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Abslmc-This paper deals with the problem of global 
asymptotic stabilization of nonlinear systems by means of 
linear, high-gain, dynamic output feedback. The contribution 
of this paper is to show that linear high-gain control together 
with high-gain observer is enough to globally stabilize strongly 
nonlinear sys(ems. The novelty is to introduce a (dynamic high) 
gain generated by an appropriate nonlinear Iter. The key 
idea behind analysis and controller design is to apply ISS and 
nonlinear small-gain techniques. 

I .  INTRODUCTION 
Output feedback of nonlinear systems is a problem of 

paramount importance in control engineering. Some well- 
known challenging facts are the lack of a global "Separation 
Principle" and a systematic observer design for genuinely 
nonlinear systems. Our goals here are not to address any 
specific engineering applications nor to come up with a 
general solution in (applied) mathematics. Instead, this paper 
is addressed to engineers ar the conceptual level. Specifically, 
we will show that linear control can still deal with nonlinear 
systems provided that a single dynamic gain is appropriately 
tuned. This has some resemblance with gain scheduling. 

We approach our objective by considering a class of 
nonlinear systems whose dynamics are descnbed by the 
trianguler form 

5" = U - U* + 6,( z,21, . . . ', 2,) 

Y = 2 1  

where U, y E R are the input and output, U* is an unknown 
constant and (z ,  z )  E R"0 x R" is the state. Only the output y 
is available for feedback. The presence of U* is motivated by 
the fact that, in some cases, the value of the control, related 
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to a desired equilibrium point, may he unknown, such as in 
the case of set-point regulation or in the presence of sensor 
disturbance [Z]. 

Thrdughout this paper, the following two hypotheses are 
imposed. 

Hypothesis (Hl): 
(H1.1) The z-system in (1) is input-to-state stable (ISS) 
[14], [ I  21. Namely, there exist a positive definite and radially 
unbounded function V, and a class K function y satisfying 

(2) av, 
-(z)P(2>Y) at 5 -V&) +-/(Id) . 

(H1.2) There exist a Lipschitz continuous nonnegative func- 
tion L and a class K function K ,  satisfying 

k k ( z ~ Z l > . ~ ~ ~ Z i ) l  5 L(lYl)(hI +...+lzii)+K(Vz(z)) 
(3) 

vi E {l,. . . ,n}. 
(H1.3) There exist strictly positive real numbers k and so 
such that 

K ( 2 y ( S ) )  5 k s  VS E [O,SO] . (4) 

Hypothesis (H2): 
(H2.1) There exist an integer m and a positive real number 
p satisfying' 

L(s)  + ~ ( 2 y ( s ) )  5 p + s'" vs 2 0 .  ( 5 )  

(H2.2) The functions y and K are C' on (0, +m) and there 
exists a real number e 2 1 such that 

e s K ' ( s )  2 K ( S )  vs > 0 .  (6) 

Under the above hypotheses, the origin (z,z) = (0,O) 
is an equilibrium point for the open-loop system (1) with 
U = U*. The control problem of interest is to design a linear 
output feedback controller to render this solution globally 
Lagrange stable and attractive. 

Comments 
1) The low-triangularity condition appears in numerous 

papers previously published on the topic of robust 

'With the hypothesis (H1.3). p could be replaced by ks. Bui we.want io 
stress here that the consnaini is for large.8 only. 
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and adaptive nonlinear control via state and output 
feedback; see [6], [7], [I51 and references therein. A 
common feature of earlier work is that the functions 
di's and q are output nonlinearities, i.e., the unmeasured 
states occur linearly. This restriction is completely 
removed for the state z of the inverse dynamics when 
they are ISS, as expressed by (H1.1) (see [ I  11). 

2 )  It should be emphasized that our design of a desired 
(linear!) dynamic high-gain output feedback law does 
not require the nonlinearities to be globally Lipschitz 
[4], or linearly bounded 1131. In addition, the controller 
structure is simpler than [13], and is linear as opposed 
to the nonlinear controller [5], which uses the idea of 
dynamic gain introduced in [lo]. Certainly, the use of 
a nonlinear controller would allow us theoretically to 
handle a larger class of nonlinear systems. 

3) Hypothesis (Hl) is reminiscent of previous work in- 
volving ISS and nonlinear small-gain techniques for 
partial-state and ' output feedback; see, for instance, 
[141, [111, [21, 131, [I]. 

11. OUTPUT FEEDBACK DESIGN 

The'output feedback we propose is made of a linear high 
gain (partial) observer and a linear high gain controller. 

