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Abstract

This paper provides a self-contained proof of the fact that certain systems arising in
the non-equilibrium theory of output regulation, which possess a locally exponentially
stable compact attractor, are input-to-state stable (with respect to the attractor, with
restrictions) with a linear gain function.
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1 Terminology and Notations

Consider an autonomous ordinary differential equation

ẋ = f(x) (1)

with x ∈ R
n, t ∈ R, and let

φ : (t, x) 7→ φ(t, x)

define its flow. A set X is locally invariant under the flow of (1) if, for any x ∈ X, there
exists an open interval I of 0 in R such that φ(t, x) ∈ X for all t ∈ I. A set X is forward
invariant under the flow of (1) if, for any x ∈ X, φ(t, x) is defined for all for all t ≥ 0 and
φ(t, x) ∈ X for all t ≥ 0. A set X is backward invariant under the flow of (1) if, for any

∗This work was partially supported by the Mittag-Leffler Institute, by AFORS, by the Boeing-McDonnell
Douglas Foundation, and by ONR under grant N00014-03-1-0314.
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x ∈ X, φ(t, x) is defined for all for all t ≤ 0 and φ(t, x) ∈ X for all t ≤ 0. A set X is
invariant under the flow of (1) if it is backward and forward invariant.

Let B be a fixed subset of R
n and suppose that, for all p ∈ B, the map t :→ φ(t, x) is

defined for all t ≥ 0. The positive orbit of B is the set

O+(B) :=
⋃

x∈B

⋃

t≥0

φ(t, x) .

The ω-limit set of a subset B ⊂ R
n, written ω(B), is the totality of all points x ∈ R

n for
which there exists a sequence of pairs (xk, tk), with xk ∈ B and tk → ∞ as k → ∞, such
that

lim
k→∞

φ(tk, xk) = x .

In case B = {x0} the set thus defined, ω(x0), is precisely the ω-limit set, as defined by
G.D.Birkhoff, of the point x0. With a given set B, is it is also convenient to associate the
set

ψ(B) =
⋃

x0∈B

ω(x0)

i.e. the union of the ω-limits set of all points of B. By definition ψ(B) ⊂ ω(B), but the
equality may not hold.

Let |x| denote the Euclidean norm of a vector x ∈ R
n. Let A be a closed subset of R

n

and, for any x ∈ R
n let

|x|A := min
y∈A

|y − x|

denote the distance of x from A. The A is said to uniformly attract a set B under the flow
of (3) if for every ε > 0 there exists a time t̄ such that

|φ(t, x)|A ≤ ε, for all t ≥ t̄ and for all x ∈ B.

Then the following holds (see [4] and, for the second property, [3] or [7]).

Lemma 1.1 If B is a nonempty connected bounded set whose positive orbit is bounded,
then ω(B) is a nonempty, connected, compact, invariant set which uniformly attracts B.
Moreover, if ω(B) ∈ int(B), then ω(B) is stable in the sense of Lyapunov.

2 Preliminaries

The purpose of this paper is to analyze the consequence of certain asymptotic properties of
a system of the form

ż = f0(z, w)
ẇ = s(w)

(2)

in which z ∈ R
n, w ∈ R

r.
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The functions f0(z, w) and s(w) in (2) are Ck (with k sufficiently large) functions. Initial
conditions for w are allowed to range over a fixed compact set W . Moreover, the following
assumptions are supposed to hold.

Assumption 0. The set W is invariant for ẇ = s(w) and W = ψ(W ).

Note that, since W is invariant for ẇ = s(w), the closed cylinder C = R
n × W is locally

invariant for (2). Hence, it is natural regard (2) as a system defined on C and endow the
latter with the subset topology. Let now Z be a fixed compact set of R

n.

Assumption 1a. The positive orbit of Z ×W under the flow of (2) is bounded.

