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Abstract— Motivated by the fact that, for linear systems, the additional estimator. Finally, by changing the cooatn
existence conditions for a full order observer and for a reduced pack to the original one, we obtain a full order observer
order observer are the same, we study relationship between \\ih the corresponding error Lyapunov function. For the
full order and reduced order observers for general nonlinear fi h that th dinat
systems. We employ coordinate transformations for dealing with converse q?JeS lon, we show that the necessary coor |-nae
reduced order observers. By restricting the change of coordi- transformation for a reduced order observer can be obtained
nates to be linear, we obtain some equivalence between full from an error Lyapunov function for the full order observer.
order and reduced order observers and relationship between Then, the stability of the reduced order error dynamics is
two corresponding error Lyapunov functions. also ensured by manipulating the error Lyapunov function

| INTRODUCTION for the full order error dynamics.

For linear systems, it is well-known that the existence of |n this paper, we denote the Euclidean norm of a vector
a full order (Luenberger) observer implies the existence @fy |- |. For two column vectorg; andxp, a simple notation
a reduced order observer, and vice versa. Motivated by thig, x,)| implies |[x],x}]T|. When a function is said to be
fact, we study relationship between full order and reducesimooth, it means it is at least continuously differentiable
order observers for nonlinear systems. Our approach is Rnally, a systemz = F,(z,d) is said to beincrementally
investigate when the existence of a full order observerympluniformly globally asymptotically stable(UGAS) with respect
the existence of a reduced order observer and its conversgz if there exists a class¢”.Z function 8 such that
in view of error Lyapunov functions which are employed in
order to analyze the convergence of their estimation error. |2(t, &1,d(t)) — z(t, &2,d(1))| < B(|€1— &2l 1),

This paper is to show that, if a reduced order observer exis{s, g & and &, and for all admissible external inpdt-)

for a general nonlinear system, a full order one is alwaygnarez(t, £,d(t)) is the solution of the system corresponding
constructed without any additional restrictions such abal 1,4 initial condition& and the input.

Lipschitz or growth conditions that have frequently appéar
in the literature (e.g., [1-4]). For the converse, we shoat th 1l. EQUIVALENCE UNDER LINEAR CHANGE OF
the existence of a full order observer implies the existence COORDINATES
of a reduced order one if an error Lyapunov function for the we consider a system described oy f(x) andy = xi;
full order observer satisfies a structural condition thdte  hat is,
presented in this paper. .

We consider a system whose output is a partial state X1 = f1(xe, %), y=Xu 1)
of the system, with which the whole state is divided into X2 = fa(x1,%2),

measurable and unmeasurable components. Then, a redu\%%rey: %1 € RP, which is the measured output, arglc

order observer is constructed through a partial coordinajen—p Here, f; and f, are assumed to be locally Lipschitz.

transformation of the system. The change of coordmat@nce anasymptotic observer is of interest whose estimate

needs to be partial so that the measurable state remajig, erqes to the true state of (1) as time goes to infinity,
unaltered and will be discarded after the coordinate Chan%?stem (1) is assumed to be forward complete

for constructing a reduced order observer. As an answer toIn order to formalize both full order and reduced order
the question how t_o construct a fuI.I order observer Wheabservers that will be used throughout the paper, we begin
we have the coordinate transformation for a reduced ordggl their definitions

observer, our idea is to design an additional estimator for Definition 1: System (1) is said tadmit a full order

the measurable state, which is robust to the eStimatichserver with a state-dependent error Lyapunov function

error for the unmeasurable state. In order to design th.%DELF) if there exist a locally Lipschitz functio : R" x
estimator, we have to incorporate nonlinear growth of thgp R" and a smooth functiok’ : R" x R" — R such that

system equation. Then an error Lyapunov function will be
constructed for the pair of the reduced order observer and ai(le)) <V(ex) < ax(lg), Ve, x 2
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wherea; and a; are class#., functions, and that 2) System (1) admits a reduced order observer with an

oV oV SDELF under a linear change of coordinates.
%(e,x)[F(e+x,xl)— f(x)HW(e,x)f(x) < —a3(|¢g), Remark 1: Regarding the implication of (& 2), what
(3) is already known in the literature [1], [2], [5] is that, if a
for all e andx, whereas is a positive definite function. full order observer exists with guadratic error Lyapunov
A straightforward consequence of the definition is that &inction, then a reduced order observer can be constructed.
dynamic system given by By quadratic error Lyapunov function, we mean a positive