For the design of these two blocks, we select a real number 
a and compute a set of data (6, dl , Q ,  P, K ,  F )  according 
to the following Lemma which was already announced in [9] 
and whose proof is given in the Appendix. 

Let Ii be the identity matrix of order i, and set 

Ai = ( 0 

Di = diag(O,l, ..., i - 1) . 

) , B = col(0 ,..., 0 , l )  E B" , 

(7) 

0 o . . . o  
c = col(l,O,. . . , O )  ER"+' , 

We have 
Lentnta I :  For any strictly positive real number a, there 

exist real numbers & and d l ,  symmetric matrices P and 
Q, and column and row vectors K and F satisfying the 
following set of inequalities : 

O < & ,  O < d i ,  O < P ,  O < Q ,  

P(An+l - KCT)  + (A,+i - KCT)TP 5 - & P  , 
&(An - B F )  + (An - BF)=Q 5 -do Q , 

-aP 5 PDn+l + Dn+lP  I dl P , 
-a& 5 Q D n + D n Q  5 dl Q . 

( 8 )  
Remark I :  As a consequence of Lemma 1, the set 

(do, d l ,  Q, P, K ,  F )  is dependent on the design parameter a ,  
as well as all the real numbers di's to be introduced later on. 

A. Observer design 

We adopt here the high gain observer of [IO]. 
For notational convenience, we denote x,+, = -U*. Let 

the ki's be the entries of the vector K given by Lemma 1, 
I.e., 

K = COl(k1, ..., kn+l)  . (9) 

We introduce the following (n  + 1)-th order observer 

- 
2; = 5' ,+I + kir'((s1 - E l )  , 1 5 i 5 n - 1 - - 
2, = zn+1 + U + knr"(xl - 21) 

$,+I = k,+ir"+'(xi - 21) .. 

(10) 
Following [lo], the gain r, involved in this observer, is 
obtained as a solution of the system 

I: = -r (br - a(y , r ) )  , (11) 

where the strictly positive real number b and the function 
a are other design parameters to be made precise later on. 
However, we note at this time that, by imposing 

a(y , r )  2 b , ~ ( 0 )  2 1 , (12) 

we get that r( t )  is larger than or equal to 1, for all positive 
times t and for any solution. 

For every 1 5 i 5 n + 1, let 

(13) 
- ei = xi - x i .  

Then, with (1) and (IO), it holds 

,+I - kir'el + 6i , e; = e .  1 5 i 5 n 
(14) 

&+I = -kn+lr"+le1 

We introduce the scaled estimation error E in R"+' 

E = COl(E1,. . . ,€ ,+I)  , (15) 

as follows 

V 1  si I n + l .  (16) 
e; 

E i = p ,  

We have 
i 

d = ~ ( A , + I  - KCT)& - (aI,+l + D,+I);E + A1 (17) 

(18) 

The main property of interest to us of the observer can be 
expressed with the help of the quadratic function 

6 
where 

A i ' =  col(+,  .._, & , O )  . 

v, = ETPE . (19) 

By means of (8) and (1 l),  we can see that, along the solutions 
of (17). the time derivative of V, satisfies 

e 5 - ([do - (Za + d l )  b]r + au) V, + Z E ~ P A I  (20) 
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B. Controller design 
Here, we follow the suggestion of PI .  But we resuict the 

controller to be linear in (y,2zZ,. . . ,zn+1). For this, as usual, 
we consider the following auxiliary system 

Proof of Theorem I 

imposed to stay larger than 1, we get 
From the hypothesis (H1.2) and the fact that T can be 

y = 22 + ez +61 

& = 2 3  4- kzTzel 

- - x ,  = xn+l +u+k,r"el  

We introduce the scaled state and input variables 
- x = COI(f,*, ...,* ) 
- b + l  +U 
U =  

rn 
Using the notation introduced previously, we have 

- i i = T A " - ~ Z  + TBE - (ai, + D,)-z + T A ,  
T 

where 
61 A2 = col(- + €2, ~ Z E I , .  . . , k,Ei) . 

We compute the scaled input 7i as 
- 
U = -E 

with F given by Lemma 1. 
The main pripeny of interest to us of the controller can 

be expressed with the help of the quadratic function 

V, = E T Q Z .  (27) 

By means of (8) and (I  I), we can see that, along the solutions 
of (24), the time derivative of V, satisfies 

v c  5 - ([do - (2a + di) b]T + aU) v, + zTzTQAz . 
(28) 

111. MAIN RESULT 

Theorern 1: Consider the system (1). Under the hypothe- 
ses (HI) and (H2). the following output feedback makes 
the solutions of the closed loop system bounded and their 
components z and xi.  1 5 i 5 n, to converge to the origin : 

- - zi = 5' ,+I + kcT'(sl - 21) , 1 5 i 5 n - 1 - - 
5, = ~ n + i  +U + k,T"(zi - 5%) 

= kn+lTn+l(xl - 21) - 
U = 

i =  

-x  n+i - T" Fcol (+ ,  s,. . . , *) 
-7 (by - O(Y, 7 ) )  

(29) 
where the scalars kc's, a and b, the matrix F and the Lipschitz 
continuous function U are the appropriately chosen feedback 
parameters? 