This assumption implies that the set A := ω(Z ×W ) i.e the ω-limit set – under the flow
of (2) – of the set Z ×W , is a nonempty, compact, invariant subset of C which uniformly
attracts Z ×W under the flow of (2). Moreover, Assumption 0 implies that for any w ∈ W
there is a z ∈ Z such that (z, w) ∈ A. In other words, the projection map P : (z, w) 7→ w
carries A onto W (see [1]).

Assumption 1b. There exists a number d0 > 0 such that

B0 := {(z, w) ∈ R
n ×W : |(z, w)|A ≤ d0} ⊂ Z ×W .

This assumption implies that the set A is stable in the sense of Lyapunov, under the flow of
(2).

For convenience, in what follows we rewrite (2) in the form of a single autonomous system

ṗ = f(p) (3)

in which p := (z, w), and we let φ(t, p) denote its flow. Consistently, we set P := Z ×W
(and note that A = ω(P)).

As observed above, a consequence of Assumptions 1a and 1b is that A is stable in the
sense of Lyapunov and uniformly attracts P, under the flow of (3). Hence, there exist a
strictly increasing function δ(·), carrying R≥0 into R≥0 and vanishing at zero, such that

|p|A ≤ δ(ε) ⇒ |φ(t, p)|A ≤ ε ∀t ≥ 0 , ∀p ∈ P

and a continuous and strictly decreasing function T (·), carrying R>0 onto itself, such that

|φ(t, p)|A ≤ ε ∀t ≥ T (ε), ∀p ∈ P .

We define the domain of attraction of A as the set D of all points p ∈ C such that
limt→∞ |φ(t, p)|A = 0. The set D, open in the subset topology of C, is forward invariant
for (3) and, obviously, P ⊂ D. In what follows we let D̄ denote the complement of D in C
and let ∂D denote the boundary of D (in the subset topology).

Appropriate adaptations of the arguments of [9] and [6] can be used to show the existence,
for system (3), of a Lyapunov function. In the present note, we consider a “perturbed” version
of (3), namely a system of the form

ṗ = f(p) + r(p, u)u
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in which u ∈ R is an external input, and we are interested in determining its input-to-state
stability properties (with restrictions) with respect to the compact set A (see [7]), with an
input-to-state gain function which is linear at the origin. To this end, it is convenient to
assume that the set A is locally exponentially stable.

Assumption 2. There exists numbers M ≥ 1 and λ > 0 such that, for all p ∈ B0,

|φ(t, p)|A ≤Me−λt|p|A , ∀t ≥ 0 .

Note that, in this case, there is no loss of generality in assuming that the function δ(·) is
linear at the origin, in particular that δ(ε) = (1/M)ε for all ε ∈ [0,Md0].

3 Lyapunov functions for (3)

3.1 The rescaled-time system

System (3) is not necessarily (backward and forward) complete. Since completeness plays an
important role in the construction of Lyapunov functions, as in [6] we construct a complete
system as follows. Let af : R

n+r → R be a smooth function satisfying

af (p) = 1 , for all p such that |p|A ≤ d0

af (p) ≥ 1 + |f(p)| , for all p such that |p|A ≥ 2d0.

Indeed, the system

ṗ =
1

af (p)
f(p) (4)

is complete. In what follows, we denote by ψ(t, p) its flow.

Proposition 3.1 The sets C and A are invariant for (4).

Proof. The two sets are locally invariant for (3) and hence, since f(p) and f(p)/af(p)
only differ by a scalar factor, these sets are also locally invariant for (4). To prove that C is
forward invariant, take p ∈ C, observe that ψ(t, p) is defined for all t ∈ R, let C denote the
complement of C in R

n × R
r and suppose, by contradiction, that the set

S = {t > 0 : ψ(t, p) ∈ C}

is not empty. Let t∗ denote the lower bound of S. Note that S is open, because C is open
and ψ(t, p) is continuous in t. Thus, t∗ /∈ S and ψ(t∗, p) ∈ C. But, as C is locally invariant,
ψ(t, p) ∈ C for all t in a neighborhhod of t∗. This contradicts the fact that t∗ is a lower bound
of S. An identical argument shows that C is backward invariant. The same proof shows also
that A, a closed locally invariant set, is invariant. /
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Proposition 3.2 The set A uniformly attracts P under the flow of (4).

