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Abstract 

For nonaffine nonlinear feedforward systems classes of 
control Lyapunov functions are constructed. Explicit 
formulas are determined in an important particular 
case. As an application of this design, we prove that 
the bounded state feedbacks constructed induce the 
property of nonlinear disturbance-to-state LP stability. 
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1 Introduction 

For classes of feedforward systems, two recursive Lya- 
punov designs have been proposed in [7] and [l] (see 
also [5 ] ,  [8], [lo] for some extentions). Both approaches 
lead to the following basic result: under suitable as- 
sumptions, for systems of the form 

(1) 
.i = ho(.) + h(+, Y)Y + hz(+, Y, U ) U  

{ Y  = f o ( Y )  + f l ( Z ,  Y)Y + f 2 ( X ,  Y, U ) U  

where y = fo(y) and i = ho(x) are respectively glob- 
ally asymptotically stable and globally critically stable 
systems, there exists a proper positive definite function 
U ( x ,  y) such that 

where W(y) is a positive definite function. Typically, 
when the dimension of the variable x is strictly larger 
than the one of the input U ,  the right hand side of (2) 
cannot be made negative definite. This fact is a serious 
drawback for two technical reasons: 

1. The forwarding technique is based on the determi- 
nation of either decoupling changes of variables (see [5 ] )  
or cross-terms (see [IO]). In many cases, only approxi- 
mations of these functions can be determined because 
exact decoupling changes of variables and exact cross- 
terms are the solutions of partial differential equations 
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which very often cannot be easily solved and are not 
well-known when higher-order terms of the system are 
just approximately known. However, the forwarding 
approach can be applied even when only approxima- 
tions of these functions can be found, provided that 
W(y) is a positive definite function. It follows that the 
forwarding technique can be applied repeatedly only if 
strict Lyapunov functions are available at each step. 

2. The system (1) in closed-loop with any feedback 
which renders the right hand side of (2) negative has a 
priori no disturbance-to-state LP stability property. 

Obviously, this last drawback would not exist if any 
globally asymptotically stable system would possess the 
disturbance-to-state LP stability property with respect ~ 

to additive perturbations. But it is not. so. Indeed 
in [12], a globally asymptotically stable system which 
admits unbounded trajectories when is added a specific 
disturbance is exhibited. This disturbance is a smooth 
function of the time which does not belong to L1 but is 
in LP for all p €11, +CO]. 

The present paper is concerned with the problem of 
overcoming for classes of feedforward systems the limi- 
tations mentioned above. In a first part, we determine 
a class of assignable Lyapunov functions (the assignable 
Lyapunov functions are a subclass of the control Lya- 
punov functions, see our basic definitions below) for a 
particular class of systems of the form (1).  In a second 
part, we exploit the Lyapunov functions constructed to 
prove for the closed-loop systems the disturbance-to- 
state LP stability property ( p  = 2 in an important par- 
ticular case) by ,constructing explicitly nonlinear gains. 

This second part comes within the framework of the 
already published results which approach the question 
of the LP stability. Some of them are concerned with 
classes of linear systems subject to actuator saturation, 
see in particular [a], [4, 31. In the first of these papers, 
it is proved that can be obtained local asymptotic sta- 
bility and finite-gain LP stability for all the stabilizable 
linear systems subject to input saturation. In [4, 31, 
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the passivation approach is used t o  construct, for neu- 
trally stable linear systems, bounded feedbacks which 
provide LP stability with respect to persistant pertur- 
bations. Moreover, interestingly, it is shown in [3] that 
even for the simple chain of integrators of dimension 
two subject to input saturation the problem of LP sta- 
bility is far from being obvious. 

A paper by A. Tee1 [14] is more closely related to the ro- 
bustness result of our work. It establishes LP stability 
for nonlinear feedforward systems in closed-loop with 
a feedback with multi-level saturations. However, be- 
tween this result and ours, there are the following differ- 
ences: (i) The coupling term we consider (i.e. -the term 
hl (z ,  y )  y in (1)) depends on 2 (a restrictive growth con- 
dition is nonetheless imposed on this dependence). (ii) 
The class of feedback laws for which we prove our result 
is the one proposed in the proof of [7, Theorem 111.11, 
which is significantly different from that of multi-level 
saturation feedbacks proposed in [14]: in particular it 
contains unbounded elements when G(.) in (2) is inde- 
pendent of U. 

