_{1}, p_{2}\right)\right)-\kappa c\left|t_{2}-t_{1}\right| \tag{16}
\end{equation*}
$$

In fact, using Property 4 of $U$ (which is legitimate because $\psi\left(t_{1}, p_{2}\right) \in \operatorname{int}\left(\mathcal{B}_{2}\right)$ ), note that

$$
D^{+} U\left(\psi\left(t, p_{2}\right)\right) \leq-\kappa U\left(\psi\left(t, p_{2}\right)\right) \leq-\kappa c, \quad \forall t \in\left[t_{1}, t_{2}\right]
$$

from which, by the Comparison Lemma (see [8]), (16) follows. Using the latter and (15) we obtain

$$
\begin{aligned}
c \kappa\left|V\left(p_{2}\right)-V\left(p_{1}\right)\right|=\kappa c\left|t_{2}-t_{1}\right| & \leq U\left(\psi\left(t_{1}, p_{2}\right)\right)-U\left(\psi\left(t_{2}, p_{2}\right)\right) \\
& =U\left(\psi\left(t_{1}, p_{2}\right)\right)-U\left(\psi\left(t_{1}, p_{1}\right)\right)+U\left(\psi\left(t_{1}, p_{1}\right)\right)-U\left(\psi\left(t_{2}, p_{2}\right)\right) \\
& \leq M_{0}\left|p_{1}-p_{2}\right|+d-d
\end{aligned}
$$

which proves Property 2. $\triangleleft$
Remark. Note that, since $U^{-1}(d) \subset \operatorname{int}\left(\mathcal{B}_{2}\right)$, it is possible to find a number $b>d$ such that $U^{-1}(b) \subset \operatorname{int}\left(\mathcal{B}_{2}\right)$. Moreover, it is possible to find numbers number $c_{1}>c_{2}>d$ such that

$$
V^{-1}\left(c_{i}\right) \subset\left\{p \in \mathcal{B}_{2}: d<U(p)<b\right\} \quad i=1,2 . \triangleleft
$$

### 3.3 Back to system (3)

We recall a result from [10]. Consider a system

$$
\dot{p}=f(t, p),
$$

in which $f: \mathbb{R} \times D \rightarrow \mathbb{R}^{n}$, with $D$ an open set in $\mathbb{R}^{n}$, is continuous. Let $p: I \rightarrow \mathbb{R}^{n}$, with $I$ an open interval in $\mathbb{R}$, be a solution. Let $V: D \rightarrow \mathbb{R}$ be a locally Lipschitz function. Then

$$
\begin{equation*}
\limsup _{h \rightarrow 0^{+}} \frac{1}{h}[V(p(t+h))-V(p(t))]=\underset{h \rightarrow 0^{+}}{\limsup } \frac{1}{h}[V(p(t)+h f(t, p(t)))-V(p(t))] \tag{17}
\end{equation*}
$$

Using this result for systems (3) and (4), we get

$$
\begin{aligned}
\limsup _{h \rightarrow 0^{+}} \frac{1}{h}[V(\phi(h, p))-V(p)] & =\limsup _{h \rightarrow 0^{+}} \frac{a_{f}(p)}{a_{f}(p) h}\left[V\left(p+a_{f}(p) h \frac{f(p)}{a_{f}(p)}\right)-V(p)\right] \\
& =a_{f}(p) \limsup _{\ell \rightarrow 0^{+}} \frac{1}{\ell}\left[V\left(p+\ell \frac{f(p)}{a_{f}(p)}\right)-V(p)\right] \\
& =a_{f}(p) \limsup _{\ell \rightarrow 0^{+}} \frac{1}{\ell}[V(\psi(\ell, p))-V(p)]
\end{aligned}
$$

