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Abstract— In this paper we consider systems which are
globally completly observable and output-to-state stable. The
former property guarantees the existence of coordinates such
that the dynamics can be expressed in observability form.
The latter property guarantees the existence of a state norm
observer and therefore nonlinearities bounding function and
local Lipschitz bound. Both allow us to build an observer
from an approximation of an exponentially attractive invariant
manifold in the space of the system state and an output driven
dynamic extension. The state of this observer has the same
dimension as the state to be observed. Its main interest is to
provide convergence to zero of the estimation error within the
domain of definition of the solutions.

I. I NTRODUCTION

We consider a globally completely observable system
whose dynamics can be represented globally by:






ẋ0 = x1 ,
...

ẋn−1 = xn ,

ẋn = fn(x0, . . . , xn) ,

(1)

where fn is Lipschitz continuous. For such a system, we
wish to establish the existence of a global observer when the
only available measurement is:

y = x0 .

Such a problem has received a lot of attention from a
wide variety of view points. The route we follow here
takes its starting point in a contribution1 of Kazantzis and
Kravaris. In [7], they have generalized, to the nonlinear case,
Luenberger’s early ideas proposed in [9] for linear systems
(see also [2, Section 7.4 method II]). However their analysis
is a local one and requires too stringent assumptions aiming
at getting an analytic observer. Our intent here is to remove
these extra assumptions and to deal with the global case.
For the latter, we need to add an assumption besides global
complete observability.

Assumption 1 (see [8], [11]): The system (1) is output-
to-state stable, i.e. there existC1 non-negative functionsγ1,
γ2 andV satisfying:

|x| ≤ γ2(V (x)) , (2)

1This contribution has been extended in various ways by Kazantzis and
Kravaris themselves but also by Xiao and Krener (see [13] and the references
therein). But they remain in the same context of looking for aC∞ observer
or at least one admitting a formal power series representation.

and:
˙︷ ︷

V (x) ≤ −V (x) + γ1(x0) . (3)
With (2) in Assumption 1 and the continuity offn, there

exists aC1 non-decreasing functionγ, lower bounded by1
say, and satisfying:

|x0| + . . . + |xn| + |fn(x0, . . . , xn)| ≤ γ(V (x)) . (4)

It follows that, by defining a new timeτ as the solution of2:

τ̇ = γ(V (x)) , τ(0) = 0 ,

and by denoting:

å =
da

dτ
=

ȧ

γ(V (x))
,

the system:





x̊0 =
x1

γ(V (x))
,

...

x̊n−1 =
xn

γ(V (x))
,

x̊n =
fn(x0, . . . , xn)

γ(V (x))

(5)

is complete. Actually its solutions do not grow faster than
|τ | both forward and backward in the new timeτ . As a
consequence, for any strictly Hurwitzp × p matrix A and
anyp vectorB, the function given as follows is well defined
and continuous (see [4, Théor̀eme 3.149]):

R(x) =

∫ 0

−∞

exp(−Aτ)B x0(τ) dτ , (6)

where, with the notation:

x = (x0, . . . , xn) ,

x0(τ) is the first component of the solutionx(τ) of (5),
issued fromx. Our interest inR comes from the fact that:

z = R(x)

defines a globally attractive invariant manifold of the system
(5) coupled with:

z̊ = Az + B x0 . (7)

2We getτ(t) ≥ t for all positive t.



Indeed, by computing the limit forh → 0 of R(x(h))−R(x)
h

,
we can check thatR satisfies (7) when evaluated along the
solutions of (5). Moreover, integrating (6) by parts, we get:

R(x) = −A−1B x0

− A−(n+1)

γ(V (x))n

(
I, . . . γ(V (x))n−1An−1

)
B





xn

xn−1

...
x1





−

∫ 0

−∞

exp(−Aτ)




˚︷ ︷

γ(V (x))

γ(V (x)

n∑

i=1

iBA−(i+1)xi

γ(V (x))i
−

A−(n+1)Bfn(x0(τ), . . . , xn(τ))

γ(V (x))n+1

)
dτ .