Like all the proofs of LP stability we have encountered 
in the litterature, ours relies on the knowledge of a strict 
Lyapunov function. Note that our Lyapunov construc- 
tion utilizes as a tool the Lyapunov function designed 
by Liu, Chitour and Sontag in [3] for stable linear sys- 
tems asymptotically stabilized by a saturated feedback. 

At last, observe that the nonlinear Lp-stabilization re- 
sult we obtain is new even for the particular class of the 
stabilizable linear systems subject to input saturation 
which have not simple Jordan blocks. 

The paper is organized as follows. A first part (Section 
2 and Section 3) is devoted to the design of strictly 
assignable Lyapunov functions. In Section 2 the gen- 
eral case is treated and Section 3 is concerned with a 
particular case. In the second part (Section 4) robust- 
ness issues are addressed. At last, Section 5 contains 
some concluding remarks. 

Comments and basic definitions. 

Smoothness. Unless otherwise stated, we assume 
throughout the paper that the functions are smooth. 
Some questions which arise due to a lack of smoothness 
have been addressed in [7]. 

Strictly positive constants. Throughout the paper, the 
symbol c is used to denote generically a strictly positive 
real number, (i.e. c + c * c = c) .  

Flow. We denote by ~ ( t )  the solution of X = q!J(x,t) 
and by xo its value at t = 0. 

Assignable Lyapunov function. A function U ( a )  is 
called an assignable Lyapunov function for the system 

d. = cp(a,u) if it is positive definite and radially un- 
bounded and there exists U(.) such that 

If this term is negative definite, then U ( a )  is called 
strictly assignable Lyapunov function. 

Function of class IC". A functionyK(.) is of class IC" 
if K ( . )  is defined over [0, zero at  zero, strictly in- 
creasing and lim ~ ( s )  = $00. 

Functions LP, L" . A function f(.) is said to belong 
to LP with p 3 1, (respectively to L") if l f l p  = 

(lm If(t)lPdt)' (respectively I f l o o  = sup I f ( t ) l )  is 

finite. 

S++" 

t > o  

System LP stable. We will say that the system d = 
q!J(o,d) is LP stable if there exist two functions -y l ( . )  

and -y2(.) of class IC" such that, for all initial condition 
o(0) and all function d( . )  of class LP 

I 4 t ) l p  5 7 l ( l d l P )  + ra(l40)l) 

The proofs. Due to space limits, almost all the proofs of 
the results of this work have been removed. The reader 
is referred to [9]. 

2 Strict negativeness: general case 

2.1 Recall of [7, Theorem 111.11 
We consider systems of the form 

(3) 
X = hn(x) + h i (x ,  Y)Y + hz(z ,  Y, U)U 

{ Y  = fn(Y) + f i ( x , ~ ) ~  + ~ ~ ( x , Y , u ) u  

where U is the input. We introduce the following as- 
sumptions. 

A l .  
functions Q(z) and V(y) such that 

There exist smooth positive definite and proper 

%(.)hO(X) = -R(x)  5 0 v z  (4) 
z ( Y ) [ f n ( Y )  + f i ( x ,  Y ) Y I  5 -w(Y) < 0 V Y  f 0 (5) 

A2. The solution x = 0 is the unique solution of 

(6) 
X = ho(2)  , 2 ( 2 ) h 2 ( 2 , 0 , 0 )  = 0 

%(.)ho(.) = 0 

A3. There ezcist two positive functions p ( . )  and K ( . )  

defined over [0, +CO) such that 
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As an immediate consequence of Theorem 111.1 of 171, 
we have the following result: 

Theorem 2.1 Assume that Assumptions A 1  to A3 are 
satisfied. Then there exists a function k ( . )  of class IC” 
such that the derivative of the function 

V(z, y )  = k ( V ( y ) )  + l ( Q ( x ) )  wi th l ( r )  = 

along the trajectories of (3)  satisfies 

ds  

(9) 

1 
u1(3)(2, Y )  5 - q k ’ ( V ( Y ) ) w ( Y )  G ( 2 ,  Y ,  U ) u  (10) 

with G( . )  defined by 

(11) 
G(2 ,  Y ,  U )  = k’ (V(Y))  y ( Y ) f z ( x ,  Y ,  U )  

+ l ’ ( Q ( . ) ) k ( z ) h ~ ( + ,  Y ,  U) 

Moreover, there exists a family of feedbacks u,(z,y) 
such that 

G(Z,  Y, Us(2, Y))US(Z, Y )  L 0 (12) 

G(2, 0, %(Z, O ) ) U , ( Z ,  0) < 0 * G ( X , O ,  0) # 0 (13) 

Remark 1. It is always possible to determine a feed- 
back U , ( . )  such that (12) and (13) hold. Nevertheless, 
we will see in Section 3.1 that in some particular cases 
it is useful1 to consider feedbacks such that only (12) is 
satisfied. 