2See eqs. (8). (36) and (57). 

By completing the squares, this yields 

4 4  ) 2ETPA1 5 WYI) Vc + dz L(l~l) V ,  + , 
(31) 

(22) 

(23) 

with some nonnegative real numbers d2, d j ,  depending on 
a. So, it holds 

k 5 - ([do - (2a + di) b ] ~  + au -dzL(lyl)) V,  

(32) 4fJ + L(lul) v, + d 3 A 7  , 

Similarly, we get 
(24) 

\- - , 
with some strictly positive real numbers d4 to &, depending 
on a. This, in tum, implies (26) 

Now, consider the function 

2d6 v,, = - v, + v, do 

(34) 

(35) 

Its time derivative satisfies 

with some nonnegative real number dT9  depending on a. So 
let us select our design parameters b and U to satisfy 

o ( Y , T )  = Q(Y) + ?z(Y,'),  (37) 

{ dz (4 > [d4  (4 + *] } 
a Ul(Y) = 

XL( lY l )  , (38) 

where u2 is a function, lower bounded by b (see (12), to be 
defined in (54) below). Note that, as L, 01 is a Lipschitz 
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continuous function of the state of the closed loop system. 
Our motivation for this choice is that it leads to 

All this gives 

U 5 - (f - d7) W,)' + f n(2y(lul))' 

t & r  a d7 
fl 

T a  
&, + d 7 2  n ( h )  . (39) 

. - (2a) ( T + ~ - F )  . (48) 

c 2 4d7(a) . (49) 

Now, with e 2 1 the real number given by the hypothesis 
So we choose c satisfying (H2.2), let pz be the function, defined on (0, +CO), as 

Then let ds.  depending on a, be the square root of the 
minimum eigenvalue of &. We have 

(40) K(s)'  
P Z ( S )  = - . 

S 

As K ,  this function pz is C' on (0, +w). Precisely, we have 

So pz is a nondecreasing function. Being nonnegative, it has 
a limit pZo as z goes to 0. So we can extend the definition 
of pz to [0, +w) by letting 

Pz(0) =.p.o . (42) 

This way we get a nondecreasing continuous function on 
[0, +CO). It follows that J," q d s  defines a C' function on 
[0, m) which is radially unbounded. Also, it satisfies 

(43) 

With this at hand and with the function 'V, given by 
Hypothesis (HI.]), introduce the function 

'* K(S)'  1 t 
U = c [ -ds + 7 (26) . (44) 

S 

where c is another design parameter to be chosen as a strictly 
positive real number. This function U is positive definite and 
radially unbounded in (3, E ,  z). It is also differentiable at any 
point except at (O,O, z). But it is Lipschitz continuous. So 
it admits an upper right Dini derivative along any solution. 
We denote this derivative U .  With the hypothesis (Hl.1). it 
satisfies 

Since pi is a nondecreasing function, by considering succes- 
sively the two cases V, 2 2y((yj) and V, < 2y(ly]), we get 
the inequality 

With Young's inequality and the fact that T remains larger 
than 1, all along any solution, we get 

So our idea is to select the function UZ,  as a function of y. 
in order to get the inequality 

From the hypothesis (H1.3). such a choice is possible since, 
when lyl 5 so, it is sufficient to have 

A specific expression for ff2 is for instance 

4c 
02 = max b , -  re' x { ,2drd"') + a(2ds(a) )  

(53) 

(54) 

This is a Lipschitz continuous function. This way and with 
(43), we obtain 

"" 
i - p U 9  (55) 

with p some strictly positive real number, guaranteed to exist 
again since r is larger than 1. So it follows that, along any 
solution, U(t) is exponentially decreasing and therefore also 
bounded. 