i F(Ry) - definite function
X=F(XY), Xe R,

Viene) =2 | ‘A P
guarantees that the estimat@) "converges to the statet) T 2| [P ORs| |ef”
(that is,e(t) := x(t_)_f X(t) converges to zero) uniformly Wlt_h where e = %4 — x; and & — %» — %. It is obvious that
respect to the initial conditior(0), and thus, system (4) is this function satisfies (10) with = PP (and it will be
said to be a full order observer for (1). Note that we call an — 3 2

; ; —1pT
observer ‘full order’ when its statei§ an estimate ok (not sgen.that a linear change of coordinates=x; + P5 P x1

. ) will yield a reduced order observer). We comment here that
just when the order of the observerrs

Definition 2: System (1) is said tadmit a reduced order many nonlinear (full order) observer design methods in the

observer with an SDELF under a linear change of coordi- literature (e.g., [2 4]’.[6]’ [7]) actually leads _to 2 uekk
. . L . . _error Lyapunov function, and thus, the design of reduced
nates if there exists a partial linear coordinate transformation . . )
order observer easily follows from their construction off fu

2 = %o +KiXq, (5) order observer.
) Proof: (1= 2). Full order observer (4) is rewritten here
by which the reduced order system for convenience
= fz(Xl,Zz - K]_Xl) + K1 f]_(X]_,Zz - K]_Xl) = Fz(Zz,Xl) ):A(l = Fl()zla)zZaXl) (11)
is incrementally UGAS with respect t, and there exists a %o = Fo(%1, %, %).
smooth functionV, : R"P x R" — R such that By virtue of (2) and (3), it is seen that, once the estimdte ~
of (11) gets equal to the true statét) (i.e., e(t) = 0), they
Oa(|€|) < Vz(€z,X) < ap(|e). Ve, X 6) must remain the same afterwards. This necessarily implies
wherea, and ay, are class#., functions, and that that Fi(xe, X2, x1) = fi(x1, %), i = 1,2, for all x; and x.
Therefore, if we lete; = X3 — X3 = 0, inequality (3) becomes
oV,
(82, X)[Fo(€2+ 22, X1) — Fo(22, %0)] v
O, " j o (02, 0)[fa(x1, &2+ %2) — f1 (31, %)
M0t < —adle) ) ov
ox - + 55 (@20 [f20, €2+ %) — fa(x0, %)
for all e, x with z = X2 + K1x1, wherea, is a positive definite oV
function. + 0—(0,e2,x)f(x) < —az(le)
Under this definition, a reduced order observer for system . i( R
(1) is simply given by for all e; andx, sinceF (x,%2,x1) = fi(x1,%2) = fi(xy, €+
. A x2) for i =1,2. Under the condition (10), we have
2 =F(2,y), (8) Ny
R =2 — Kyy. )] E(O’ e2,X)[(f2(x1, €2+ %2) — fa(X1,%2))
Indeed, since system (8) equats= Fz2(22,x1), inequalities + K (fr(x1,8 +X2) — f1(X1,%2))]
(6) and (7), withe; = 2, — 75, guarantees thag,(t) — O. oV
Therefore, with (9), system (8) is a reduced order observer. + 55 (082X f(X) < —as(le). (12)

N tate th i It of th t . .
RP ;)r\:\(/j\évzees]lg‘—ep € main result ot Ihe paper assuneng On the other hand, by takingy = xo + Kx1, we obtain from

Theorem 1: The following two statements are equivalent:(l)

1) System (1) admits a full order observer with an SDELF
that satisfies Then, it can be shown that this system is incrementally
oV oV UGAS with respect toz by a corresponding Lyapunov
E(O,ez,x) = E(O,GZ,X)K, Vez,x  (10)  functionVy(e;,x) =V (0,e,,X). In fact, with thisV,(e;,x) and
K1 = K, the inequality (7) is nothing but (12). The proof
with some matrixk € R("-P)*P, completes withoa(-) = 01(+), ap(-) = a2(-) andag(-) = as(-)