As a consequence, since $a_{f}(p) \geq 1$, the function $V$ constructed in the previous sub-section is such that

$$
\begin{equation*}
\limsup _{h \rightarrow 0^{+}} \frac{1}{h}[V(\phi(h, p))-V(p)] \leq-1 \quad \text { for all } p \in \mathcal{D} \backslash \mathcal{U}_{d} \tag{18}
\end{equation*}
$$

in which now $\phi(t, p)$ is the flow of (3). Likewise, the function $U$ satisfies

$$
\begin{equation*}
\limsup _{h \rightarrow 0^{+}} \frac{1}{h}[U(\phi(h, p))-U(p)] \leq-\kappa U(p) \quad \text { for all } p \in \operatorname{int}\left(\mathcal{B}_{2}\right) . \tag{19}
\end{equation*}
$$

## 4 Asymptotic Regulation

In the non-equilibrium theory of nonlinear output regulation (see [1]), one is interested in the asymptotic behavior of systems of the form

$$
\begin{align*}
\dot{z} & =f_{0}(z, w)+f_{1}(z, w, e) e \\
\dot{w} & =s(w)  \tag{20}\\
\dot{e} & =h_{0}(z, w)+h_{1}(z, w, e) e-k e
\end{align*}
$$

with $z \in \mathbb{R}^{n}, w \in \mathbb{R}^{r}, e \in \mathbb{R}$, in which $f_{0}(z, w), f_{1}(z, w, e), s(w), h_{0}(z, w), h_{1}(z, w, e)$ are $C^{k}$ functions, $s(w)$ and $f_{0}(z, w)$ are such that Assumptions $0,1 \mathrm{a}, 1 \mathrm{~b}$, and 2 hold for some fixed pair of compact sets $W \subset \mathbb{R}^{r}$ and $Z \subset \mathbb{R}^{n}$, and $h_{0}(z, w)$ vanishes on $\mathcal{A}$. Let this system be rewritten in the form

$$
\begin{align*}
\dot{p} & =f(p)+r(p, e) e \\
\dot{e} & =h(p)+[q(p, e)-k] e \tag{21}
\end{align*}
$$

Let $E$ be a closed interval of $\mathbb{R}$. In what follows we prove the following result.
Proposition 4.1 Suppose $h(p)=0$ for all $p \in \mathcal{A}$. There exists a number $k^{*}$ such that, if $k \geq k^{*}$, the positive orbit of $\mathcal{P} \times E$ under the flow of (21) is bounded and $\lim _{t \rightarrow \infty} e(t)=0$.

Let $E=\left[e_{0}, e_{1}\right]$ and set $E_{1}=\left[e_{0}-1, e_{1}+1\right]$. Pick a number $a>0$ such that $\mathcal{P} \subset V^{-1}([0, a])$, which is possible because $V$ is proper on $\mathcal{D}$, and define

$$
h_{0}=\max _{p \in V^{-1}([0, a+1])}|h(p)|, \quad q_{0}=\max _{p \in V^{-1}([0, a+1]), e \in E_{1}}|q(p, e)|
$$

Fix $0<\delta<1$, pick $\mu$ such that $\mu h_{0}^{2}=\delta^{2}$ and pick $k$ so that

$$
\lambda_{k}:=k-q_{0}-1 / 8 \mu>1
$$

Then, standard arguments show that, so long as $p(t) \in V^{-1}([0, a+1]),{ }^{1}$

$$
\begin{equation*}
|e(t)| \leq \exp \left(-\lambda_{k} t\right)|e(0)|+\delta \tag{22}
\end{equation*}
$$

This shows, in particular, that for any $\varepsilon>0$ and any $T>0$, there is a number $k_{\varepsilon, T}^{*}$ such that if, $k \geq k_{\varepsilon, T}^{*}$, then $|e(t)| \leq \varepsilon$ for all $t \geq T$, provided that $p(t) \in V^{-1}([0, a+1])$ for all $t \geq 0$.

