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Abstract—In this paper we consider systems which are and: .
globally completly observable and output-to-state stable. The CTYIRY
former property guarantees the existence of coordinates such . _ Vlz) = V(@) + mlwo) . (3)
that the dynamics can be expressed in observability form. ~ With (2) in Assumption 1 and the continuity gf,, there
The latter property guarantees the existence of a state norm exists aC' non-decreasing function, lower bounded byl
observer and therefore nonlinearities bounding function and say, and satisfying:
local Lipschitz bound. Both allow us to build an observer
from an approximation of an exponentially attractive invariant lzo| + ...+ |zn] + | fn(zo, .-y zn)] < v(V(x)). (4)
manifold in the space of the system state and an output driven o . .
dynamic extension. The state of this observer has the same It follows that, by defining a new time as the solution 6t
dimension as the state to be observed. Its main interest is to .
provide convergence to zero of the estimation error within the 7 =V(x) , T(0) =0,

domain of definition of the solutions. and by denoting:

I. INTRODUCTION d
o a

a
We consider a globally completely observable system “ = T AV
. T V()
whose dynamics can be represented globally by:
) the system:
Zo = 1, ) 1
Zo = T\ 0
1) V()
i:n—l = Tn , :
x.n = fn(ZOa v 7wn) 5 R o Ty (5)
where f,, is Lipschitz continuous. For such a system, we ot Y(V(z)) '
wish to establish the existence of a global observer when the fulzo, ..., 2n)
only available measurement is: T = it
1(V(z))
Yy = o is complete. Actually its solutions do not grow faster than

Such a problem has received a lot of attention from & | both forward and backward in the new time As a
wide variety of view points. The route we follow hereconsequence, for any strictly Hurwitz x p matrix A and
takes its starting point in a contributibrof Kazantzis and anyp vector B, the function given as follows is well defined
Kravaris. In [7], they have generalized, to the nonlinearega and continuous (see [4, €beme 3.149]):

Luenberger’s early ideas proposed in [9] for linear systems 0
(see also [2, Section 7.4 method I1]). However their analysi R(z) = / exp(—AT7) Bxo(7)dr (6)
is a local one and requires too stringent assumptions aiming -

at getting an analytic observer. Our intent here is to remow&here, with the notation:
these extra assumptions and to deal with the global case.
For the latter, we need to add an assumption besides global
complete observability. xo(7) is the first component of the solution() of (5),

Assumption 1 (see [8], [11]): The system (1) is output- issued fromz. Our interest inR comes from the fact that:
to-state stable, i.e. there exiSt non-negative functions;,

x = (Toy. ., Tn) ,

g z = R(z
~v9 and V' satisfying: ()
defines a globally attractive invariant manifold of the syst
o] < %(V(), @) geney B
(5) coupled with:
1This contribution has been extended in various ways by Kaiaand R
Kravaris themselves but also by Xiao and Krener (see [13] a@dgferences Z2 = Az + Baxg . (7
therein). But they remain in the same context of looking f@ar® observer
or at least one admitting a formal power series representation 2We getr(t) > t for all positivet.
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Indeed, by computing the limit foh — 0 of w, if there is no finite escape time, but at the time of the escape,

we can check thaR satisfies (7) when evaluated along thef there is a finite escape time. This observer, but in the case
solutions of (5). Moreover, integrating (6) by parts, we:getwhere~(V(z)) = 1, is the one presented by Luenberger in
R(z) = —A"' By [9] for linear sy;tems and by Kazantzis and Kravaris in [7]
locally, for nonlinear systems.

x‘r” The objective of this paper is to round or solve the
_ Ay (I,...7(V(z))" *A"1) B nt problems we have left on our way in the above presentation.
V(@) o : .
: These problems are:
) 1 1) How to get an upperbound efV (z)) expressed from
0 n iBA-GTD) . the only knqwledge ofzy? .
_/ exp(—Ar) 70‘//(37)) Z ! v lxz 2) How to modify~ and the system (7) in order to enforce
—o0 V() = ~(V(2)) the existence of a continuous functiéh: R x R” —
A(n+1>Bfn(x0(7),...,xn(T))> i R"™ satisfying:
T .
YV () S(zo, R(x0,T)) = T  V(z0,T)?  (8)

It follows that, if the pair(A, B) is controllable ang > n,
there is some hope that, maybe by modifyingo make the
last two lines negligible, the mafx,Z) — (xo, R(x0,T))

is left invertible, withZ collecting the unmeasured compo-

nents ofz, i. e.