It follows that, if the pair(A,B) is controllable andp ≥ n,
there is some hope that, maybe by modifyingγ to make the
last two lines negligible, the map(x0, x) 7→ (x0, R(x0, x))
is left invertible, withx collecting the unmeasured compo-
nents ofx, i. e.

x = (x1, . . . , xn) .

In such a case there would exist a functionS defined on the
image of this map, subset ofR × R

n, and satisfying:

S(x0, R(x0, x)) = x ∀ (x0, x) .

Further, we may expect that this functionS can be extended
into a continuous functionS defined onR×R

n. For instance,
as shown in [9] (see also [2, Theorem 7.10]),S does exist
whenfn is a linear function, the pair(A,B) is controllable,
and the spectrum ofA and this of the system (1) are
separated. The existence ofS is also established, in [7],
locally around the origin, assumed to be an equilibrium point
of (1), under the assumption thatfn is analytic, the pair
(A,B) is controllable and a more restrictive condition of
spectral separation.

Since the set{(z, x) : z = R(x)} is exponentially
attractive, the existence and the continuity ofS imply that,
for each solution(x(τ), z(τ)), we have:

lim
τ→+∞

(S(x0(τ), z(τ)) − x(τ)) = 0 .

This says that:




z̊ = Az + B x0 ,

x̂ = S(x0, z) ,

with the new timeτ , or, if γ(V (x)) were known,




ż = γ(V (x)) [Az + B x0] ,

x̂ = S(x0, z) ,

with the initial timet, is an observer ofx, with x̂ converging
to x, as the new timeτ goes to infinity. In terms of the initial
time t, this says that the convergence occurs in infinite time

if there is no finite escape time, but at the time of the escape,
if there is a finite escape time. This observer, but in the case
whereγ(V (x)) = 1, is the one presented by Luenberger in
[9] for linear systems and by Kazantzis and Kravaris in [7]
locally, for nonlinear systems.

The objective of this paper is to round or solve the
problems we have left on our way in the above presentation.
These problems are:

1) How to get an upperbound ofγ(V (x)) expressed from
the only knowledge ofx0?

2) How to modifyγ and the system (7) in order to enforce
the existence of a continuous functionS : R×R

m →
R

n satisfying:

S(x0, R(x0, x)) = x ∀ (x0, x)? (8)

3) How to get an expression ofS?
The first problem is addressed in Section II. The other two
in Section III. This will allow us to exhibitC1 functions f

andh such that then-dimensional system:




Ẋ = f(X , y) ,

x̂ = h(X , y)

provides an estimatêx converging in the new timeτ to the
actual unmeasured state componentx.

II. A N UPPERBOUND FORγ(V (x))

To get an upperbound forγ(V (x)), we follow the norm-
estimator idea proposed by Sontag and Wang in [11] (see also
[8]). From (3) in Assumption 1, we know thatV satisfies:

˙︷ ︷
V (x) ≤ −V (x) + γ1(x0) .

So letw be obtained as a solution of the system:

ẇ = −w + γ1(x0) (9)

with positive initial condition. For a solution(x(t), w(t)) of
(1),(9), issued from(x,w), we have:

V (x(t)) ≤ w(t) + max{V (x) − w, 0} exp(−t) (10)

for all t for which this solution exists. Ifx(t) is right
maximally defined on[0, t0), then w(t) is defined at least
on the same interval. Also,

1) if t0 is infinite, then, because of the exponential decay,
there existstv, depending on(x,w), satisfying:

V (x(t)) ≤ w(t) + 1 ∀t ∈ [tv,+∞) .

2) If t0 is finite, we have, from (2) in Assumption 1,

lim
t→t0

V (x(t)) = +∞ .

This implies the existence of a timetv, depending on
(x,w), satisfying:

max{V (x) − w, 0} exp(−t) ≤
1

2
V (x(t))∀t ∈ [tv, t0).

(11)



With (10), this yields:

V (x(t)) ≤ 2w(t) ∀t ∈ [tv, t0) .