Pick numbers $b$ and $c_{1}, c_{2}$ as in specified in the Remark at the end of the sub-section 3.2 and note that, since the function $V$ is locally Lipschitz on $\mathcal{D} \backslash \mathcal{U}_{d}$ and the set

$$
\mathcal{S}=\left\{p \in \mathcal{D}: c_{2} \leq V(p) \leq a+1\right\}
$$

is compact, there is a number $\bar{L}$ such that

$$
|V(p)-V(q)| \leq \bar{L}|p-q| \quad \text { for all } p, q \in \mathcal{S}
$$

[^1]Moreover, from (18), it is seen that

$$
\limsup _{h \rightarrow 0^{+}} \frac{1}{h}[V(\phi(h, p))-V(p)] \leq-1 \quad \text { for all } p \in \mathcal{S}
$$

in which $\phi(h, p)$ is the flow of (3). Finally, let

$$
r_{0}=\max _{p \in V^{-1}([0, a+1]), e \in E_{1}}|r(p, e)|
$$

Note that, as $p(0)$ ranges on a compact set, contained in $V^{-1}([0, a])$, there is a time $T$ (independent of $(p(0), e(0)))$ such that, for all $t \in[0, T], p(t)$ exists and satisfies $p(t) \in$ $V^{-1}([0, a+1 / 2])$ for all $t \in[0, T]$. Thus, on this time interval (22) holds.

Note that (see (17) and (18)), so long as $p(t) \in \mathcal{S}$ and $e(t) \in E_{1}$,

$$
\begin{aligned}
D^{+} V(p(t))= & \limsup _{h \rightarrow 0^{+}} \frac{1}{h}[V(p(t+h))-V(p(t))] \\
= & \limsup _{h \rightarrow 0^{+}} \frac{1}{h}[V(p(t)+h f(p(t))+h g(p(t), e(t)) e(t))-V(p(t))] \\
= & \limsup _{h \rightarrow 0^{+}} \frac{1}{h}[V(p(t)+h f(p(t))+h g(p(t), e(t)) e(t))-V(p(t)+h f(p(t))] \\
& +\limsup _{h \rightarrow 0^{+}} \frac{1}{h}[V(p(t)+h f(p(t)))-V(p(t))] \\
\leq & \left.\left.\limsup _{h \rightarrow 0^{+}} \frac{1}{h} \bar{L} \right\rvert\, h g(p(t), e(t)) e(t)\right) \left\lvert\,+\limsup _{h \rightarrow 0^{+}} \frac{1}{h}[V(\phi(h, p(t)))-V(p(t))]\right. \\
\leq & \bar{L}_{0}|e(t)|-1 .
\end{aligned}
$$

Pick $\varepsilon>0$ such that $\bar{L} r_{0} \varepsilon \leq 1 / 2$, and let $k \geq k_{\varepsilon, T}^{*}$. Then, it is seen that, so long as $p(t) \in \mathcal{S}$,

$$
\begin{equation*}
D^{+} V(p(t)) \leq-1 / 2 \tag{23}
\end{equation*}
$$

This proves that $V(p(t))$ is strictly decreasing for $t>T$ and hence $p(t) \in V^{-1}([0, a+1])$ for all $t \geq 0$. Moreover, it also proves that in finite time $p(t)$ intersects $V^{-1}\left(c_{1}\right)$. In fact, (23) implies

$$
V(t) \leq V(T)-\frac{1}{2} a_{0} t \leq a+\frac{1}{2}-\frac{1}{2}(t-T)
$$

for $t \geq T$ and therefore $p(t)$ must enter the set $V^{-1}\left(\left[0, c_{1}\right]\right)$ at some time $\bar{t} \leq 2\left(a-c_{1}\right)+T+1$. Inequality (23) also proves that the set $V^{-1}\left(\left[0, c_{1}\right]\right) \times\{e \in \mathbb{R}:|e| \leq \varepsilon\}$ is invariant in positive time under the flow of (21).

