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Abstract

We propose a globally asymptotically stabilizing output
feedback for systems whose dynamics are both linear in
the unmeasured state components and in a feedback
form.

1 Introduction

We consider a nonlinear system whose dynamics admit
the following very specific description :

˙︷ ︷


y1
...
yn

ζ1
...
ζm



= A(y1)




y1
...
yn

ζ1
...
ζm



+




...
0
g

d1

...
dm



u (1)

where y1 is the measured output in R, u is the input in
R, and A(y1) is the matrix



a11 a12 0 . . . . . . . . . 0
...

. . . . . .
...

an1 . . . ann f
. . .

...

b11 . . . b1n c11 c12
. . .

...
...

. . . 0
b(m−1)1 . . . b(m−1)n c(m−1)1 . . . . . . c(m−1)m

bm1 . . . bmn cm1 . . . . . . cmm




whose entries aij, bij, cij, di and f and g are n+1 con-
tinuously differentiable functions of y1 only. We assume
also that, for each ω there exists a strictly positive real
number ε, such that we have, for all i,

|y1| ≤ ω =⇒ (2)


ai(i+1)(y1) ≥ ε , ci(i+1)(y1) ≥ ε ,

f(y1) ≥ ε , g(y1) ≥ ε .

We address the problem of global asymptotic stabiliza-
tion of the origin with output feedback.

This problem has received a lot of attention (see [9,
Section 7] or [10, Section 6.3] for instance). But until
recently it was imposed that the entries do not depend
on y1 except those in the first column, the ai1’s and
bi1’s. Indeed, under this assumption, we get the normal
form identified in [12] (see also [10, chapter 6]).

Our interest for the representation (1) with all the en-
tries being y1 dependent follows from the contribution
[2] (see also [7]) giving an intrinsic geometric condition
for a general system (without no input)

ẋ = f(x) , y1 = h(x) (3)

to admit such a representation. Also in [2], the above
problem of global asymptotic stabilization is solved but
under the assumptions that all the entries are bounded
and the ζi components are not present, i.e. the system
has no inverse dynamics. In this context, the contribu-
tion of this paper is to remove these two assumptions.

Actually, for the system (1), it is well known how to de-
sign an observer since y1 being measured, this system
can be seen as a time varying linear system. Hence an
observer based on a Kalman filter can be written. In
fact this has already been done, even for a more gen-
eral class of systems in [7, 5] for instance. Also the
design of a controller from the observer dynamics, with
robustification to the observation error, is known. It is
based on the technique of observer backstepping tack-
ling with the observation errors via nonlinear damping
(see [9, Section 7.1.2]). However this design is only for-
mal. It gives a solution to our output feedback stabi-
lization problem only if the observer behaves properly.
A sufficient condition for this is related to the uniform
complete observability of the system (1). The main
point of this paper is the proof that this property do
hold for the closed loop system.

Unfortunately, as all the previous results for this class
of systems (with the exception of [13]), we do require a



“minimum phase” assumption for the inverse dynamics
which we phrase as :

Minimum phase assumption :
The matrix


c11(0)−
d1(0)f(0)
g(0)

c12(0) 0 . . . 0

...
...

. . . . . .
...

...
...

. . . 0

c(m−1)1(0)−
d(m−1)(0)f(0)

g(0)
c(m−1)2(0) . . . . . . c(m−1)m(0)

cm1(0)−
dm(0)f(0)

g(0)
cm2(0) . . . . . . cmm(0)




has all its eigen values with strictly negative real part.

In Section 2, we present our output feedback. In sec-
tion 3, we analyze the behavior of the closed loop sys-
tem with some effort spent on establishing a uniform
complete observability property.

2 Design of an output feedback controller

2.1 Observer
The observer we propose for the system (1) is similar
to a Kalman filter for a linear time-varying system. To
express it more easily, we rewrite the system (1) in the
following more compact form:

ξ̇ = A(y1) ξ + B(y1)u , y1 = C ξ (4)

where ξ in R
n+m collects the n components yi’s and m

components ζi’s. The corresponding observer is :


˙̂
ξ = A(y1) ξ̂ + B(y1)u+ PCT (y1 − Cξ̂)

Ṗ = PA(y1)T +A(y1)P −PCCTP + I
(5)

where P is initialized as a symmetric positive definite
matrix. The corresponding observation error ξ̃ = ξ − ξ̂
satisfies the following equation:

˙̃ξ =
(
A(y1)−PCTC

)
ξ̃ (6)

A formal computation gives the identity :

˙︷ ︷
ξ̃TP−1ξ̃ = −ξ̃TP−2ξ̃ − ξ̃TCTCξ̃ (7)

It makes sense only when P is an invertible matrix
which we shall have to take care of. But this identity
allows us, in the controller design, to use the following
inequality where a is a dummy variable, b is a strictly
positive real number and Ci is the row vector extracting
the ith component of ξ̃ :

a ξ̃i ≤ b

2
a2Ci P P CT

i +
1
2b

ξ̃TP−2ξ̃ (8)

2.2 Controller
To design the controller, we follow exactly the same
steps as in [9, Section 7.1.2]. We work from the
part of the observer (5) dealing with the coordinates
(y1, ŷ2, . . . , ŷn) :

˙︷ ︷

y1
ŷ2
...
ŷn


 =




a11 a12 0 . . . . . . 0

a21 a22 a23
. . .

...
...

. . . . . .
...

an1 . . . ann







y1
ŷ2
...
ŷn


+



0
...
0
g


 v (9)

−



0
k2

...
kn


 ỹ1 +



a12

0
...
0


 ỹ2

where ki is the ith component of PCT and we have let :

u = v − f(y1)
g(y1)

ζ̂1 . (10)

We can get recursively n functions αi(y1, ŷ1, . . . , ŷi,P)
which are n + 1 − i continuously differentiable respec-
tively and satisfy

αi(0, 0, . . . , 0,P) = 0 . (11)

In particular αi+1 is obtained from the gradient of αi

with respect to all its arguments and therefore with re-
spect to the entries of the matrix P for which we have
the dynamics (5). Also it is in this process of getting
these functions αi’s that we need to differentiate the
functions of y1, appearing in (1) and (5), may be up
to n times. Finally, we note that, for getting the non-
linear damping terms, we use the inequality (8). This
construction leads to the control:

v =
1

g(y1)
αn(y1, ŷ1, . . . , ŷn,P) (12)

and provides the variables:

z1 = y1 (13)
zi+1 = ŷi+1 − αi(y1, ŷ1, . . . , ŷi,P) . (14)

It gives also formally ((2) and invertibility of P is in-
voked) the inequality:

˙︷ ︷
n∑

i=1

z2
i + ξ̃TP−1ξ̃ ≤ −

n∑
i=1

z2
i − 1

2
ξ̃TP−2ξ̃ − ỹ2

1 .

(15)

Finally our output feedback controller is:


˙̂
ξ = A(y1) ξ̂ + B(y1)u+ PCT (y1 − Cξ̂)

Ṗ = PA(y1)T +A(y1)P − PCCTP + I

u =
1

g(y1)
αn(y1, ŷ1, . . . , ŷn,P) − f(y1)

g(y1)
ζ̂1

(16)



3 Analysis of the closed loop system

3.1 Boundedness and convergence
The dynamics of the closed loop system can be de-
scribed using the coordinates

(y1, ŷ2, . . . , ŷn, ζ1, . . . , ζm, ξ̃,P) .

They satisfy the following set of 4 equations :

Ṗ = PA(y1)T +A(y1)P −PCCTP + I (17)
˙̃
ξ =

(
A(y1)−PCTC

)
ξ̃ (18)

˙︷ ︷

y1
ŷ2
...
ŷn


 =




a11 a12 0 . . . . . . 0

a21 a22 a23
. . .

...
...

. . . . . .
...

an1 . . . ann






y1
ŷ2
...
ŷn


+



0
...
0
1


αn (19)

−



0
k2

...
kn


 ỹ1 +



a12

0
...
0


 ỹ2

˙︷ ︷


ζ1
...
...
ζm


 =




c11 − d1f
g

c12 0 . . . 0
...

. . . . . .
...

c(m−1)1 − dm−1f
g

. . . . . . . . . c(m−1)m

cm1 − dmf
g . . . . . . . . . cmm







ζ1
...
...
ζm




+




d1

...

...
dm




(
αn

g + f
g ζ̃1

)
+




b11 b12 . . . b1n

...
...

...
...

bm1 bm2 . . . bmn







y1
ŷ2 + ỹ2
...

ŷn + ỹn




This closed loop system is given by a right hand side
which is continuously differentiable.