Proof. Pick any p0 ∈ R
n+r. Since af(ψ(t, p0)) takes values in [1,+∞) and is locally Lipschitz

in the argument t, there exists a unique solution τ0(t) of the initial value problem

τ̇ = af(ψ(τ, p0)), τ(0) = 0 , (5)

maximally defined over an open interval (t0, t1) of 0 in R. In particular limt→t1 τ0(t) = +∞.
Indeed this follows from the fact that if t1 is finite, then τ0(t) goes to ∞ by the maximality
of (t0, t1), while if t1 is infinite, the result follows from τ0(t) ≥ t. Similar arguments show
that limt→t0 τ0(t) = −∞.

It is easy to check that

ψ(τ0(t), p0) = φ(t, p0) , ∀t ∈ (t0, t1) . (6)

In fact

d

dt
ψ(τ0(t), p0) =

1

af(ψ(τ0(t), p0))
f(ψ(τ0(t), p0))

d

dt
τ0(t) = f(ψ(τ0(t), p0)) ,

and, by uniqueness, (6) follows. The function τ0(t) is continuously differentiable and strictly
increasing. Therefore, there exists a function τ−1

0 (t) defined on (−∞,+∞) such that

τ−1
0 ◦ τ0(t) = t, ∀t ∈ (t0, t1)

and
τ−1
0 (t) ≤ t , τ0 ◦ τ

−1
0 (t) = t, ∀t ∈ (−∞,+∞) .

Clearly
ψ(t, p0) = φ(τ−1

0 (t), p0) ∀t ∈ (−∞,+∞) . (7)

By Assumption 1a, there exists a number K such that |φ(t, p0)| ≤ K for all t ≥ 0 and all
p0 ∈ P. Hence, from (7) we obtain

|ψ(t, p0)| ≤ K , ∀t ∈ [0,∞) , ∀p0 ∈ P .

Let now
N = max

|p|≤K
af (p) .

Thus, for all p0 ∈ P, we have τ0(t) ≤ Nt for all t ∈ [0, t1), which in turn implies t1 = ∞.
Set now T̃ (ε) = NT (ε) and note that t ≥ T̃ (ε) implies t ≥ τ0(T (ε)), i.e. τ−1

0 (t) ≥ T (ε).
Therefore

t ≥ T̃ (ε) ⇒ |ψ(t, p0)|A = |φ(τ−1
0 (t), p0)|A ≤ ε

for all p0 ∈ P and this proves that A uniformly attracts P under the flow of (4). /
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Proposition 3.3 The set D is the set of all points p ∈ C such that limt→∞ |ψ(t, p)|A = 0.

Proof. First of all, we observe that, if p0 ∈ D, there exists a number K0 such that
|φ(t, p0)| ≤ K0 for all t ≥ 0. Thus, the same argument used in the proof of Proposition 3.2,
setting N0 = max|p|≤K0

af (p), shows that τ0(t) ≤ N 0t so long as τ0(t) is defined, which in
turn implies that the function in question is defined for all t ≥ 0 (and limt→∞ τ−1

0 (t) = ∞).
Thus

lim
t→∞

|ψ(t, p0)|A = lim
t→∞

|φ(τ−1
0 (t), p0)|A = 0 ,

i.e. all points in D are such that limt→∞ |ψ(t, p)|A = 0. It remains to show that no other
point of C has this property. To this end, it suffices to show that D is invariant under the
flow of (4). Pick any p ∈ D and any s ∈ R, and set p1 := ψ(s, p). Clearly,

lim
t→∞

|ψ(t, p1)|A = 0 .

