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Abstract— Motivated by the fact that, for linear systems,
existence conditions for a full order observer and for a reduced
order observer are the same, we study relationship between
full order and reduced order observers for general nonlinear
systems. We employ coordinate transformations for dealing with
reduced order observers. By restricting the change of coordi-
nates to be linear, we obtain some equivalence between full
order and reduced order observers and relationship between
two corresponding error Lyapunov functions.

I. INTRODUCTION

For linear systems, it is well-known that the existence of
a full order (Luenberger) observer implies the existence of
a reduced order observer, and vice versa. Motivated by this
fact, we study relationship between full order and reduced
order observers for nonlinear systems. Our approach is to
investigate when the existence of a full order observer imply
the existence of a reduced order observer and its converse,
in view of error Lyapunov functions which are employed in
order to analyze the convergence of their estimation error.
This paper is to show that, if a reduced order observer exists
for a general nonlinear system, a full order one is always
constructed without any additional restrictions such as global
Lipschitz or growth conditions that have frequently appeared
in the literature (e.g., [1–4]). For the converse, we show that
the existence of a full order observer implies the existence
of a reduced order one if an error Lyapunov function for the
full order observer satisfies a structural condition that will be
presented in this paper.

We consider a system whose output is a partial state
of the system, with which the whole state is divided into
measurable and unmeasurable components. Then, a reduced
order observer is constructed through a partial coordinate
transformation of the system. The change of coordinates
needs to be partial so that the measurable state remains
unaltered and will be discarded after the coordinate change
for constructing a reduced order observer. As an answer to
the question how to construct a full order observer when
we have the coordinate transformation for a reduced order
observer, our idea is to design an additional estimator for
the measurable state, which is robust to the estimation
error for the unmeasurable state. In order to design this
estimator, we have to incorporate nonlinear growth of the
system equation. Then an error Lyapunov function will be
constructed for the pair of the reduced order observer and

the additional estimator. Finally, by changing the coordinate
back to the original one, we obtain a full order observer
with the corresponding error Lyapunov function. For the
converse question, we show that the necessary coordinate
transformation for a reduced order observer can be obtained
from an error Lyapunov function for the full order observer.
Then, the stability of the reduced order error dynamics is
also ensured by manipulating the error Lyapunov function
for the full order error dynamics.

In this paper, we denote the Euclidean norm of a vector
by | · |. For two column vectorsx1 andx2, a simple notation
|(x1,x2)| implies |[xT

1 ,xT
2 ]T |. When a function is said to be

smooth, it means it is at least continuously differentiable.
Finally, a system ˙z = Fz(z,d) is said to beincrementally
uniformly globally asymptotically stable(UGAS) with respect
to z if there exists a class-K L function β such that

|z(t,ξ1,d(t))− z(t,ξ2,d(t))| ≤ β (|ξ1−ξ2|, t),

for all ξ1 and ξ2 and for all admissible external inputd(·),
wherez(t,ξ ,d(t)) is the solution of the system corresponding
the initial conditionξ and the inputd.

II. EQUIVALENCE UNDER LINEAR CHANGE OF
COORDINATES

We consider a system described by ˙x = f (x) and y = x1;
that is,

ẋ1 = f1(x1,x2), y = x1,

ẋ2 = f2(x1,x2),
(1)

wherey = x1 ∈ R
p, which is the measured output, andx2 ∈

R
n−p. Here, f1 and f2 are assumed to be locally Lipschitz.

Since anasymptotic observer is of interest whose estimate
converges to the true state of (1) as time goes to infinity,
system (1) is assumed to be forward complete.

In order to formalize both full order and reduced order
observers that will be used throughout the paper, we begin
by their definitions.