3) How to get an expression @&?
The first problem is addressed in Section Il. The other two
in Section Ill. This will allow us to exhibitC' functionsf
and b such that ther-dimensional system:

T = (@10 {x — ) .
In such a case there would exist a functigrdefined on the z = bhlxy)
image of this map, subset & x R", and satisfying: provides an estimate converging in the new time to the
S(zo, R(z0,%)) = T  V(20,7) . actual unmeasured state comporent

Further, we may expect that this functiGhcan be extended IIl. AN UPPERBOUND FORY(V(z))
into a continuous functio® defined orR xR". For instance, ~ To get an upperbound foy(V (x)), we follow the norm-
as shown in [9] (see also [2, Theorem 7.1@}),does exist €stimator idea proposed by Sontag and Wang in [11] (see also
when f,, is a linear function, the paif4, B) is controllable, [8]). From (3) in Assumption 1, we know thaf satisfies:
and the spectrum ofd and this of the system (1) are —_
separated. The existence @&f is also established, in [7], Vi(z) < =V(z) + nl=o) -
locally around the origin, assumed to be an equilibrium poinsg |etw be obtained as a solution of the system:
of (1), under the assumption thdt, is analytic, the pair )
(A, B) is controllable and a more restrictive condition of W = ~w + 7(20) ©)
spectral separation. with positive initial condition. For a solutiofw(¢), w(t)) of
Since the set{(z,z) : 2z = R(x)} is exponentially (1),(9), issued from(z,w), we have:

attractive, the existence and the continuity@fimply that,

Viz(t)) < w(t) + max{V(z) —w,0} exp(—t) (10)

for each solutionz(7), z(7)), we have:
. = _ for all ¢ for which this solution exists. Ifz(¢) is right
TETOO (&(ao(r), 2(r)) = () = 0. maximally defined on0,¢), thenw(t) is defined at least

This says that: on the same interval. Also,
1) if ¢y is infinite, then, because of the exponential decay,
z = Az + Bz, there exists,,, depending or{z, w), satisfying:
T = S(w,2), V(zt) < wt) + 1 V€ [t,,+00) .

with the new timer, or, if v(V(z)) were known, 2) If ¢, is finite, we have, from (2) in Assumption 1,

2 = y(V(x)[Az + Bz , tliglu V(z(t)) = +oo.
7T = S(z0,2) , This implies the existence of a timg, depending on

(z,w), satisfying:
with the initial timet, is an observer of, with T converging

to z, as the new time- goes to infinity. In terms of the initial max{V(z) — w, 0} exp(—t) < SV(2(t))Vt € [t,, t0).
time ¢, this says that the convergence occurs in infinite time (112)

N~
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With (10), this yields: This implies that any boundedness or convergence result

established with the timé holds also with the time-. Also,

V(z(t) < 2w(t) VtE [to,to) .

by denoting:
From these two cases, we conclude that, for each solution, 4 = ;l_f = Aa ,
there exist a real number (= V(x)), and a new timer, T Aw)
(= 7(t,)) satisfying: the system:

% _ T
Viz(r)) < w(r) +v Vrelomn], (12) T Fw)
< 2w(r) + 1 V7€, ).
* _ xn

But it is important to stress that bothandr, depend on the Tn-1 = A(w)

initial condition of the solution.

To simplify our forthcoming notations, we introduce the Tp = ——= >
notatione, in association with any non-decreasing function (W)
c: Ry — Ry. Specifically,c. : R — R, is the function & o= Y 71 (o)
associated te as: A (w)

ce(r) = ¢(r) — ¢(0) .

We have the property:
c(v) < c(dw+2) + (2o —2w—1]4)
where we use the notation:
ry = max{r,0} .
As a consequence :
T(V(z)) < (4w +2) + %2[V(z) —2w—1]4) . (13)

So, for each solution of (5),(9), we get:

V(V(2(7)))

1 «(20—-2) V 0, 7],
y4w(r)+2) — +%@v-2) Vrelo,n
< 1 V1€ [ry,00),
(14)
and therefore, with (4),
izo |z (T) |+ fn(z(T
Lol LGN < 14 4 (2~ 2) Y7 € 0,7,
<1 V1 € [ry,00).