As ψ(t, p1) is bounded on [0,∞), arguments identical to those used above show that the
solution τ1(t) of

τ̇ = af(ψ(τ, p1)), τ(0) = 0

is defined for all t ≥ 0 (and limt→∞ τ1(t) = ∞). Thus

lim
t→∞

|φ(t, p1)|A = lim
t→∞

|ψ(τ1(t), p1)|A = 0 .

This shows that ψ(s, p) ∈ D, i.e. that D is invariant under the flow of (4). /

Finally, set d1 := d0/M and

B1 = {p ∈ B0 : |p|A ≤ d1} .

As system (3) and system (4) agree on B0, it is seen from Assumption 2 that for all p ∈ B1

|ψ(t, p)|A ≤ Me−λt|p|A , ∀t ≥ 0 . (8)

In particular, the function δ : [0, d0] → R defined as δ(ε) = (1/M)ε is such that, for all
p ∈ B1,

|p|A ≤ δ(ε) ⇒ |ψ(t, p)|A ≤ ε ∀t ≥ 0 .

3.2 Wilson’s Lyapunov function for (4)

We follow Wilson’s construction [9]. First of all, define g : B1 → R by

g(p) = inf
t≤0

{|ψ(t, p)|A} .

Lemma 3.1 The function g has the following properties:
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1. g(p) ≥ g(ψ(t, p)) for all t ≥ 0.

2. δ(|p|A) ≤ g(p) ≤ |p|A.

3. There is a time T > 0 such that, for all p ∈ B1, g(p) = mint∈[−T,0]{|ψ(t, p)|A}.

4. The function g is Lipschitz on B1.

Proof. Property 1 is a direct consequence of the definition. In Property 2, the inequality
on the right is a direct consequence of the definition. The inequality on the left is proven by
contradiction. Suppose it is not true. Then there exists t0 ≤ 0 such that |ψ(t0, p)|A < δ(|p|A).
As δ(·) is strictly increasing, it is always possible to find 0 < ε < |p|A such that

|ψ(t0, p)|A < δ(ε) < δ(|p|A) .

This implies
|p|A = |ψ(−t0, ψ(t0, p))|A ≤ ε < |p|A ,

which is a contradiction.
To prove Property 3, recall (8) and set

T :=
1

λ
logM .

We claim that
t < −T ⇒ |ψ(t, p)|A ≥ |p|A . (9)

The property is indeed true for all t < 0 such that |ψ(t, p)|A > d1, because d1 ≥ |p|A for all
p ∈ B1. Consider now a t < −T such that |ψ(t, p)|A ≤ d1 and, by contradiction, suppose
|ψ(t, p)|A < |p|A. Set t = −T − ε, with ε > 0, and use (8) to obtain

|p|A = |ψ(−t, ψ(t, p))|A = |ψ(T + ε, ψ(t, p))|A ≤Me−λ(T+ε)|ψ(t, p)|A ≤ e−λε|p|A .

This is a contradiction, and hence (9) is true. This property, since g(p) ≤ |p|A, shows that

inf
t≤0

{|ψ(t, p)|A} = min
t∈[−T,0]

{|ψ(t, p)|A} . (10)

Finally, to see that Property 4 holds, pick any two points η and ζ in B1 and, in view of
Property 3, let t̄ ∈ [−T, 0] be a time at which the minimum in (10) is reached, i.e. such that
g(ζ) = |ψ(t̄, ζ)|A. Observe also that g(η) ≤ |ψ(t̄, η)|A. Thus

g(η) − g(ζ) ≤ |ψ(t̄, η)|A − |ψ(t̄, ζ)|A ≤ |ψ(t̄, η) − ψ(t̄, ζ)| .

It is known (see e.g. [2]) that there is a constant C, which only depends on T and B1, such
that

|ψ(t, η) − ψ(t, ζ)| ≤ C|η − ζ|
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for all |t| ≤ T and all η, ζ ∈ B1. Thus, the previous inequality yields

g(η) − g(ζ) ≤ C|η − ζ| .