Definition 1: System (1) is said toadmit a full order
observer with a state-dependent error Lyapunov function
(SDELF) if there exist a locally Lipschitz functionF : R

n ×
R

p → R
n and a smooth functionV : R

n ×R
n → R such that

α1(|e|) ≤V (e,x) ≤ α2(|e|), ∀e,x (2)



whereα1 andα2 are class-K∞ functions, and that

∂V
∂e

(e,x)[F(e+ x,x1)− f (x)]+
∂V
∂x

(e,x) f (x) ≤−α3(|e|),

(3)
for all e andx, whereα3 is a positive definite function.

A straightforward consequence of the definition is that a
dynamic system given by

˙̂x = F(x̂,y), x̂ ∈ R
n
, (4)

guarantees that the estimate ˆx(t) converges to the statex(t)
(that is,e(t) := x̂(t)−x(t) converges to zero) uniformly with
respect to the initial conditionx(0), and thus, system (4) is
said to be a full order observer for (1). Note that we call an
observer ‘full order’ when its state ˆx is an estimate ofx (not
just when the order of the observer isn).

Definition 2: System (1) is said toadmit a reduced order
observer with an SDELF under a linear change of coordi-
nates if there exists a partial linear coordinate transformation

z2 = x2 +K1x1, (5)

by which the reduced order system

ż2 = f2(x1,z2−K1x1)+K1 f1(x1,z2−K1x1) =: Fz(z2,x1)

is incrementally UGAS with respect toz2, and there exists a
smooth functionVz : R

n−p ×R
n → R such that

αa(|ez|) ≤Vz(ez,x) ≤ αb(|ez|), ∀ez,x (6)

whereαa andαb are class-K∞ functions, and that

∂Vz

∂ez
(ez,x)[Fz(ez + z2,x1)−Fz(z2,x1)]

+
∂Vz

∂x
(ez,x) f (x) ≤−αc(|ez|) (7)

for all ez, x with z2 = x2+K1x1, whereαc is a positive definite
function.

Under this definition, a reduced order observer for system
(1) is simply given by

˙̂z2 = Fz(ẑ2,y), (8)

x̂2 = ẑ2−K1y. (9)

Indeed, since system (8) equals˙̂z2 = Fz(ẑ2,x1), inequalities
(6) and (7), with ez = ẑ2 − z2, guarantees thatez(t) → 0.
Therefore, with (9), system (8) is a reduced order observer.

Now we state the main result of the paper assuminge1 ∈
R

p ande2 ∈ R
n−p.

Theorem 1: The following two statements are equivalent:

1) System (1) admits a full order observer with an SDELF
that satisfies

∂V
∂e1

(0,e2,x) =
∂V
∂e2

(0,e2,x)K, ∀e2,x (10)

with some matrixK ∈ R
(n−p)×p.

2) System (1) admits a reduced order observer with an
SDELF under a linear change of coordinates.

Remark 1: Regarding the implication of (1⇒ 2), what
is already known in the literature [1], [2], [5] is that, if a
full order observer exists with aquadratic error Lyapunov
function, then a reduced order observer can be constructed.
By quadratic error Lyapunov function, we mean a positive
definite function

V (e1,e2) =
1
2

[

e1

e2

]T [

P1 P2

PT
2 P3

][

e1

e2

]

,

where e1 = x̂1 − x1 and e2 = x̂2 − x2. It is obvious that
this function satisfies (10) withK = P−1

3 PT
2 (and it will be

seen that a linear change of coordinatesz2 = x2 + P−1
3 PT

2 x1

will yield a reduced order observer). We comment here that
many nonlinear (full order) observer design methods in the
literature (e.g., [2–4], [6], [7]) actually leads to a quadratic
error Lyapunov function, and thus, the design of reduced
order observer easily follows from their construction of full
order observer.