Now consider any closed loop solution. Its state can be 
taken as ( ~ , Z , E , Z ) .  Let it be right maximally defined on 
[O,T). From the properties of U(t), we know that, as U(t), 
V,,(t) and V,(t) are bounded on [O,T). Therefore, for each 
solution, the components Z(t),  E ( t )  and z(t) are bounded. 
This, in tum, gives that 3l(t) = y ( t ) / r " ( t )  is bounded, i.e. 
we have 

lE,(t)l 5 XI vt E IO,T) (56) 
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for some real number X I ,  depending on the solution. 
Let us show that, by picking a small enough, we can 

guarantee that the component r(t) is also bounded on [O,T). 
We know that we have (see ( I  I), (371, (38). (54)) 

i =  

(57) 

with 

b, = b .  (58) 

bz = . m a x ( b , y }  , 
. ,  

(59) 

using truly nonlinear output feedback, is that the growth 
rate and the gain from the output to the perturbation via 
the inverse dynamics should have a growth which cannot be 
more than polynomial. 

The stability analysis has been made possible by : 
1) the scaling of some components, as usual when high 

gain is used. However here we use the modification of 
the scaling introduced in [lo]. 

2) the application of the Lyapunov version of the nonlin- 
ear small-gain techniques [3]. 

APPENDIX 

The proof of Lemma 1 follows directly from the following 
technical lemma. Indeed, the existence of the pair (Q, F )  in 
Lemma 1 follows by letting 

r = -  (67) (61) n - 1 + 8  ' 

2di 4c 

With the help of the hypotheses (H2.1). and the inequality 

b4 = - + -  
a a(2ds)' . 

The existence of the pair (P, K )  follows from the same 
arguments of the proof of Lema by letting 

Iy(t)l 5 X I  7' W E , (62) 

we get 

i. 5 -r (blr - [b2 + bsp] - bgXF r'" - b4[2k + p]  rat 

-b4Xr  dm+')) . (63) 

a ( m + t )  < 1 ,  (64) 

But if a satisfies the constraint 

depending only on the system data, with the help of Young's 
inequality, we can find a positive real number bs satisfying 

(65) 
blr - [bz + bsp] - bjX;" ram - b4[2k + p ]  rDL 
-b4X;" r'("'+') > - !!a 2 r - b5 . 

This yields simply 

It follows readily that the component r( t )  is also bounded 
on [O,T). 

So all the components being bounded, T must be infinite. 
This implies that the solution is bounded on [0, +CO) and 
U ( t )  converges to 0 as t goes to m. So the state components 
(z,(t), e.(t) ,  z ( t ) )  converge to the origin. 

IV. CONCLUDING REMARKS 
In this paper, a high gain linear output feedback is 

proposed for global asymptoiic stabilization of a class of 
nonlinear systems where the nonlinearities have a linear 
growth in the (partial) unmeasured state components, with an 
output dependent growth rate and with ISS inverse dynamics. 
This feedback involves an on-line tuned gain. 

We have seen that the main loss we have by imposing 
a linear structure, as compared to the best available results 

1 .  
a 

R = -I  - - diag(0,. . . , n  - 2 , n  - 1) , (68) 
X = P ,  Y = P K ,  (69) 

and doing a recursion with 

Lemma 2: Let R he the following diagonal matrix : 

R = - I  - r d i a g ( n - l , n - Z ,  ..., 0) (70) 

where T > - l / (n  - 1). Let A E Rnxn and B E Ihf" be the 
matrices in the canonical controller form as in (7). Then, the 
set of pairs (F, Q) satisfying : 

& ( A - B F )  + ( A - B F ) T Q  < 0 (71) 

R Q  + Q R  < 0 (72) 
Q > 0 (73) 

is not empty. 
PmofofLemnta 2. By letting : 

X Q - I  , yT  = FQ-' (74) 

the statement of Lemma 2 becomes : 
The set of pairs ( X , Y )  satisfying : 

[ X A T + A X ]  - [ Y B T + B Y T ]  < 0 

X R  + R X  < 0 (75) 

x > o  
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is not empty. 

dimension. 
Now, we prove the above claim by induction on the 

Initialization (n = 1): The claim obviously holds with 

X i  > 0 ,  A1 Y O ,  = 1 ,  R1=-1,  I5 > 0 .  (76) 

Induction (n = j + I): Assume that the claim holds, in 
case of n = j, with A,. B,, R j ,  X j  and 5. Now, it is shown 
that the claim holds, in case of n = j + 1, with 

and 

where Tj and V,+1 are real numbers, and Sj and Vj+1 are 
matrices of appropriate dimensions to be determined later. 
Notice that we use 0 to denote either a row vector or a column 
vector of appropriate length. 

Take 

s. , - - -y.  , , Uj+l = AjSj -t BjTj (79) 

As it can be directly verified, as long as r > -l/(j - l), 
by picking the real numbers Tj and large enough, the 
above claim is me for n = j + 1. Finally, Lemma 2 is 
established. 
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