Reversing the roles of η and ζ yields g(ζ) − g(η) ≤ C|η − ζ| and this proves the desired
property. /

Set now
B2 := {p ∈ B1 : |p|A ≤ d1/M}

and define U : B2 → R by
U(p) = sup

t≥0
{g(ψ(t, p))k(t)}

in which

k(t) =
1 + 2t

1 + t
.

Lemma 3.2 The function U has the following properties:

1. For all p ∈ B2
1

M
|p|A ≤ U(p) ≤ 2|p|A . (11)

2. There is a time T ∗ > 0 such that, for all p ∈ B2, U(p) = maxt∈[0,T ∗]{g(ψ(t, p))k(t)} .

3. The function U is Lipschitz on B2.

4. There is a number κ > 0 such that, for all p ∈ int(B2),

lim sup
h→0+

U(ψ(h, p)) − U(p)

h
≤ −κU(p) . (12)

Proof. Since U(p) ≥ g(p) by definition, and δ(ε) = ε/M , the estimate on the left in
Property 2 of g yields the estimate on the left in (11). Likewise, as Property 1 of g implies
g(ψ(t, p))k(t) ≤ g(ψ(t, p))2 ≤ g(p)2, the estimate on the right in Property 2 of g yields the
estimate on the right in (11).

To prove Property 2, set

T ∗ =
1

λ
log(2M2) .

Suppose the property is false. Then, there exists a time t̄ > T ∗ such that

1

M
|p|A ≤ g(p) ≤ g(ψ(t̄, p)) ≤ |ψ(t̄, p)|A ≤Me−λt̄|p|A ,

having used the property (8). This yields

|p|A ≤ M2e−λt̄|p|A < M2e−λT ∗

|p|A ≤ (1/2)|p|A ,
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which is a contradiction.
To prove Property 3, pick any two points η and ζ in B2 and, in view of Property 2, let

t̄ ∈ [0, T ∗] be a time such that U(ζ) = g(ψ(t̄, ζ))k(t̄). Observe also that U(η) ≥ g(ψ(t̄, η))k(t̄).
Thus

U(ζ) − U(η) ≤ g(ψ(t̄, ζ))k(t̄) − g(ψ(t̄, η))k(t̄) ≤ 2|g(ψ(t̄, ζ)) − g(ψ(t̄, η))| .

Both points ψ(t̄, ζ) and ψ(t̄, η) are in B1. Hence, by Property 4 of g,

|g(ψ(t̄, ζ)) − g(ψ(t̄, η))| ≤ C|ψ(t̄, ζ) − ψ(t̄, η)| .

Using again the properties of ψ(t, p) as in the proof of the previous Proposition, we know that
there exist a constant C∗, which only depends of T ∗ and B2 such that |ψ(t̄, ζ) − ψ(t̄, η)| ≤
C∗|ζ − η| and this yields

U(ζ) − U(η) ≤ D|ζ − η|

with D = 2CC∗. Reversing the roles of ζ and η, we finally obtain

|U(ζ) − U(η)| ≤ D|ζ − η| .

To prove Property 4, it is shown first that for p ∈ int(B2) and sufficiently small h > 0

U(ψ(h, p)) − U(p)

h
≤ −

1

(1 + 2T ∗ + 2h)2
U(p) . (13)

In fact, set p′ = ψ(h, p) and let t′ be a point such that U(p′) = g(ψ(t′, p′))k(t′) (recall that
0 ≤ t′ ≤ T ∗). Then, setting t = h+ t′, we have

U(p′) = g(ψ(t′, p′))k(t′) = g(ψ(t′, ψ(h, p)))k(t′) = g(ψ(t, p))k(t)
k(t′)

k(t)

≤ U(p)
k(t′)

k(t)
= U(p)

[

1 −
k(t) − k(t′)

k(t)

]

≤ U(p)
[

1 −
h

(1 + t′)(1 + 2t′ + 2h)

]

.