Let P denote the open subset of R
(n+m+1)(n+m)

2 con-
taining those points whose coordinates are entries of a
symmetric positive definite (n +m) × (n +m) matrix.
For any

(y1, ŷ2, . . . , ŷn, ζ1, . . . , ζm, ξ̃,P) ∈ R
2(n+m) × P

it corresponds a unique solution of the closed loop sys-
tem starting from this point. Let [0, tf) be its right
maximal interval of definition when it takes its values
in R

2(n+m) ×P. If tf is finite, we have necessarily that
either the solution or P(t)−1 is unbounded on [0, tf).
But also since, for all t in [0, tf), the component P(t)
of the solution is positive definite, the relations (7) and
(8) derived formally can be used. It follows that (15)
is also valid. This says in particular that the variables
y1(t) (= z1(t)), zi(t) and P(t)− 1

2 ξ̃(t) of the solution are
bounded on [0, tf) and that y1(t) is square integrable
on [0, tf).

So assume for the time being that P(t) and P(t)−1

are also bounded on [0, tf). Then ξ̃(t) and (recursively
with the definition (14) of zi) the functions αi’s and the
components ŷi’s are bounded. Finally, by letting:

δ =




d1

...

...
dm




(
αn

g + f
g ζ̃1

)
(21)

+




b11 b12 . . . b1n

...
...

...
...

bm1 bm2 . . . bmn







y1
ŷ2 + ỹ2
...

ŷn + ỹn




we get a function δ(t) bounded on [0, tf) and we observe
that the ζi(t)’s components are solution of:

ζ̇ = M(y1(t)) ζ + δ(t) , (22)

where M is the matrix


c11 − d1
f

g
c12 0 . . . 0

...
...

. . . . . .
...

...
...

. . . 0

c(m−1)1 − d(m−1)
f

g
c(m−1)2 . . . . . . c(m−1)m

cm1 − dm
f

g
cm2 . . . . . . cmm(0)




.

With the minimum phase assumption and the facts that
the entries of M(y1) are Lipschitz continuous functions
of y1 and that y1(t) is bounded on [0, tf), we get the
existence of a positive definite matrix R and of positive
real numbers κ (depending on the solution) and ρ such
that we have, for all t in [0, tf),

RM(0) +M(0)TR ≤ −2 ρR , (23)

R
1
2 |M(y1(t))−M(0)|R−1

2 ≤ κ |y1(t)| . (24)

It follows by completing the squares that we have:

1
2

˙︷ ︷
ζTRζ

≤ −ρζTRζ + ζTR[M(y1(t)) −M(0)]ζ + ζTRδ(t) (25)

≤ −ρ

3
ζTRζ +

3κ2

4ρ
y1(t)2ζTRζ +

3
4ρ
δ(t)TRδ(t)2 (26)

Since y1(t) is square integrable on [0, tf) and δ(t) is
bounded on [0, tf), we get, from [4, Theorem IV.1.9]
for instance, that ζ(t) (i.e. the ζi(t)’s components) is
bounded on [0, tf). Hence we have established that, if
the functions P(t) and P(t)−1 are bounded on [0, tf),
then tf = +∞ and the solution is bounded on [0,+∞).
Now, invoking LaSalle’s invariance principle, we get,
from (15), that zi(t), ξ̃(t) and, from (11) and (14), ŷi(t)



and therefore yi(t) converges to 0 as t tends to +∞.
This implies also the convergence of δ(t) and, from (25),
the one for ζi(t).

So, to summarize, if we can prove that the functions
P(t) and P(t)−1 are bounded on [0, tf), then tf = +∞,
the solution is bounded on [0,+∞) and all its compo-
nents except P converge to 0.

3.2 The functions P(t) and P(t)−1 are bounded
The matrix P(t) being given by a Riccati equation, it
is known from [3] for instance that P(t) and P(t)−1 are
bounded if a uniform complete observability property
holds.

Let us come back to the compact notation (4) and re-
call that the matrix A(y1) exhibits the lower triangular
structure

A(y1) =




φ11(y1) φ12(y1)
...