Proof: (1⇒ 2). Full order observer (4) is rewritten here
for convenience

˙̂x1 = F1(x̂1, x̂2,x1)

˙̂x2 = F2(x̂1, x̂2,x1).
(11)

By virtue of (2) and (3), it is seen that, once the estimate ˆx(t)
of (11) gets equal to the true statex(t) (i.e., e(t) = 0), they
must remain the same afterwards. This necessarily implies
that Fi(x1,x2,x1) = fi(x1,x2), i = 1,2, for all x1 and x2.
Therefore, if we lete1 = x̂1−x1 = 0, inequality (3) becomes

∂V
∂e1

(0,e2,x)[ f1(x1,e2 + x2)− f1(x1,x2)]

+
∂V
∂e2

(0,e2,x)[ f2(x1,e2 + x2)− f2(x1,x2)]

+
∂V
∂x

(0,e2,x) f (x) ≤ −α3(|e2|)

for all e2 and x, sinceFi(x1, x̂2,x1) = fi(x1, x̂2) = fi(x1,e2 +
x2) for i = 1,2. Under the condition (10), we have

∂V
∂e2

(0,e2,x)[( f2(x1,e2 + x2)− f2(x1,x2))

+K( f1(x1,e2 + x2)− f1(x1,x2))]

+
∂V
∂x

(0,e2,x) f (x) ≤ −α3(|e2|). (12)

On the other hand, by takingz2 = x2 +Kx1, we obtain from
(1)

ż2 = f2(x1,z2−Kx1)+K f1(x1,z2−Kx1).

Then, it can be shown that this system is incrementally
UGAS with respect toz2 by a corresponding Lyapunov
functionVz(ez,x) = V (0,ez,x). In fact, with thisVz(ez,x) and
K1 = K, the inequality (7) is nothing but (12). The proof
completes withαa(·) = α1(·), αb(·) = α2(·) andαc(·) = α3(·)



sinceαa(|ez|) = α1(|(0,ez)|) = α1(|ez|) and so on. We finally
obtain a reduced order observer

˙̂z2 = f2(y, ẑ2−Ky)+K f1(y, ẑ2−Ky), x̂2 = ẑ2−Ky.

(2⇒ 1). Outline of the proof is as follows. We first show
a dynamic system

˙̂x1 = f1(y, ẑ2−K1y)−L1(y, x̂1, ẑ2),

˙̂z2 = f2(y, ẑ2−K1y)+K1 f1(y, ẑ2−K1y),
(13)

whereL1 will be constructed, is an observer for the system
(1) in (x1,z2)-coordinates, that is,

ẋ1 = f1(x1,z2−K1x1), y = x1,

ż2 = f2(x1,z2−K1x1)+K1 f1(x1,z2−K1x1).
(14)

In particular, we prove uniform convergence ofe1(t) =
x̂1(t) − x1(t) and ez(t) = ẑ2(t) − z2(t) to zero by an er-
ror Lyapunov functionV̄ (e1,ez,x) such thatᾱ1(|(e1,ez)|) ≤
V̄ (e1,ez,x) ≤ ᾱ2(|(e1,ez)|) and d

dt V̄ ≤−ᾱ3(|(e1,ez)|), where
ᾱ1 andᾱ2 are class-K∞ functions andᾱ3 is a positive definite
function. Then, by virtue of the coordinate transformation(5)
and a similar transformation of the estimate:

x̂2 := ẑ2−K1x̂1, (15)

we obtain a full order observer1

˙̂x1 = f1(y, x̂2 +K1(x̂1− y))−L1(y, x̂1, x̂2 +K1(x̂1− y))
˙̂x2 = f2(y, x̂2 +K1(x̂1− y))+K1 ·L1(y, x̂1, x̂2 +K1(x̂1− y))

and an SDELFV (e1,e2,x) = V̄ (e1,e2 + K1e1,x) which sat-
isfies (2) and (3), wheree2 = x̂2− x2, with αi(|(e1,e2)|) =
ᾱi(|(e1,e2 + K1e1)|), i = 1,2,3. Therefore, the rest of proof
will concentrate on the construction of suchL1 and V̄ .
Finally, we will show the condition (10) holds with the
obtained SDELFV .