As t′ ≤ T ∗,

1 −
h

(1 + t′)(1 + 2t′ + 2h)
≤ 1 −

h

(1 + 2T ∗ + 2h)2
,

and therefore

U(p′) ≤ U(p)
[

1 −
h

(1 + 2T ∗ + 2h)2

]

.

This yields (13), which in turn yields (12). /

As in [9], the function U can be extended to D in the following way.
By Property 1, it follows that there is a d > 0 such that U−1(d) ⊂ int(B2). It easy to

prove that every trajectory of (3) with initial condition in D\A intersects U−1(d) in a single
point. In fact, consider the set

Ud = U−1([0, d]) .
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For any p ∈ Ud \ A, there must exist some time t < 0 at which ψ(t, p) ∈ D \ Ud because,
otherwise, p would be a point in ω(Ud), which contradicts the fact that ω(Ud) ⊂ ω(P) = A.
On the other hand, for any p ∈ D \ Ud, the integral curve ψ(t, p) must intersect U−1(d) at
some time tp > 0, as |ψ(t, p)|A → 0 as t → ∞. Property 4 implies that, if ψ(t, p) ∈ int(B2)
for all t ∈ (t0, t1),

D+U(ψ(t, p)) < 0 , ∀t ∈ (t0, t1)

and hence U(ψ(t, p)) is strictly decreasing on (t0, t1). Form this, and the fact that U−1(d) ⊂
int(B2), it is concluded that the time tp is unique.

Define now a function V : D → R as

V (p) =

{

U(p) if p ∈ Ud

d+ tp if p ∈ D \ Ud .

Lemma 3.3 The function V has the following properties.

1. It is continuous.

2. It is locally Lipschitz on D \ Ud.

3. V −1(a) = ψ(d− a, U−1(d)) for all a ≥ d, and limn→∞ V (pn) = ∞ for any sequence pn

in D \ Ud which has its limit on ∂D, or whose distance from A becomes infinite.

4. For all p ∈ D \ Ud,

lim sup
h→0+

V (ψ(h, p)) − V (p)

h
= −1 . (14)

Proof. For Properties 1,3,4, see [9]. To prove Property 2, pick a point p ∈ D \ Ud, a
neighborhood N ⊂ D \ Ud of p and two points p1, p2 ∈ N . Let t1 and t2 be the (unique)
times such that

d = U(ψ(t1, p1)) = U(ψ(t2, p2))

and, without loss of generality, assume t2 ≥ t1. Note that, by definition

|t2 − t1| = |V (p2) − V (p1)| .

Thus, since V is continuous and ψ(t, p) is continuous in the argument t, if N is small enough,
ψ(t1− t2, ψ(t2, p2)) = ψ(t1, p2) ∈ int(B2). Using the fact that U is Lipschitz and that ψ(t1, p)
is Lipschitz in the argument p, it is seen that for some M0

|U(ψ(t1, p1)) − U(ψ(t1, p2))| ≤M0|p1 − p2| . (15)

Next, we show that
U(ψ(t2, p2)) ≤ U(ψ(t1, p2)) − κc|t2 − t1| . (16)
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In fact, using Property 4 of U (which is legitimate because ψ(t1, p2) ∈ int(B2)), note that

D+U(ψ(t, p2)) ≤ −κU(ψ(t, p2)) ≤ −κc , ∀t ∈ [t1, t2]

from which, by the Comparison Lemma (see [8]), (16) follows. Using the latter and (15) we
obtain

cκ|V (p2) − V (p1)| = κc|t2 − t1| ≤ U(ψ(t1, p2)) − U(ψ(t2, p2))

= U(ψ(t1, p2)) − U(ψ(t1, p1)) + U(ψ(t1, p1)) − U(ψ(t2, p2))

≤ M0|p1 − p2| + d− d ,

which proves Property 2. /

Remark. Note that, since U−1(d) ⊂ int(B2), it is possible to find a number b > d such that
U−1(b) ⊂ int(B2). Moreover, it is possible to find numbers number c1 > c2 > d such that