2.2 Main result 
Thanks to Assumption A2, Theorem 2.1 straightfor- 
wardly implies that U, (.) globally asymptotically stabi- 
lizes the origin of (3).  So the converse Lyapunov theo- 
rem (see [16, Theorem 18.61) ensures the existence of a 
Lyapunov function for (3) which is strictly assigned by 
us( . ) .  But this existence result is useless from a practi- 
cal point of view. The objective of Theorem 2.2 below 
is to show how the problem of constructing explicitly a 
strict Lyapunov function for (3) can be reduced to that 
of finding a strict Lyapunov function for the reduced 
order system 

Theorem 2.2 Suppose that the system (3) satisfies 
Assumptions A1 to A3. Then there exist a proper pos- 
itive definite function Q ( x ) ,  a function f(.), positive, 
zero a t  zero and such that, with U ( . )  given in (9), the 
function - 

U ( 2 ,  Y )  = U ( 2 ,  Y )  + I(q(4) (14) 
is strictly assignable to (3). 

3 Strict negativeness: particular case 

3.1 The result 
In Section 2.2, we have shown that the problem of find- 
ing a strictly assignable Lyapunov function for (3)- re- 
duces to that of finding a strict Lyapunov function for 
a reduced order system. In this section, we restrict our 
attention to  the class of systems (3) so that this second 
problem can be solved. We consider 

;i: = ME + h l ( 2 ,  Y)Y  + h2(2, Y ,  u)u 

where hz(.) is such that h2(2 ,0 ,0)  is a constant that we 
denote by 

D := hz(x,O,O) 

In this specific context, we particularize Assumptions 
A1 to A3 as follows. 

Al’.  There exists a symmetric positive definite matrix 
Q such that 

There exists ( I  function V ( y )  positive definite and proper 
such that 

dV 
- - ( Y ) f O ( Y )  = -W(Y) < 0 VY # 0 (17) 
dY 

Q M + M ~ Q  5 o (16) 

Moreover, both V ( . )  and W( . )  are lower bounded in CJ 

neighborhood of the origin by positive definite quadratic 
forms. 

A2’. The pair ( M ,  D )  is stabilizable. 

A3’. There exists a positive function TI(.)  such that 

Ihl(Z, Y)Yl  5 (1 + I 4 ) n ( l Y l ) l Y l ~  (18) 

There exist C E]O,+m] and a function yz(.) of class 
IC* such that f o r  all lull 5 C ,  ~ U Z )  5 C , 

Ihz(Z, Y ,  u1) - hZ(Z, Y ,  41 5 ;Yz(IYl+ IU1 - 4) 
l f Z ( 2 ,  Y ,  U11 - f Z ( 2 ,  Y ,  41 L T Y Z M  + b 1  - uzl) 

(19) 
A direct consequence of (16) and Assumption A2’ is 

the following fact (see [15, (93)l). 

Fact 3.1 When Assumptions A l ’  and A2” hold, then 
for all E > 0 ,  there exists a matrix Q E  symmetric and 
positive definite such that 

Q E ( M  - E D D ~ Q )  + ( M  - E D D ~ Q ) ~ Q ,  = -I (20) 

where I denotes the identity matrix. 

‘If are known functions V(.) and W(.)  such that (17) holds 
but which are not lower bounded in a neighborhood of the ori- 
gin by positive definite quadratic forms and if the origin of the 
y-subsystem of (15) with the input set to zero is locally exponen- 
tially stable, then, by taking advantage of [6, Appendice GI, it 
is possible to design new functions V(.) and W ( . )  satisfying the 
requirements of Assumption Al ’ .  
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Proposition 3.2 Assume that the system (15) satis- 
fies Assumptions A l '  to A3'. Then there exist a func- 
tion I C ( . )  of class KOo and strictly posatave constants q 
and E such that the function 

- 
U(x1 Y) = U ( $ ,  Y )  + J(q(4) (21) 

with 

V ( z ,  y) = k(V(y)) + l ( zTQx)  , l ( r )  = fi - 1 

J(r) = l n ( l +  r )  , q ( x )  = q(zTQz)' + zTQEz (23) 
- is strictly assignable for  the system (15). Moreover, 
U ( . )  is lower bounded in Q neighborhood of the origin 
by a positive definite quadratic f o rm and the deriva- 
tive of v(.) along (15) in closed-loop with u s ( . )  is upper 
bounded by Q negative definite quadratic form. 