From the local Lipschitz property off1, there exists a
continuous nonnegative functionl f such that

| f1(y, ẑ2−K1y)− f1(y,(ẑ2− ez)−K1y)| ≤ l f (y, ẑ2,ez)|ez|.
(16)

Then, we have

l f (y, ẑ2,ez) ≤ β f ,1(|y|+ |ẑ2|)+β f ,2(|ez|) (17)

where β f ,1 and β f ,2 are locally Lipschitz, nondecreasing
functions satisfying

β f ,1(s) ≥ sup{l f (y, ẑ2,ez) : |ez| ≤ |y|+ |ẑ2| ≤ s}, (18)

β f ,2(s) ≥ sup{l f (y, ẑ2,ez) : |y|+ |ẑ2| ≤ |ez| ≤ s}. (19)

Without loss of generality, we also assume thatβ f ,1(0) > 0.
Here, for convenience we define a functionδ f as

δ f (|ez|) := 1+β f ,2(|ez|)

1This form of observer has error injection terms inside the function
arguments, which recalls the contribution of [7].

and a class-K∞ function ψ as

ψ(s) :=







η(s)
δ f (1) , if 0 ≤ s ≤ 1,

η(1)
δ f (1) +(s−1), if 1 < s

(20)

whereη is a class-K function such thatαc(s)≥ η(s) for all
s ∈ [0,1] whose existence is guaranteed sinceαc is positive
definite [8, Thm. 5.7.1].

Claim 1: There exist a locally Lipschitz functionλ f and a
class-K∞ function σ satisfying

σ(|e1|)

|e1|
eT

1 [ f1(y, ẑ2−K1y)− f1(y,(ẑ2− ez)−K1y)]

≤ |e1|σ(|e1|)λ f (y, ẑ2,e1)+ |ez|ψ(|ez|)δ f (|ez|). (21)

(Proof of Claim 1): From (16) and (17), it can be seen2 that

σ(|e1|)

|e1|
eT

1 [ f1(y, ẑ2−K1y)− f1(y,(ẑ2− ez)−K1y)]

≤ σ(|e1|) |ez| [β f ,1(|y|+ |ẑ2|)+β f ,2(|ez|)]

≤ σ(|e1|)β f ,1(∗)ψ−1(σ(|e1|)β f ,1(∗))

+σ(|e1|)ψ−1(σ(|e1|))β f ,2(ψ−1(σ(|e1|)))

+ |ez|ψ(|ez|)[1+β f ,2(|ez|)]

where(∗) implies (|y|+ |ẑ2|). On the other hand, sinceψ−1

is a class-K∞ function, there exists3 a class-K∞ function ψ̄
such that

ψ−1(ab) ≤ ψ̄(a)ψ̄(b), ψ−1(a) ≤ ψ̄(a), ∀a,b ≥ 0,

and ψ̄(·) is locally Lipschitz on (0,∞). Then, the above
inequality can proceed as

... ≤ σ(|e1|)β f ,1(∗)ψ̄(σ(|e1|))ψ̄(β f ,1(∗))

+σ(|e1|)ψ̄(σ(|e1|))β f ,2(ψ̄(σ(|e1|)))

+ |ez|ψ(|ez|)[1+β f ,2(|ez|)].

Let us now pickσ(·) = ψ̄−1(·) and take

λ f (y, ẑ2,e1) = β f ,1(|y|+ |ẑ2|)ψ̄(β f ,1(|y|+ |ẑ2|))

+β f ,2(|e1|),

which leads to the inequality (21). Here,λ f is locally
Lipschitz because the nondecreasing functionβ f ,1(·) is such
that β f ,1(0) > 0 andψ̄ is locally Lipschitz away from zero.
This completes the proof.

2Recall the inequalities

ab ≤ aψ−1(a)+bψ(b), ∀a,b ≥ 0

cdβ f ,2(d) ≤ dψ(d)β f ,2(d)+ cψ−1(c)β f ,2(ψ−1(c)), ∀c,d ≥ 0

for any class-K∞ function ψ and nondecreasing functionβ f ,2. We can
proceed the proof by puttinga = σ(|e1|)β f ,1(∗), c = σ(|e1|) andb = d = |ez|.