It remains to show that $e(t) \rightarrow 0$ as $t \rightarrow \infty$. This is a direct consequence of the smallgain theorem for input-to-state stable systems. First of all note that a calculation identical to the one above leading to (23) leads (using this time (19), which is legitimate because $\left.p(t) \in \operatorname{int}\left(\mathcal{B}_{2}\right)\right)$ to

$$
\begin{equation*}
D^{+} U(p(t)) \leq-\kappa U(p(t))+\bar{L} r_{0}|e(t)| \tag{24}
\end{equation*}
$$

Thus, by the Comparison Lemma (see [8]),

$$
U(p(t)) \leq e^{-\kappa\left(t-t_{0}\right)} U\left(p\left(t_{0}\right)\right)+\frac{\bar{L} r_{0}}{\kappa} \max _{t \in\left[t_{0}, t\right]}|e(t)|
$$

for all $t \geq t_{0}$. This, in view of the estimates (11), yields

$$
\begin{equation*}
|p(t)|_{\mathcal{A}} \leq 2 M e^{-\kappa\left(t-t_{0}\right)}\left|p\left(t_{0}\right)\right|_{\mathcal{A}}+\gamma \max _{t \in\left[t_{0}, t\right]}|e(t)| \tag{25}
\end{equation*}
$$

in which $\gamma=M \bar{L} r_{0} / \kappa$
On the other hand, assuming $k>q_{0}$ it is easily seen that

$$
|e(t)| \leq e^{-\left(k-q_{0}\right)\left(t-t_{0}\right)}\left|e\left(t_{0}\right)\right|+\frac{1}{\left(k-q_{0}\right)} \max _{t \in\left[t_{0}, t\right]}|h(p(t))| .
$$

Recall now that $h(p)$, a smooth function, vanishes on $\mathcal{A}$. Thus, there exists a number $\beta$ such that $|h(p)| \leq \beta|p|_{\mathcal{A}}$ for all $p \in \mathcal{B}_{2}$. Thus,

$$
\begin{equation*}
|e(t)| \leq e^{-\left(k-q_{0}\right)\left(t-t_{0}\right)}\left|p\left(t_{0}\right)\right|+\frac{\beta}{\left(k-q_{0}\right)} \max _{t \in\left[t_{0}, t\right]}|p(t)|_{\mathcal{A}} . \tag{26}
\end{equation*}
$$

At this point, comparing (25) and (26), the classical arguments of the small-gain theorem for input-to-state stable systems prove that, if

$$
k>\gamma \beta+q_{0}
$$

then $e(t) \rightarrow 0$ and $|p(t)|_{\mathcal{A}} \rightarrow 0$ as $t \rightarrow \infty$. This proves the Proposition.

## References

[1] C.I. Byrnes, A. Isidori, Limit Sets, Zero Dynamics, and Internal Models in the Problem of Nonlinear Output Regulation, IEEE Trans. Autom. Control, AC-48: to appear, 2003.
[2] E.A. Coddington, N. Levinson, Theory of ordinary differential equations. McGraw-Hill (New York), 1955.
[3] W. Hahn, Stability of Motion, Springer Verlag (Berlin), 1967.
[4] J.K. Hale, L.T. Magalhães, W.M. Oliva, Dynamics in Infinite Dimensions, Springer Verlag (New York, NY), 2002.
[5] A. Isidori. Nonlinear Control Systems II. Springer Verlag (New York, NY), 1st edition, 1999.
[6] Y. Lin, E.D. Sontag, Y. Wang, A smooth converse Lyapunov theorem for robust stability, SIAM J. Contr. Optimiz., 34: 124-160, 1996.
[7] E.D. Sontag, Y. Lin, On characterizations of input-to-state stability with respect to compact sets, Proc. IEEE Conf. Decision and Control, 226-231, 1996.
[8] J. Szarski, Differential Inequalities, Polska Akademia Nauk (Warszawa), 1967.
[9] F.W. Wilson, Smoothing derivatives of functions and applications, Trans. Amer. Math. Soc., 139: 413-428.
[10] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer Verlag (New York, NY), 1975.


[^0]:    *This work was partially supported by the Mittag-Leffler Institute, by AFORS, by the Boeing-McDonnell Douglas Foundation, and by ONR under grant N00014-03-1-0314.

[^1]:    ${ }^{1}$ See e.g. [5].