(22) 

Discussion of the assumptions. 

1. When h2(.) and f 2 ( . )  do not depend on U ,  unbounded 
feedbacks can be deduced from Proposition 3.2. 

2.  The requirement (18) in Assumption A3' is similar 
to the growth condition imposed in [lo]. In [7, (63)] is 
given an example which shows that the stabilizability 
of (15) is not guaranteed any more when the right hand 
side of (18) is replaced by (1 + 1 ~ 1 ' )  -yl(lyl)lylz with a > 
1, unless extra assumptions are imposed (see [lo]). 

4 Robustness property 

In this section, we prove that Theorem 2.2 provides us 
with feedbacks which induce a disturbance-to-state LP 
stability property. 

4.1 The results 
Consider the following system 

x = ho(x )  + hl(Z, Y)Y + Tqx, Y1 U ,  d)d 
+hz(z,  Y, u ) u  

Y = f o ( Y )  + f l ( Z 1  Y)Y + YI U ,  d)d (24) i +fZ(., Yl u)u 

where d ( t )  E 8'. Besides Assumptions A1 to A3, we 
introduce four new assumptions. 

B1. The disturbance d ( . )  is a contznuous function of 
t,he time which belongs to LP. 

B2. When U = 0, the following inequality holds 

Vl(z4) 5 -w(Y) Id(t)lP (25) 

where p is an integer strictly larger than 1. 

B3. 
10, +CO] such that, for all u smaller in norm than C ,  

There exist a positive function Q(.) and C E 

I+(z, Yl U1 44 I R4V(Y))l4 1 Vd (26) 

B4. The functions V(.) and W ( . )  are such that 

There exists a function q(.) such that there exists a 
positive definite function kd( . )  which is not in L1, not 
zero at zero and such that 

with 

Theorem 4.1 Assume that the system (24) satisfies 
Assumptions A 1  to A 3  and B2  to B4. Then, there exzst 
( I  proper positive definite smooth function U ( . ) ,  a feed- 
back law U,(.) and a positive definite function v(.) such 
that the Lie derivative of U ( . )  along (24) in closed-loop 
with U, (.) satisfies 

- 
UI(z4)  I -v(x l  Y) Id( t ) lp  (34) 

Remark 2. Since (34) is similar to (25), Theorem 4.1 
can be applied repeatedly. 

Theorem 4.2 Assume that the system (24) satisfies 
Assumptions A 1  to A 3  and B 1  to B4. Then there exists 
a state feedback u,(x, y) such that the followzng holds. 

1. There exist some functions PI(.), ,&(.) of class K" 
such that 

2. Moreover, if both W(.) and q(.) are lower bounded 
in a neighborhood of the origin by Q positive definite 
quadratic form, then there exist some functions ,&(.), 
p4(.) of C h S  IC"" such that 

I(xi Y)Ip I P3(I(c.o, YO)I) + 04 (Idlp) (36) 
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Remark 3. To establish (35), it is just necessary that 
v(-) be posit.ive. 

Discussion of the assumptions.  

B2. This assumption implies that the uncontrolled 
y-subsystem is internally stable and possesses the 
disturbance-to-state LP stability property. 

B3. (i) The reason why this assumption is introduced 
is clear: roughly speaking, growth assumptions on the 
disturbances are imposed to select systems for which 
the finite escape time phenomenon does not occur. (ii) 
Many versions of this assumption can be proposed; for 
instance results can be obtained with functions $(.) and 
4(.) unbounded with respect to the x part of the state. 
However, we do not introduce a less restictive version of 
this assumption because as it is, it gives us the possibil- 
ity to carry out a reasonably simple proof. (iii) Since C 
can be +m, it is not required on u s ( . )  to be bounded. 
In particular, when 4(.), $(.), h2(.) and f 2 ( . )  do not 
depend on U ,  such a choice of feedback can actually be 
made. 