It follows that v(4w + 2) is a good candidate to replace

~(V(x)). This leads us to introduce the notation:

Fw) = (4w +2)

and another new tim& as the solution of:

(15)

T=3w) , 7(0)=0.
We have: N
2 _ Aw)
V()
and therefore, using (14), along any solution,
limsupﬂ > 1.

T—+00 T

is complete.

IIl. EXISTENCE AND EXPRESSION OFS
A. Observer design

We have mentioned that, if there exists a continuous
function & satisfying (8) and if we know this function, then
we know an observer asymptotically converging in the new
time 7. The route we follow to prove the existence and to
expressS is actually to modify (7). In the following we build
this modification step by step with in particular the objeeti
of getting the functionk as a linear map with a triangular
representation in the coordinates.

1) Edtimate of z1: Let us first introduce the system:

(16)

2= —a1z1 + bixg — wy

whereay, by andu; remain to be defined. In particular;
is an extra term added to (7). This equation gives readity, fo
any C*! function r1,

21 —Tioto+x1 = —a1 (21 — a0 + (%10961)
+To — Uq.

So, by choosing:

Uy = T2 (17)
and: .
by —7T10 _
= Tio = am,
ai
ie.
b = a1 + a? 5 (18)
we get:
—_—
2 —aro+x1 = —ay (21 —ar1xo + 1)
or:
,*— a1
21— Q19 +T1 = —= (21 *a1$0+x1)
F(w)
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It follows that the set{(z1,2) : z1 = ayzg — w1} iS the set{(z,z) : 20 = —a3xo + asw1 — 22} iS an invariant
an invariant manifold of (1),(16) which is exponentially manifold of (1),(19). This leads us to propose an estimate of
attractive in the original time and the new timer if we x5 in the form:

choose:

~ 2

—~ To = —a5T9 + asx1 — 22 .
a1 > (w) . 2
) . . Unfortunately, such as estimate involves which is un-
This leads us to propose an estimaterefin the form: known. But, from the previous step, we have the estimate

T = ayo — 21 . Z1. S0 is actually taken as:

~ 2 ~
The only problem here is that (17) is not a legitimate choice Tr T T@;To F G271 — 22

for u; sincexs is not measured. So, for the time being, leHere again, the problem we are facing is thatdefined in
us continue the design with; still not specified. However, (20) involvesz; andx3 which we do not know. So we let:
for the sake of uniformity of notations, we let:

Up = Vg — T21 7y,
ur = v where, for the future, we know that the best choicedpis:
And, for the future, we know that the best choice faris: vy = T3 .
v = Zo . To recapitulate, we propose an estimatergfas:
On the other hand, if we restrict ourselves by allowingto 3y = —apzy — [a3 4 2a0a] w0 + G271 — Vo,
depend only onw, (18) can indeed by realized as: R ) R
Ty = —a3xy9 + a2T1 — 22 .
bi(w,x9) = ay(w) [~w +y1(z0)] + a1(w)?. (21)
. . ) where again, if we choose; as a function ofw only, we
So, our proposition for an estimate of is: have:
. _ / _
él = —ai1z1 + [al‘i’a%] o — U1, az = a2(w)[ ’LU—|—’}/1(J)0)] ’ (22)
~ 3) Estimate of z;: By proceeding along the same lines for
r1 = Qa1 xy9 — 21 -

¢ ranging now from3 to n, we design an observer far;,

2) Estimate of x,: With the estimatezr; of x; at hand, from the system:
we introduce a second system:

21' = —a; z; + bl To — U; . (23)
Zy = —agzp + bamg — uy (19)  For anyC! functionsr;;, we get:
where agairus, by andus, remain to be defined. For arfy! -
functionsryy andra;, we get 5 ZT' T4z =
() gLy (.

29 — TogZg — T21X1 + To = —a; (z by moz 4 Zz LGy, i+ 1(1 v . )
3 a; K]

ba— Tzo T20 7‘21 .
—a9 (Zg xo + x1 + To | — 19121 + T3z — U2. .
_ E j= 1 TiiT5 + Tiy1 — Ui,

a

This shows that, by choosing: where, to simplify the notations foi = n, we have let
formally,
= — 7 20
U2 3 21 (20) Tny1r = fal®os-. ., 70) -
and: o So, by choosing:
as B ’
720 Ui = Ti+1 — ZTU Ly
— = —Ta,
a2
by — 90 and:
T = T2, Ti(i—1) -1,
ie “
.C. , - a Ti(jfl) . .
21 - 2, a— = —7‘7',]' je{l,...,l—1}7
2 (3
20 = —a3, b — 7
_ .3 : AL
by = —a5 — 2azaz , a; ’
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ie.: Also, with these compact notations, (25) reads:

i = —(—(J,Z')i_j ’ . . . -1
b = lids + 0] (—ap)i-! £=— (dl ag(a;)—L(I+1L) >5+vect (Tig1 — Vi),
' ' 7 and:
the set e = (I+LD) e
(21,2) t 2 = Zi:l( )z —x Now, we observe thalk is nilpotent, i.e.:
(X c R T — U J L
=0 L =0.