From these two cases, we conclude that, for each solution,
there exist a real numberv (= V (x)), and a new timeτv

(= τ(tv)) satisfying:

V (x(τ)) ≤ w(τ) + v ∀ τ ∈ [0, τv] ,

≤ 2w(τ) + 1 ∀ τ ∈ [τv,∞) .

(12)

But it is important to stress that bothv andτv depend on the
initial condition of the solution.

To simplify our forthcoming notations, we introduce the
notationc∗ in association with any non-decreasing function
c : R+ → R+. Specifically,c∗ : R+ → R+ is the function
associated toc as:

c∗(r) = c(r) − c(0) .

We have the property:

c(v) ≤ c(4w + 2) + c∗(2[v − 2w − 1]+) ,

where we use the notation:

r+ = max{r, 0} .

As a consequence :

γ(V (x)) ≤ γ(4w + 2) + γ∗(2[V (x) − 2w − 1]+) . (13)

So, for each solution of (5),(9), we get:

γ(V (x(τ)))

γ(4w(τ) + 2)
≤ 1 + γ∗(2v − 2) ∀ τ ∈ [0, τv] ,

≤ 1 ∀ τ ∈ [τv,∞) ,

(14)
and therefore, with (4),

∑
n
i=0 |xi(τ)|+|fn(x(τ))|

γ(4w(τ)+2) ≤ 1 + γ∗(2v − 2) ∀ τ ∈ [0, τv],

≤ 1 ∀ τ ∈ [τv,∞).

It follows that γ(4w + 2) is a good candidate to replace
γ(V (x)). This leads us to introduce the notation:

γ̂(w) = γ(4w + 2) (15)

and another new timêτ as the solution of:

˙̂τ = γ̂(w) , τ̂(0) = 0 .

We have:
˚̂τ =

γ̂(w)

γ(V (x))

and therefore, using (14), along any solution,

lim sup
τ→+∞

τ̂(τ)

τ
≥ 1 .

This implies that any boundedness or convergence result
established with the timêτ holds also with the timeτ . Also,
by denoting:

∗
a =

da

dτ̂
=

ȧ

γ̂(w)
,

the system:





∗
x0 =

x1

γ̂(w)
,

...
∗
xn−1 =

xn

γ̂(w)
,

∗
xn =

fn(x0, . . . , xn)

γ̂(w)
,

∗
w = −

w − γ1(x0)

γ̂(w)

is complete.

III. E XISTENCE AND EXPRESSION OFS

A. Observer design

We have mentioned that, if there exists a continuous
function S satisfying (8) and if we know this function, then
we know an observer asymptotically converging in the new
time τ . The route we follow to prove the existence and to
expressS is actually to modify (7). In the following we build
this modification step by step with in particular the objective
of getting the functionR as a linear map with a triangular
representation in thex coordinates.

1) Estimate of x1: Let us first introduce the system:

ż1 = −a1 z1 + b1 x0 − u1 (16)

wherea1, b1 andu1 remain to be defined. In particular,u1

is an extra term added to (7). This equation gives readily, for
any C1 function r10,

˙︷ ︷
z1 − r10x0 + x1 = −a1

(
z1 −

b1−ṙ10

a1
x0 + r10

a1
x1

)

+x2 − u1.

So, by choosing:
u1 = x2 (17)

and:
b1 − ṙ10

a1
= r10 = a1 ,

i.e.:
b1 = ȧ1 + a2

1 , (18)

we get:

˙︷ ︷
z1 − a1x0 + x1 = −a1 (z1 − a1x0 + x1)

or:
∗︷ ︷

z1 − a1x0 + x1 = −
a1

γ̂(w)
(z1 − a1x0 + x1)



It follows that the set{(z1, x) : z1 = a1x0 − x1} is
an invariant manifold of (1),(16) which is exponentially
attractive in the original timet and the new timêτ if we
choose:

a1 ≥ γ̂(w) .