B4. (i) It seems to be difficult to check whether the 
requirements (30) and (31) are satisfied or not. Fortu- 
nately, we will see in Section 4.4 that in the particular 
context of Section 3, the requirements of this assump- 
tion can be easily met when p = 2. (ii) Since 5 2 2 
for any p 2 1, requirement (29) is not very restrictive. 
If W(. )  is lower bounded in a neighborhood of the ori- 
gin by a positive definite quadratic form, it is always 
satisfied. 

4.2 Proof of Theorem 4.1 
This proof relies on the following lemmas. 

Lemma 4.3 Let a(.)  be any strictly positive function. 
There exist a Lyupunov function U ( r ,  y), a function 
l e ( . )  of class IC” with a strictly positive first derivative 
and a state feedback law u,(x, y) such that the derivative 
of U ( . )  along (24) in closed-loop with U,(.) satisfies 

Lemma 4.4 There exist a positive function l(.),  .zero 
a t  zero, an invertible function k ( . )  of class IC” and Q 

function v(.) such that (34) holds with 

h 

- 
U ( x ,  Y) = (U(., Y) + T(q(x))) (38) 

4.3 Proof of Theorem 4.2 
To establish (35) and (36), we need to prove a prelim- 
inary result which draws its inspiration from the last 

part of the proof of Lemma 2 of [14]. 

Lemma 4.5 If for the system 

x = 4(x,D) (39) 

with D(.) E L1,  there exists a proper positive definite 
function V( . )  such that 

then there exist some continuous functions PI(.), p 2 ( . )  

of class IC”, such that 

1x10. I Pl ( lX0 l )  + P 2 ( 1 W  (41) 

Moreover, if there exists a positive definite function 
W ( . )  such that 

and W ( . )  is larger on a neighborhood of the origin than 
JxIQ with q 2 2, then there exist some continuous func- 
tions p ~ g ( . ) ,  ~ 4 ( . )  Of Class K” such that 

(43) 

Next, one fact should be established: when both W(.)  
and $I(.) are lower bounded in a neighborhood of the 
origin by positive definite quadratic forms, then it is 
possible to determine a function U ( - ) ,  lower bounded 
in a neighborhood of the origin by a positive defi- 
nite quadratic form, such that v(.) is lower bounded 
in a neighborhood of the origin by a positive definite 
quadratic form. On the one hand, one can prove that 
a( . )  can be chosen such that 1 (.) is strictly positive on a 
neighborhood of zero and on the other hand both k’(.) 
and p( . )  are strictly positive on a neighborhood of zero. 

At last, Theorem 4.2 can be proved by combining 
Theorem 4.1 and Lemma 4.5 (x = ( z ~ , ~ ~ ) ~ , D  = 

4 

141 + ld21P). 

4.4 Particular case 
4.4.1 Result: In the particular context of Sec- 

tion 3, Theorem 4.2 results in a generalization of [14]: 
L2 stability can always be proved. 

Corollary 4.6 Consider the subclass of the systems 
(24) which are of the form (1.5) and satisfy Assump- 
tions A l ’  to  A3’ when d = 0.  If Assumption B3 is 
satisfied with p(s)  = m- 1 and Q ( r )  = xTQx, 
then there exists a feedback law u s ( . )  and there exist 
some functions pa(.), p b ( . )  of class K” such that 

I(., y)lZ 5 P=(l(xO,?h)l) + p b  (ld12) (44) 

where (x, y) is the solution of (24) in closed-loop with 
U, (.) starting a t  ( 2 0 ,  yo). 
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4.4.2 Counter example: As illustrated by the 
following example2, we cannot expect to determine 
feedbacks which induce the L3 stability property for 
systems (15) satisfying Assumptions Al’  to A3’. The 
two dimensional system 

x = y - w + d  
y = u  (45) 

satisfies these assumptions but when d = for any 
input U ,  the system (45) admits unbounded trajectories. 

ltt.’ 

5 Conclusion 

We have designed strictly assignable Lyapunov func- 
tions for systems obtained by the addition of one in- 
tegration. This design can be repeatedly applied and 
gives explicit formulas in an important particular case. 
As an application of this Lyapunov design, we obtain 
a result of robustness. To summarize, let us list all the 
robustness properties induced for feedforward systems 
by our strategy of design: (i) Property of nonlinear 
disturbance-to-state L2 stability. (ii) Robustness with 
respect to coupling disturbances bounded by higher or- 
der functions. (iii) Robustness due to the local ex- 
ponential stability property of the closed-loop systems 
(obtained for feedforward systems which admit an as- 
ymptotically stabilizable linearization at the origin). 
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