2 = fa(x1,22 — Kxq) + Kfy(x1,22 — Kx).
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sinceda(le;|) = 01(](0,&,)|) = 01(|&;|) and so on. We finally and a class#:. function ¢ as
obtain a reduced order observer
. f % if 0<s<i1, 2
2= L 22 — Ky) + Kf1(y, 22 — Ky), Ro = 2, — Ky. S) 1= .
2 = fay, 22— Ky) + Kfi(y, 22 — Ky) 2=2—Ky. w(s) 24 (so1), i 1<s (20)
(2= 1). Outline of the proof is as follows. We first show

a dynamic system wheren is a class>" function such thatt(s) > n(s) for all
S (V.5 — K Li(v. R se [0,1] whose existence is guaranteed simgeis positive
%=y, 2 —Kuy) — La(y X0, 22), (13) definite [8, Thm. 5.7.1]

2 = Ty, 2 — Kay) + K1 1 (Y, 22 — Kyy),
whereL; will be constructed, is an observer for the systenflaim 1: There exist a locally Lipschitz functions and a

(1) in (x1,2)-coordinates, that is, class=#, function o satisfying
X1 = fl(Xl,szlel), Y =Xy, 0(|61|) T 5 5
. 14 ey [f1(y; 22 — Kay) — fu(y, (22 — &) — Kay)
7 = fo(x1,20 — Kixg) + Ky f1(X1,22 — Kixq). (14) e ! [ ]

In particular, we prove uniform convergence ef(t) = < lesfo(ler)Ar(y. 22 €1) + |e|w(le]) Ot (le)).  (21)

%1(t) —xa(t) and e(t) = 2(t) — z(t) to zero by an er- (pyoof of Claim 1): From (16) and (17), it can be séethat
ror Lyapunov functionV (e;, e,,x) such thatas(|(e1,e,)|) <

V(e ex) < (e &) and §V < —as(|(ev.&))), where  ZUe) g,y 5 iy fy(y, (22— @) — Kuy))

a1 anda; are class##., functions andxs is a positive definite =
function. Then, by virtue of the coordinate transformat(sh < a(lew]) |&g] [Br,a(yl + |22]) + Bt 2(|eg])]
and a similar transformation of the estimate: < U(Iell)Bm(*)w_l(U(Iell)Bm(*))
%o 1= 2 — K%y, (15) +o(lel)y(o(le)Br2(@ (o (lerl)))
we obtain a full order observer + &7 W(lez]) [+ Bt 2(|&)]
: il 5 inqa—1
%1 = f1(Y, Ko+ Ka (%1 — ) — La(y, %1, %o + Ki (% — where (x) implies (|y| +[2|). On the other hand, sinag "
-Al tly. AZ 1(} V) =hink 3 . 1A Ay)) is a class#, function, there exisfsa class+#s, function ¢
%o = fa(y X+ Ki(%a —y) +Ki-La(y, %, %o+ Ki(K=Y)) ¢ \ch that

and an SDELFV (ey,e,X) = V(e1,e + Kiep,x) which sat- _ _ = _ —
isies (2) and (3), where, — % ;. with ai(|(ene)) — ¥ (@) <P@PD), W@ <dl@),  Vab>0o,

ai(|(er, &2+ Kier)|), i = 1,2,3. Therefore, the rest of proof angd gi(-) is locally Lipschitz on(0,). Then, the above
will_concentrate on the construction of su¢h and V. jnequality can proceed as

Finally, we will show the condition (10) holds with the
Oblt:a;ic?;dtﬁgllzol_clzllli schitz property ofy, there exists a i a(|e1Dnyl(*)l—ﬁ(a(|el|))lﬁ(Bff(*))
continuous nonnegatFi)ve func?idmpsugh thlét +o(leDgloel)Bra(blofel)
+ ez ([eg])[1+ Br 2(leg])]-
1f1(y, 22— Kay) — fu(y, (22— &) —Kay)[ < |f(y,22,ez)|ez(|1-6) Let us now picka(-) = §-1(-) and take

Then, we have . - A
At (Y. 22,€1) = Bra(lyl + 1Z2)) @ (Bra(lyl + |22]))
It (Y, 22,€7) < Bra(lyl +2[) + Br.2(lez) 17) + Bra(ler)),