3Refer to [9, Corollary 10] for details.



Now we pick

L1(y, x̂1, ẑ2) = e1 +λ f (y, ẑ2,e1)e1 (22)

for the observer (13) and constructV̄ (e1,ez,x) as follows.

Claim 2: There exists a class-K∞ functionρ(·) such that the
function

V̄ (e1,ez,x) :=
∫ |e1|

0
σ(s)ds+2

∫ Vz(ez,x)

0
ρ(s)ds (23)

satisfies

d
dt

V̄ ≤−σ(|e1|)|e1|−ρ(αa(|ez|))αc(|ez|), (24)

whereσ is given in Claim 1.
(Proof of Claim 2): The time derivative along the trajectories
of (13) and (14) is obtained from (21) as

d
dt

V̄ ≤ |e1|σ(|e1|)λ f (y, ẑ2,e1)+ |ez|ψ(|ez|)δ f (|ez|)

−
σ(|e1|)

|e1|
eT

1 L1(y, x̂1, ẑ2)−2ρ(Vz(ez,x))αc(|ez|)

= −σ(|e1|) |e1|+ |ez|ψ(|ez|)δ f (|ez|)

−2ρ(Vz(ez,x))αc(|ez|).

Therefore, the claim is proved if there exists a class-K∞
function ρ satisfying

ρ(Vz(ez,x))αc(|ez|) ≥ ρ(αa(|ez|))αc(|ez|)

≥ |ez|ψ(|ez|)δ f (|ez|). (25)

Indeed, we can choose a class-K∞ function ρ as

ρ(τ) =















α−1
a (τ) if 0 ≤ α−1

a (τ) ≤ 1,

α−1
a (τ)+

α−1
a (τ)ψ(α−1

a (τ))δ f (α−1
a (τ))

αc(α−1
a (τ))

−
ψ(1)δ f (1)

αc(1)

if 1 < α−1
a (τ).

By the choice ofρ , it follows from (20) that, for 0≤ s ≤ 1,

ρ(αa(s))αc(s) ≥ sαc(s) ≥ sη(s) ≥ sψ(s)δ f (s),

and for 1< s,

ρ(αa(s))αc(s) =

[

s+
sψ(s)δ f (s)

αc(s)
−

ψ(1)δ f (1)

αc(1)

]

αc(s)

= sψ(s)δ f (s)+

[

s−
ψ(1)δ f (1)

αc(1)

]

αc(s)

≥ sψ(s)δ f (s).

(Note thatψ(1)δ f (1) ≤ αc(1) by the choice ofψ in (20).)
This proves the inequality (25).

From (23) and (24), it is seen that there existᾱi (i = 1,2,3)
such thatᾱ1(|(e1,ez)|)≤ V̄ (e1,ez,x)≤ ᾱ2(|(e1,ez)|) and that

d
dt

V̄ ≤−σ(|e1|)|e1|−ρ(αa(|ez|))αc(|ez|) ≤−ᾱ3(|(e1,ez)|).

Finally, it is not difficult to show from (23) that the
condition (10) holds withK = K1 for V (e1,e2,x) = V̄ (e1,e2+
K1e1,x) since

∂V
∂e1

(e1,e2) = σ(|e1|)
∂ |e1|

∂e1

+2ρ(Vz(e1,e2 +K1e1,x))
∂Vz

∂ez
(e2 +K1e1)K1

and

∂V
∂e2

(e1,e2) = 2ρ(Vz(e1,e2 +K1e1,x))
∂Vz

∂ez
(e2 +K1e1).

III. CONCLUSION

In this paper we have presented a result of equivalence
between full order and reduced order nonlinear observers. A
straightforward corollary is that, if one obtains a full order
observer with an error Lyapunov function that satisfies the
proposed condition (10) (e.g., a quadratic error Lyapunov
function), a reduced order observer is always constructed.
And, if one obtains a reduced order observer (which may be
more easily done since the order of the system is reduced),
a full order observer can also be constructed through the
proposed procedure.
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