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1 Introduction 

One of the most active research issues in nonlinear feedback theory is the 
synthesis of feedback laws which robustly stabilize an uncertain system with 
limited measurement information. In the case of output  feedback without  
uncertainty, one of the major achievements in this area of research has been 
the "nonlinear separation principle" proved in [6], where it is shown that  
(semi)global stabilizability via state feedback and a property of uniform 
observability imply the possibility of semiglobal stabilization via ou tput  
feedback. To cope with the restricted information structure, the stabiliza- 
tion of [6] includes an approximate state observer (whose role is actually 
that  of producing approximate estimates of a number of "higher order" 
derivatives of the output)  earlier developed in [3] to cope with a similar 
(though more restricted) stabilization problem. A "robust" version of this 
stabilization result was given in [5], where it was shown that ,  in the presence 
of parameter  uncertainties, semiglobal stabilization via output  feedback is 
still possible if a state feedback law is known which robustly globally sta- 
bilizes the system and its value, at any time, can be expressed as a (fixed) 
function of the values, at this time, of a fixed number of derivatives of in- 
put  and output  (a uniforTnly completely observable (UCO) state feedback, 
in the terminology of [5]). 

The design tools introduced in [3] and [5] have been recently used in [2], 
where a new (iterative) procedure has been proposed for the robust stabi- 
lization of certain classes of nonlinear systems. This procedure is not based 
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on the idea of solving separately a problem of s tate  feedback stabil ization 
and a problem of asymptot ic  state reconstruction. Rather ,  it is based on the 
recursive update  of a sequence of "dynamic" output  feedback stabilizers: 
specifically, the basic result of [2] is tha t  if a suitable subsystem of lower 
dimension is robustly stabilizable by dynamic output  feedback, so is the 
entire system. From the point of view of the approach of [5], the condition 
on which the result of [2] relies ( that  happens to be necessary in the case of 
linear systems) can be viewed as a condition for the existence of a dynamic 
feedback driven by functions tha t  are expressible in terms of the output  
and its derivatives, i.e., driven by UCO functions. 

In this chapter we review and extend the result of [2] and we show how 
this result can also be obtained as a special case of a general stabiliza- 
tion result based on the existence of a dynamic feedback driven by UCO 
functions. More specifically, after some preliminary definitions in Section 
2 including our definition of uniform semiglobal practical  asympto t ic  sta- 
bility, we discuss stabilization of nonminimum phase nonlinear systems by 
output  feedback in Section 3. This discussion is split into two parts:  the 
relative degree one case in Section 3.1, and the higher relative degree case 
in Section 3.2. The main results of these sections are tha t  if a reduced order, 
auxiliary system can be stabilized by dynamic output  feedback then the 
original nonminimum phase system can be stabilized by dynamic output  
feedback. In Section 4 we show how the results of Section 3 can be viewed 
as special cases of a general result on semiglobal practical  asympto t ic  sta- 
bilization by output  feedback. In Section 4.1 we present some addit ional  
definitions, including the notions of uni.formly completely observable (UCO) 
functions and uniform semiglobal practical asymptot ic  stabilizability by dy- 
namic UCO feedback, and a general output  feedback stabilization result 
which expands on the ideas in [5]. This  result is specialized to the case of 
nonminimum phase nonlinear systems in Section 4.2. In this section, we 
compare and contrast  the controllers developed in Section 3 explicitly for 
the nonminimum phase nonlinear system case to the controllers tha t  result 
from following the synthesis steps presented in [5]. 

2 Preliminaries 

For simplicity all nonlinear functions in this chapter  will be assumed 
to be sufficiently smooth so tha t  all needed derivatives exist and are 
continuous, all differential equations have solutions, etc. 

�9 We will use ~n( r ) ,  with r > 0, to denote a closed ball of radius r in 
~ n .  

�9 Unless otherwise noted, #(t) is a measurable function taking values 
in a compact  set P C ~P .  The set of such functions is denoted A/I~,. 
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�9 The origin of a nonlinear dynamical system 

= f(x ,#( t ) ,  k) , (8.1) 

with x E ~ n  and k E Lr~ c, is said to be uniformly semiglobally prac- 
tically asymptotically stable in the parameter k if 

for each pair of strictly positive real numbers 0 < r < R < cxD there 
exist k E ~ c  an open set O D Bn(R),  a function V : O --~ ~ > 0  that  
is proper on O and strictly positive real numbers 0 < q < Q < cx~ 
such that  

i.) ~n(R)  c {~ E O :  V(~) < Q}, 

ii.) Bn(r)  D {~ E O :  Y(~) < q}, 

iii.) and 

OV 
Oxf (X '# 'k )  <0  V # E ~ , V x E  { ~ E O : q < V ( ~ )  < Q } .  

Uniform semiglobal practical asymptotic stability implies: 

for each pair of strictly positive real numbers 0 < r < R < cx~, 
there exist k E ~ c  and T > 0 such that,  for all initial 
conditions in ~n(R) ,  all resulting trajectories x(t) of (8.1) 
with k = k are such that  x(t) E B . ( r )  for all t >_ T. 

It also can be shown to imply: 

for each pair of strictly positive real numbers 0 < r < R < oe, 
there exist k E E~ c, a compact set `4 C_ ~,~(r) and an open 
set G D ~n(R)  such that ,  for the system (8.1) with k = fc, 
the set .4 is uniformly asymptotically stable with basin of 
at t ract ion G. 