Wherg Bra and _Bf-z are locally Lipschitz, nondecreasing hich leads to the inequality (21). Heré; is locally

functions satisfying Lipschitz because the nondecreasing funcfpn(-) is such
Bra(S) > suplls(y,22.€) 1 |&] < |yl +|2| < s}, (18) Eprﬁgﬁégé?)lgté)siﬂgwrlosolfocally Lipschitz away from zero.
Bra(s) = supll(y,22.€) : yl +12| < el <5} (29) P proot

Without loss of generality, we also assume tBag(0) > 0.  “Recall the inequalities
Here, for convenience we define a functidnas ab<ay l(a)+byb), Vab>0
5f (‘ez|) — 1+ Bf 2(|ez|) Cdﬁf12(d> < dw(d)Bf.Z(d) +Cwil(c)ﬁf72(wil(c))v VC,d > 0

for any class#s function ¢ and nondecreasing functiofi; .. We can
1This form of observer has error injection terms inside thecfiom  proceed the proof by putting= o(|e1])Bs.1(*), c=o(|e1]) andb=d =g,
arguments, which recalls the contribution of [7]. SRefer to [9, Corollary 10] for details.
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Now we pick

Li(y,X1,22) = e+ At (Y. 22, €1)e1 (22)

for the observer (13) and construZ(el,ez,x) as follows.

Claim 2: There exists a class, functionp(-) such that the
function

e Va(es)
V(ew,enx) i= /0 U(S)ds+2./0 p(9ds  (23)

satisfies

d _

—V <=
at” = ¢

where o is given in Claim 1.
(Proof of Claim 2): The time derivative along the trajectories
of (13) and (14) is obtained from (21) as

(lew))|er] — p(aa(les]))ac(les),  (24)

;’t V < ler|o(len)As (v, 22, e1) + el w(lex]) 3 (&)
_o(e)
|e1]

=—0(lea]) [ex] + e W(le]) Ot (|&)

— 20(Vy(er, %) el &x]).

el Lu (Y, %1, 22) — 20 (Vz(€7, X)) ac le7])

Therefore, the claim is proved if there exists a cla&s-
function p satisfying

P (Vz(ez,x))ac(|&]) > p(aa(|es))ac(l€])
> leg|Y(le])Of (eg)-

Indeed, we can choose a cla¥és function p as

(25)

a;(1) if 0<azi(r)<1,
_ -1 ag (MY(ag H(1)3(aa (1)) ()& (1)
p(1) =4 a7 (1)+ ac(aa 1(1)) O]
if 1<azi(1).

By the choice ofp, it follows from (20) that, for < s< 1,
p(aa(s))ac(s) > sac(s) = sn(s) > sy(s)dt(s),
and for 1< s,

SY(s)% (s)

plan(9)en(s) = [s+ LA D g
=sw<s>6f<s>+[s—% 09
> sy(s)ox ().

(Note that(1)9¢(1) < ac(1) by the choice ofy in (20).)
This proves the inequality (25).

From (23) and (24), it is seen that there existi=1,2,3)
such thatay(|(e1,&,)]) <V(e1,e,X) < az(|(e1,e)|) and that

SV < —oler)ex] — plaa(led))aclles)) < ] (e, €0)).
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Finally, it is not difficult to show from (23) that the
condition (10) holds wittK = K for V (e, e2,x) =V (e, e+
Kier,X) since

oV _ dler]
E(elaEZ) = 0(@1\)@
V.
+ZP(Vz(el,ez+K191,X))d—e§(€‘2+ Kie1)K1
and
aV _ ﬁVZ
E(eLeZ) =2p(Vy(er, e+ Klel,X))E(ez +Kaey).
| ]

1. CONCLUSION

In this paper we have presented a result of equivalence
between full order and reduced order nonlinear observers. A
straightforward corollary is that, if one obtains a full erd
observer with an error Lyapunov function that satisfies the
proposed condition (10) (e.g., a quadratic error Lyapunov
function), a reduced order observer is always constructed.
And, if one obtains a reduced order observer (which may be
more easily done since the order of the system is reduced),
a full order observer can also be constructed through the
proposed procedure.
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