This leads us to propose an estimate ofx1 in the form:

x̂1 = a1 x0 − z1 .

The only problem here is that (17) is not a legitimate choice
for u1 sincex2 is not measured. So, for the time being, let
us continue the design withu1 still not specified. However,
for the sake of uniformity of notations, we let:

u1 = v1 .

And, for the future, we know that the best choice forv1 is:

v1 = x2 .

On the other hand, if we restrict ourselves by allowinga1 to
depend only onw, (18) can indeed by realized as:

b1(w, x0) = a′
1(w) [−w + γ1(x0)] + a1(w)2 .

So, our proposition for an estimate ofx1 is:




ż1 = −a1 z1 + [ȧ1 + a2

1]x0 − v1 ,

x̂1 = a1 x0 − z1 .

2) Estimate of x2: With the estimatêx1 of x1 at hand,
we introduce a second system:

ż2 = −a2 z2 + b2 x0 − u2 (19)

where againa2, b2 andu2 remain to be defined. For anyC1

functionsr20 andr21, we get

˙︷ ︷
z2 − r20x0 − r21x1 + x2 =

−a2

(
z2 −

b2−ṙ20

a2
x0 + r20

a2
x1 + r21

a2
x2

)
− ṙ21x1 + x3 − u2.

This shows that, by choosing:

u2 = x3 − ṙ21 x1 (20)

and:
r21

a2
= 1 ,

r20

a2
= −r21 ,

b2 − ṙ20

a2
= r20 ,

i.e.
r21 = a2 ,

r20 = −a2
2 ,

b2 = −a3
2 − 2a2ȧ2 ,

the set{(z2, x) : z2 = −a2
2x0 + a2x1 − x2} is an invariant

manifold of (1),(19). This leads us to propose an estimate of
x2 in the form:

x̂2 = −a2
2 x0 + a2 x1 − z2 .

Unfortunately, such as estimate involvesx1 which is un-
known. But, from the previous step, we have the estimate
x̂1. So x̂2 is actually taken as:

x̂2 = −a2
2 x0 + a2 x̂1 − z2 .

Here again, the problem we are facing is thatu2 defined in
(20) involvesx1 andx3 which we do not know. So we let:

u2 = v2 − ṙ21 x̂1 ,

where, for the future, we know that the best choice forv2 is:

v2 = x3 .

To recapitulate, we propose an estimate ofx2 as:




ż2 = −a2 z2 − [a3

2 + 2a2ȧ2]x0 + ȧ2 x̂1 − v2 ,

x̂2 = −a2
2 x0 + a2 x̂1 − z2 .

(21)
where again, if we choosea2 as a function ofw only, we
have:

ȧ2 = a′
2(w) [−w + γ1(x0)] . (22)

3) Estimate of xi: By proceeding along the same lines for
i ranging now from3 to n, we design an observer forxi,
from the system:

żi = −ai zi + bi x0 − ui . (23)

For anyC1 functionsrij , we get:

˙︷ ︷

zi −

i−1∑

j=0

rijxj + xi =

−ai

(
zi −

bi−ṙi0

ai
x0 +

∑i−1
j=1

ri(j−1)

ai
xj +

ri(i−1)

ai
xi

)

−
∑i−1

j=1 ṙijxj + xi+1 − ui,

where, to simplify the notations fori = n, we have let
formally,

xn+1 = fn(x0, . . . , xn) .

So, by choosing:

ui = xi+1 −

i−1∑

j=1

ṙij xj

and:
ri(i−1)

ai

= 1 ,

ri(j−1)

ai

= −rij j ∈ {1, . . . , i − 1} ,

bi − ṙi0

ai

= ri0 ,



i.e.:
rij = −(−ai)

i−j ,

bi = [iȧi + a2
i ] (−ai)

i−1 ,

the set



(zi, x) : zi = −

i−1∑

j=0

(−ai)
i−jxj − xi






is an invariant manifold of (1),(23). This motivates an ob-
server forxi in the form:






żi = −aizi + [iȧi + a2
i ] (−ai)

i−1x0+

ȧi

∑i−1
j=1(i − j)(−ai)

i−j−1x̂j − vi,

x̂i = −(−ai)
ix0 −

i−1∑

j=1

(−ai)
i−j x̂j − zi ,

(24)

where the best choice forvi is:

vi = xi+1 .