. . .
φ(p1)1(y1) . . . . . . φ(p−1)p

φp1(y1) . . . . . . φpp



(27)

with p = n+m and φ·· = a··, b··, c·· or f and where, from
(2), we know that, for each ω, there exists a strictly
positive real number ε, such that we have, for each i,

|y1| ≤ ω ⇒ φi(i+1)(y1) ≥ ε . (28)

Let the solution considered in section 3.1, defined on
[0, tf), be given. Let :

A(t) = A(y1(t)) ∀t ∈ [0, tf) ,

= A(y1(0)) ∀t ∈ [tf ,+∞) ,

(29)

and denote

Φij(t) = φij(y1(t)) ∀t ∈ [0, tf) ,
= φij(y1(0)) ∀t ∈ [tf ,+∞) .

(30)

We know that y1(t) is bounded on [0, tf) so we get the
existence of positive real numbers ε and a such that,
for all t ≥ 0, we have

Φi(i+1)(t) ≥ ε , |A(t)| ≤ a . (31)

Then, let us study the uniform complete observability
of the following auxiliary system

ẋ = A(t)x , y = C x , (32)

under the only assumptions:

1. For all t and (i, j), we have:

|Φij(t)| ≤ Φ . (33)

2. For all t and i, we have:

Φi(i+1)(t) ≥ ε > 0 . (34)

We shall call upon two technical Lemmas.

The first Lemma says that uniform complete observabil-
ity is invariant under bounded output feedback. This
result can be found for instance in [1, Theorem 4].

Lemma 3.1 Let K(t) be a bounded function of time.
If the system (A,C) is uniformly completely observable,
tehnso is the system (A−KC,C).

The second Lemma is more technical. Its proof is omit-
ted due to space limitations. It can be found in [11].
This result says that, with an extra assumption, if a sys-
tem is uniformly completely observable from its output
and the derivative of its output, then it is also uniformly
completely observable from its output only.

Lemma 3.2 Let D(t) denote

D(t) =
˙︷ ︷

C(t) + C(t)A(t) (35)

Assume :

1. for all t, we have

|A(t)| ≤ a , |C(t)| ≤ c , |D(t)| ≤ d , (36)

2. the existence of a symmetric matrix (resp. scalar)
function E(t) satisfying

0 < emin Id ≤ E(t) ≤ emax Id (37)

and ∣∣∣∣
˙︷ ︷

E(t)−1D(t)
∣∣∣∣ ≤ f . (38)

Under these conditions, if the system
(
A,

(
C
D

))
is

uniformly completely observable, then so is the system
(A,C), i.e. if there exist T and η > 0 such that, for all
t0 and all solution X(x, t, t0), we have:

∫ t0+T

t0

(
|y(s)|2 + |ẏ(s)|2

)
ds ≥ η |x|2 , (39)

with
y(t) = C(t)X(x, t, t0) , (40)

then there exist T̄ and η̄ > 0 such that, for all t0 and
all solution X(x, t, t0), we have:

∫ t0+T̄

t0

|y(s)|2ds ≥ η̄ |x|2 . (41)

With the help of these two Lemmas, we establish the
uniform complete observability of the system (32) re-
cursively by getting to this system from reduced order
ones :



Step 0 : Consider the system

ẋp = Ap xp , yp = xp (42)

with Ap = Φpp. From inequality (33), we have, for any
T > 0,∫ t0+T

t0

yp(s)2ds

=
∫ t0+T

t0

Xp(xp, s, t0)2 ds (43)

≥
∫ t0+T

t0

exp
(
2

∫ s

t0

Φpp(τ )dτ
)
x2

p ds , (44)

≥ x2
p

∫ t0+T

t0

exp (−2Φ(s− t0)) ds , (45)

≥ 1− exp (−2ΦT )
2Φ

x2
p . (46)

This is exactly the uniform complete observability prop-
erty.

Step (p − i) :
Assume the following system is uniformly completely
observable :

˙︷ ︷


xp−i+1

...

xp


 = Ap−i+1




xp−i+1

...

xp




yp−i+1 = xp−i+1

(47)

where Ap−i+1 has the same triangular structure as A
in (27).

Sub-step (p− i).1 : We modify the output of (47), mul-
tiplying it with Φ(p−i)(p−i+1)(t),

˙︷ ︷


xp−i+1

...

xp


 = Ap−i+1




xp−i+1

...

xp




ȳp−i+1 = Φ(p−i)(p−i+1) xp−i+1

(48)

With (34), uniform complete observability is preserved.