V −1(ci) ⊂ {p ∈ B2 : d < U(p) < b} i = 1, 2. /

3.3 Back to system (3)

We recall a result from [10]. Consider a system

ṗ = f(t, p) ,

in which f : R ×D → R
n, with D an open set in R

n, is continuous. Let p : I → R
n, with I

an open interval in R, be a solution. Let V : D → R be a locally Lipschitz function. Then

lim sup
h→0+

1

h
[V (p(t+ h)) − V (p(t))] = lim sup

h→0+

1

h
[V (p(t) + hf(t, p(t))) − V (p(t))] . (17)

Using this result for systems (3) and (4), we get

lim sup
h→0+

1

h
[V (φ(h, p)) − V (p)] = lim sup

h→0+

af(p)

af(p)h
[V (p+ af (p)h

f(p)

af(p)
) − V (p)]

= af (p) lim sup
`→0+

1

`
[V (p+ `

f(p)

af (p)
) − V (p)]

= af (p) lim sup
`→0+

1

`
[V (ψ(`, p)) − V (p)] .

As a consequence, since af(p) ≥ 1, the function V constructed in the previous sub-section
is such that

lim sup
h→0+

1

h
[V (φ(h, p)) − V (p)] ≤ −1 for all p ∈ D \ Ud , (18)

in which now φ(t, p) is the flow of (3). Likewise, the function U satisfies

lim sup
h→0+

1

h
[U(φ(h, p)) − U(p)] ≤ −κU(p) for all p ∈ int(B2) . (19)
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4 Asymptotic Regulation

In the non-equilibrium theory of nonlinear output regulation (see [1]), one is interested in
the asymptotic behavior of systems of the form

ż = f0(z, w) + f1(z, w, e)e

ẇ = s(w)

ė = h0(z, w) + h1(z, w, e)e− ke ,

(20)

with z ∈ R
n, w ∈ R

r, e ∈ R, in which f0(z, w), f1(z, w, e), s(w), h0(z, w), h1(z, w, e) are Ck

functions, s(w) and f0(z, w) are such that Assumptions 0, 1a, 1b, and 2 hold for some fixed
pair of compact sets W ⊂ R

r and Z ⊂ R
n, and h0(z, w) vanishes on A. Let this system be

rewritten in the form
ṗ = f(p) + r(p, e)e

ė = h(p) + [q(p, e) − k]e .
(21)

Let E be a closed interval of R. In what follows we prove the following result.

Proposition 4.1 Suppose h(p) = 0 for all p ∈ A. There exists a number k∗ such that, if
k ≥ k∗, the positive orbit of P × E under the flow of (21) is bounded and limt→∞ e(t) = 0 .

Let E = [e0, e1] and set E1 = [e0−1, e1 +1]. Pick a number a > 0 such that P ⊂ V −1([0, a]),
which is possible because V is proper on D, and define

h0 = max
p∈V −1([0,a+1])

|h(p)|, q0 = max
p∈V −1([0,a+1]) ,e∈E1

|q(p, e)|

Fix 0 < δ < 1, pick µ such that µh2
0 = δ2 and pick k so that

λk := k − q0 − 1/8µ > 1 .

Then, standard arguments show that, so long as p(t) ∈ V −1([0, a+ 1]),1

|e(t)| ≤ exp(−λkt)|e(0)| + δ . (22)

This shows, in particular, that for any ε > 0 and any T > 0, there is a number k∗ε,T such that
if, k ≥ k∗ε,T , then |e(t)| ≤ ε for all t ≥ T , provided that p(t) ∈ V −1([0, a+ 1]) for all t ≥ 0.

Pick numbers b and c1, c2 as in specified in the Remark at the end of the sub-section 3.2
and note that, since the function V is locally Lipschitz on D \ Ud and the set

S = {p ∈ D : c2 ≤ V (p) ≤ a+ 1}

is compact, there is a number L̄ such that

|V (p) − V (q)| ≤ L̄|p− q| for all p, q ∈ S.