In this case, the manifold errorεi, defined as:

εi = zi + (−ai)
ix0 +

i−1∑

j=1

(−ai)
i−jxj + xi ,

satisfies:

ε̇i = −aiεi −

i−1∑

j=1

˙︷ ︷
(−ai)

i−j [xj − x̂j ] + [xi+1 − vi]. (25)

B. Observer properties

To study the properties of the observer we have designed
and whose generic expression is given by (24), we introduce
the observation error:

ei = xi − x̂i . (26)

With the help of (24), we see it is related to the manifold
error by:

ei − εi = −

i−1∑

j=1

(−ai)
i−jej . (27)

To go further, we need to express theei’s in terms of theεi’s.
For this, letL be the strict lower triangular matrix whose
(i, j) entry is (−ai)

i−j , i.e.:

L =





0 . . . . . . . . . 0

−a2 0
...

...
. ..

. . .
...

...
. . .

. . .
...

(−an)n−1 (−an)n−2 . . . −an 0





(28)

We have:
ε = (I + L) e . (29)

Also, with these compact notations, (25) reads:

ε̇ = −
(
diag(ai) − L̇ (I + L)−1

)
ε + vect(xi+1 − vi),

and:
e = (I + L)−1ε.

Now, we observe thatL is nilpotent, i.e.:

Ln = 0 .

This implies:

(I + L)−1 = I +

n−1∑

i=1

(−L)i .

So, from the expression of the powers ofL, we see that
the (i, j) entry of (I + L)−1 which we denotè ij in the
following,

1) is zero if j > i,
2) is 1 if j = i,
3) depends only onaj+1 to ai if j ≤ i − 1.

and similarly the(i, j) entry ofL̇(I+L)−1, which we denote
ȧihij , hasȧi in factor and its other factorhij

1) is zero if j ≥ i,
2) depends only onaj+1 to ai if j ≤ i − 1.

These various remarks show that the overall dynamics admit
(x,w, ε) as state and, in the new timêτ , can be described
by:





∗
x0 =

x1

γ̂(w)
,

...
∗
xn−1 =

xn

γ̂(w)
,

∗
xn =

fn(x0, . . . , xn)

γ̂(w)
,

∗
w = −

w − γ1(x0)

γ̂(w)
,

∗
εi = −

ai

γ̂(w)
εi −

i−1∑

j=1

∗
aihij(aj+1, . . . , ai) εj +

xi+1 − vi

γ̂(w)
,

(30)
and theei’s are given by:

ei = εi +
i−1∑

j=1

`ij(aj+1, . . . , ai) εj . (31)

We our now ready to state one of the main results of the
paper.

Theorem 1: Given the functionsV (x), γ1, γ2 andfn, we
can find expressions for the functionsai’s andvi’s such that
for system (30) the set:

A = {(x,w, ε) : V (x) ≤ 2w + 1 , ε = 0} (32)

is globally asymptotically stable.



IV. CONCLUSION

The observer we propose is:





żi = −ai zi + [iȧi + a2
i ] (−ai)

i−1 x0 +

ȧi

i−1∑

j=1

(i − j)(−ai)
i−j−1x̂j − vi ,

x̂i = −(−ai)
ix0 −

i−1∑

j=1

(−ai)
i−j x̂j − zi ,

ẇ = −w + γ1(x0)

(33)

where thevi’s have to be selected as :

vi = x̂i+1 ∀i ∈ {1, . . . , n − 1} ,

vn = 2γ̂(w)sat

(
fn(x0, x̂1, . . . , x̂n)

2γ̂(w)

)
.

Recall that theai’s involved here being functions ofw, the
notationȧi means simply:

ȧi =
dai

dw
(w) [−w + γ1(x0)] .