Sub-step (p − i).2 : We extend the system (48) into

ẋp−i = 0
˙︷ ︷


xp−i+1

...

xp


 = Ap−i+1




xp−i+1

...

xp




¯̄yp−i+1 =


 xp−i

Φ(p−i)(p−i+1)xp−i+1




(49)

Uniform complete observability still holds since the new
state component xp−i is directly measured.

Sub-step (p− i).3 : We modify the system (49) by out-
put feedback :

ẋp−i = Φ(p−i)(p−i+1)xp−i+1

˙︷ ︷


xp−i+1

...

xp


 = Ap−i+1




xp−i+1

...

xp




+



Φ(p−i+1)(p−i)

...

Φ(p)(p−i)


xp−i

¯̄yp−i+1 =


 xp−i

Φ(p−i)(p−i+1)xp−i+1




(50)
From (33) and Lemma 3.1, we know that this system
is also uniformly completely observable.

Sub-step (p− i).4 : We note that the output ¯̄yp−i+1 of
system (50) can be expressed as

¯̄yp−i+1 =
(

xp−i

ẋp−i

)
(51)

Using Lemma 3.2 with (33) and the notations :

D(t) =
(
0 Φ(p−i)(p−i+1)(t) 0 . . . 0

)
(52)

E(t) = Φ(p−i)(p−i+1)(t) , (53)

E(t)−1D(t) =
(
0 1 0 . . . 0

)
, (54)

we conclude that the system

ẋp−i = Φ(p−i)(p−i+1)xp−i+1

˙︷ ︷


xp−i+1

...

xp


 = Ap−i+1




xp−i+1

...

xp




+



Φ(p−i+1)(p−i)

...

Φ(p)(p−i)


 xp−i

yp−i = xp−i

(55)
is also uniformly completely observable.

Sub-step (p − i).5 : We modify the system (55) once
again by output feedback, preserving uniform complete



observability:

ẋp−i = Φ(p−i)(p−i)xp−i +Φ(p−i)(p−i+1)xp−i+1

˙︷ ︷

xp−i+1

...

xp


 = Ap−i+1




xp−i+1

...

xp




+



Φ(p−i+1)(p−i)

...

Φ(p)(p−i)


 xp−i

yp−i = xp−i

(56)
This latter system is in the form :

˙︷ ︷


xp−i

...

xp


 = Ap−i




xp−i

...

xp




yp−i = xp−i

(57)

Proceeding from i = 1 to i = p−1, we arrive at the end
of step p−1 at the system (32), which is thus uniformly
completely observable.

Then, let P (t) be the unique solution of the following
matrix differential equation:

Ṗ = PAT (t)+A(t)P −PCCTP + I , P (0) = P(0) ,
(58)

where P(0) is the initial value of the component P of
the solution considered in section 3.1.

The system (32) being uniformly completely observ-
able, the following lemma is a restatement of [6, Lemma
3]

Lemma 3.3 If (33) and (34) hold, then there exist two
strictly positive real numbers pmin and pmax such that,
for all t ≥ 0, we have:

pminI ≤ P (t) ≤ pmaxI . (59)

Now coming back to the study of the solution consid-
ered in section 3.1. We get that, with (29) and by
comparing (17) and (58), the uniqueness of solutions
implies

P(t) = P (t) ∀t ∈ [0, tf) . (60)

This implies readily that we have

pminI ≤ P(t) ≤ pmaxI ∀t ∈ [0, tf) . (61)

So we have established the property which we were
needing to prove boundedness and convergence.
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[2] G. Besançon, State affine systems and observer-
based control, NOLCOS’98. Vol. 2 pp. 399-404, July
1998

[3] R. Bucy, P. Joseph, Filtering for stochastic pro-
cesses with applications to guidance,Chelsea Publishing
company, 1968.

[4] C. Desoer, M. Vidyasagar, Feedback systems:
Input-output properties. Academic Press. 1975

[5] D. Guillaume, P. Rouchon, Observable systems
transformable into implicit affine forms, NOLCOS’98.
Vol. 3 pp. 801-805, July 1998

[6] M. Ikeda, H. Maeda, S. Kodama, Stabilization of
linear systems, SIAM J. Control, Vol. 10, No. 4, Novem-
ber 1972

[7] H. Hammouri, J. de Leon Morales, On systems
equivalence and observer synthesis. In New trends in
systems theory, 340-347 Birkhäuser, 1991
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