is an invariant manifold of (1),(23). This motivates an ob-This implies:
server forz; in the form:

(I+L0)™' =1+ ni:(—L)i.

z; = —a;z;+ [mZ + a?] (—ai)i_ll’o—‘r
SNl N i1 So, from the expression of the powers bf we see that
Q; i— (7' J)( GZ) I Vi, ’ P . P )
21 i1 ! (24)  the (i,7) entry of (I + L)~! which we denote/;; in the
i = —(—ai)'zo — Z(*ai)iijij — following,
j=1 1) is zero ifj > 4,
. - 2) islif j =1,
where the best choice far; is: 3) depends only o1 to a; if j <i— 1.
Vi = Tit1 - and similarly the(i, j) entry of L(I+ L)~!, which we denote

a;hi;, hasa,; in factor and its other factol;;

In this case, the manifold errar;, defined as: 1) is zero ifj > i,

. izl o 2) depends only om;i; toq; if j <i—1.
& =z + (—a;)'mo + Y (—a:)x; + 3, These various remarks show that the overall dynamics admit
i=1 (z,w,e) as state and, in the new tim& can be described
satisfies: by:
o1 . Fo = 1
g = —aigi— Y (=) ;= ]+ [wi41 — vi]. (25) Aw)
j=1
B. Observer properties % . Tn
n—1 - =~ )
To study the properties of the observer we have designed L ¥ (w)
and whose generic expression is given by (24), we introducd B fo(zo, ..., zp)
the observation error: Tn = F(w) ’
e = T — T; . (26) & = _w _'Yl(mO)
With the help of (24), we see it is related to the manifold y(w) ie1
error by Ei = —,\ai E; — &th Aitly.--,05)E; +
i—1 o ’y(w) Zl J( J+ ) J
e — e = —y (—a;) e @7 Tit1 — Vi
i=1 7y (w)
To go further, we need to express )& in terms of thes;’s. d thee” . by: (30)
For this, let L be the strict lower triangular matrix whose and thee;’s are given by:
(i,7) entry is(—a;)* =7, i.e.. =t
e, = & + Z&j(ajﬂ,...,ai)gj . (31)
0 N ) =
—as 0 : We our now ready to state one of the main results of the
L = : : (28) paper.

Theorem 1: Given the functiond/(x), v1, 72 and f,,, we
can find expressions for the functiongs andwv;’s such that

(—an')"—l (—ay)"2 —a, 0 for system (30) the set:
We have: A= {(z,we): V() <2w+1,e=0}t (32)
e =({I+Le. (29) is globally asymptotically stable.
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IV. CONCLUSION
The observer we propose is:

o= —a;z + [ia;+a?] (—a) " ag +
i1
ai Y (i—§)(—a) 778 — v,
=t - (33)
T = —(—a)'zo — Z(_ai)i_jfb\j - Zi;
j=1
W= —w+71(wo)

where thev;’s have to be selected as :

v, = Ty Vie{l,...n-1},
o = 29(w)sat (f@Ax))
2(w)

Recall that thes;’s involved here being functions af,, the
notationa; means simply:

) da;
ai = — - (w) [~w+m(zo)] -
By rewriting this observer (33) in the compact form:
x = F(x, ,
(*,20) (34)
T = H(X,Jio) y

and by denoting byX (x,t) the solutions of the system (1)
and byX (x, t; x¢) the solutions of this system (34), coupled
to (1), we have established the following statement.

Theorem 2: For the globally completely observable sys-
tem (1), under Assumption 1, we can constfutinctions
a;’'s and 7, the a;'s being C', such that for each solution
X(x,t) of (1), right maximally defined off0, T), with T’ <
+00, and for each initial conditiorr, the associated solution
X (x,t;x0) of (34) is defined also of), T) and satisfies:

}er%|X(x,t) — H(X(x,t;20), Xo(x,t))] = 0. (35)

[10]
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