By rewriting this observer (33) in the compact form:




Ẋ = F (X , x0) ,

x̂ = H(X , x0) ,
(34)

and by denoting byX(x, t) the solutions of the system (1)
and byX (X , t;x0) the solutions of this system (34), coupled
to (1), we have established the following statement.

Theorem 2: For the globally completely observable sys-
tem (1), under Assumption 1, we can construct3 functions
ai’s and γ̂, the ai’s being C1, such that for each solution
X(x, t) of (1), right maximally defined on[0, T ), with T ≤
+∞, and for each initial conditionX , the associated solution
X (X , t;x0) of (34) is defined also on[0, T ) and satisfies:

lim
t→T

|X(x, t) − H(X (X , t;x0),X0(x, t))| = 0 . (35)

This result says that we have obtained an observer which
gives an estimate of the system state which converges to the
actual value in infinite time, if there is no finite escape time
of this actual value and at the time of the escape if there is
a finite escape time.

3To be precise, the functionsai’s areC1 functions that can be expressed
from the problem dataγ1 andγ2 and from the functionγ, chosen to satisfy:

|x0| + . . . + |xn| + |fn(x0, . . . , xn)| ≤ γ(V (x))

and

sup
|ηi|≤1






|fn(x0, x1 + η1, . . . , xn + ηn) − fn(x0, x1, . . . , xn)|
√√√√

n∑

i=1

η2

i






≤ γ(V (x)) .

V. REFERENCES

[1] D. Angeli, E. Sontag, Forward completeness, unbound-
edness observability, and their Lyapunov characteriza-
tions, Systems & Control Letters 38 (1999) 209-217

[2] C.-T. Chen, Linear systems theory and design. Holt-
Saunders International Editions. 1984

[3] F. Mazenc, L. Praly, and W. P. Dayawansa, Global sta-
bilization by output feedback: Examples and Counter-
Examples,Systems & Control Letters 23 (1994) 119-
125

[4] P. Deheuvels: L’int́egrale. Presses universitaires de
France, Paris 1980.

[5] A. Filippov, Differential equations with discontinuous
right hand sides. Kluwer Academic Publishers. Mathe-
matics and Its Applications. 1988

[6] Z.-P. Jiang and L. Praly, Preliminary results about robust
Lagrange stability in adaptive non-linear regulation. Int.
J. of Adaptive Control and Signal Processing, Vol. 6,
329-351 (1992)

[7] N. Kazantzis, C. Kravaris, Nonlinear observer design
using Lyapunov’s auxiliary theorem. Systems and Con-
trol Letters 34 (1998) 241-247

[8] M. Krichman, E. Sontag, Y. Wang, Input-output-to-
state stability, SIAM J. Control Optim., Vol. 39, No. 6,
pp. 1874-1928

[9] D. Luenberger, Observing the state of a linear system,
IEEE Trans. Military Electronics, vol. MIL-8, pp.74-80,
1964

[10] E. Sontag, Y. Wang, New characterizations of input-to-
state stability. IEEE Transactions on Automatic Control,
Vol. 41, No. 9, September 1996.

[11] E. Sontag, Y. Wang, Output-to-state stability and de-
tectability of nonlinear systems. Systems and Control
Letters 29 (1997) 279-290.

[12] A. Teel, L. Praly, A smooth Lyapunov function from a
class-KL estimate involving two positive semi-definite
functions. ESAIM: COCV, Vol. 5, 2000.

[13] Xiao M.-Q., Krener A.J., Design of reduced-order ob-
servers of nonlinear systems through change of coor-
dinates. Proceedings of the 41st IEEE Confernce on
Decision and Control, December 2002.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 42nd IEEE      Conference on Decision and Control      Maui, Hawaii USA, December 2003
	session: WeA02-4
	footer: 0-7803-7924-1/03/$17.00 ©2003 IEEE
	01: 1562
	02: 1563
	03: 1564
	04: 1565
	05: 1566
	06: 1567