1See e.g. [5].
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Moreover, from (18), it is seen that

lim sup
h→0+

1

h
[V (φ(h, p)) − V (p)] ≤ −1 for all p ∈ S,

in which φ(h, p) is the flow of (3). Finally, let

r0 = max
p∈V −1([0,a+1]) ,e∈E1

|r(p, e)| .

Note that, as p(0) ranges on a compact set, contained in V −1([0, a]), there is a time
T (independent of (p(0), e(0))) such that, for all t ∈ [0, T ], p(t) exists and satisfies p(t) ∈
V −1([0, a+ 1/2]) for all t ∈ [0, T ]. Thus, on this time interval (22) holds.

Note that (see (17) and (18)), so long as p(t) ∈ S and e(t) ∈ E1,

D+V (p(t)) = lim sup
h→0+

1

h
[V (p(t+ h)) − V (p(t))]

= lim sup
h→0+

1

h
[V (p(t) + hf(p(t)) + hg(p(t), e(t))e(t)) − V (p(t))]

= lim sup
h→0+

1

h
[V (p(t) + hf(p(t)) + hg(p(t), e(t))e(t)) − V (p(t) + hf(p(t))]

+ lim sup
h→0+

1

h
[V (p(t) + hf(p(t))) − V (p(t))]

≤ lim sup
h→0+

1

h
L̄|hg(p(t), e(t))e(t))| + lim sup

h→0+

1

h
[V (φ(h, p(t))) − V (p(t))]

≤ L̄r0|e(t)| − 1 .

Pick ε > 0 such that L̄r0ε ≤ 1/2, and let k ≥ k∗ε,T . Then, it is seen that, so long as
p(t) ∈ S,

D+V (p(t)) ≤ −1/2 . (23)

This proves that V (p(t)) is strictly decreasing for t > T and hence p(t) ∈ V −1([0, a+ 1]) for
all t ≥ 0. Moreover, it also proves that in finite time p(t) intersects V −1(c1). In fact, (23)
implies

V (t) ≤ V (T ) −
1

2
a0t ≤ a+

1

2
−

1

2
(t− T )

for t ≥ T and therefore p(t) must enter the set V −1([0, c1]) at some time t̄ ≤ 2(a−c1)+T +1.
Inequality (23) also proves that the set V −1([0, c1])×{e ∈ R : |e| ≤ ε} is invariant in positive
time under the flow of (21).

It remains to show that e(t) → 0 as t → ∞. This is a direct consequence of the small-
gain theorem for input-to-state stable systems. First of all note that a calculation identical
to the one above leading to (23) leads (using this time (19), which is legitimate because
p(t) ∈ int(B2)) to

D+U(p(t)) ≤ −κU(p(t)) + L̄r0|e(t)| . (24)
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Thus, by the Comparison Lemma (see [8]),

U(p(t)) ≤ e−κ(t−t0)U(p(t0)) +
L̄r0
κ

max
t∈[t0,t]

|e(t)|

for all t ≥ t0. This, in view of the estimates (11), yields

|p(t)|A ≤ 2Me−κ(t−t0)|p(t0)|A + γ max
t∈[t0,t]

|e(t)| (25)

in which γ = ML̄r0/κ
On the other hand, assuming k > q0 it is easily seen that

|e(t)| ≤ e−(k−q0)(t−t0)|e(t0)| +
1

(k − q0)
max
t∈[t0,t]

|h(p(t))| .

Recall now that h(p), a smooth function, vanishes on A. Thus, there exists a number β
such that |h(p)| ≤ β|p|A for all p ∈ B2. Thus,

|e(t)| ≤ e−(k−q0)(t−t0)|p(t0)| +
β

(k − q0)
max
t∈[t0 ,t]

|p(t)|A . (26)

At this point, comparing (25) and (26), the classical arguments of the small-gain theorem
for input-to-state stable systems prove that, if

k > γβ + q0

then e(t) → 0 and |p(t)|A → 0 as t→ ∞. This proves the Proposition.
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