By this we mean: 

�9 for each E > 0 there exists 5 > 0 such that  all trajec- 
tories starting in a 5-neighborhood of .4 remain in an 
E-neighborhood of .4 for all time, and 

�9 for each c > 0 and each compact subset of ~ there exists 
T > 0 such that  all trajectories starting in the compact  
subset enter within T seconds and remain thereafter in 
an c-neighborhood of ,4. 

In fact, due to recent converse Lyapunov function results (see [4], [1], 
[7]), these latter properties are equivalent characterizations of uniform 
semiglobal practical asymptotic  stability. However, we are using the 
Lyapunov formulation here so that  we can more directly appeal  to 
the results on semiglobal practical asymptotic stabilization like [5, 
Proposit ion 3.1] where a Lyapunov formulation was used. 
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3 Stabi l izat ion of N o n m i n i m u m  Phase  Sys tems  by 
Output Feedback 

3.1 The Relative Degree One Case 

Most methods for robust stabilization of a nonlinear system by relative 
degree one output  feedback rely on the hypothesis that  the system has an 
asymptotically stable zero dynamics. The main reason why this hypothesis 
is assumed is that  most of the methods in question use "high-gain" feed- 
back in order to keep the output  small, thereby enforcing a behavior whose 
asymptotic properties are essentially determined by the asymptotic  prop- 
erties of the zero dynamics. In particular, asymptotic stabilization occurs 
only if the latter is asymptotically stable, i.e., if the system is minimum 
phase. Consider robust (with respect to disturbances #(t))  stabilization of 
the origin for the system 

= f0(z,y,,(t)) (8.2) 
9 = q ( z , y , ~ ( t ) ) + b ( y ) u  

where z E ~ n - 1 ,  Y C ~ ,  u C ~ ,  #(.) G AJp and b(y) ~ 0 for all y. In 
the case of uniformly globally asymptotically stable zero dynamics, i.e. (see 
[4]) when there exists a smooth, positive definite and proper function V(z) 
such that  

OV 
Ozf~ Vz%O, V # ~ P  , 

the control law 

1 
u -  k y ,  

b(y) 

where k is a sufficiently large number, solves the problem of semiglobal 
practical asymptotic stabilization of the origin. This follows from the fact 
that,  given a compact set in (z, y) not containing the origin, for large enough 

ov k the negative definite term -5~-~ f0(z, 0, #) - ky 2 in the derivative of the 
composite Lyapunov function 

U(z, y) = V(z)  + y2 , 

i.e., in 

OV 
Oz fo(z ,  ~ , , )  + 2y[q(z,  y, ~) - ky] , 

is able to dominate all nonnegative terms on the given compact set. 
In the case where the original output  does not yield an asymptotically 

stable zero dynamics, one approach is to look for a new output  function, of 
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the form y - y* (z), for which the resulting system is uniformly minimum 
phase. Then, by following the reasoning above, the control 

1 
u -  b(y) k ( y - y * ( z ) )  

may be used to achieve robust semiglobal practical stabilization of the 
origin. The potential  drawback to this approach is that  it requires the 
measurement,  or at least the robust observability via the actual measured 
output  y and the input u, of the term y*(z). 

Looking at the structure of the system (8.2), we see that  the main in- 
formation about  the z subsystem that  is robustly observable through the 
measurement y and the input u is the term q(z, y, it(t)) and perhaps its 
derivatives. The discussion that  follows, in this and the next subsection, 
describes one very efficient way, suggested in [2], to use the information 
contained in q(z, y, it(t)) to design a stabilizing feedback law without actu- 
ally requiring a measurement of q(z, y, p(t)). We will suppose 

A s s u m p t i o n  8.1 For the auxiliary system 

= fo(z,~,it(t)) 
(8.3) 

= q(z,~,it(t)) , 

the controller 

= N ( ~ ) ,  (8.4) 

with N(O) -- O, is such that the origin o.f the system (8.3),(8.~) is uniformly 
globally asymptotically stable. 

Under this assumption, we can state the following result for the system 
(8.2) under the action of the controller 

= n(~) + M k [ y -  g (~ ) ]  
1 9N ( 8 . 5 )  g 1 

[ - 0 T  + M k [ y  - - k [ y  - - b (y )  

Note that  this is simply a dynamic feedback of the original (nonminimum 
phase) output  y. 

T h e o r e m  8.2 Under Assumption 8.1, the origin of the system (8.2), (8.5) 
is uniformly semiglobally practically asymptotically stable in the control pa- 
rameter k. 

P r o o f .  The result is established by noting, with the help of the input 
transformation 

l [ ONu~ u~ON ] 
u = b - ~  --5"L(~) + (1 - - ~ - M ) v  , (8.6) 
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that  the system 

~? = 

= 

fo(z,y,,(t)) 
n ( ~ )  - M v  

(8.7) 
ON ( ON ] 

~1 -- q(z ,y ,p( t ) )  +-~-~n(7~) + 1 -  v 

with output  0 = y - N(W) has relative degree one with high-frequency gain 
identically equal to one, is minimum phase and can be written, globally, 
in a form that  matches (8.2). Specifically, in the coordinates (z, ~, 0) where 

:= ~ + MO, we have: 

= f 0 ( z , N ( ~ -  MO) + O,#(t)) 

= L(~ - MO) + Mq(z,  N(~ - MO) + 0, #(t))  (8.8) 

0 = q(z ,N(~ - MO) + O,l~(t)) + v .  

By Assumption 8.1, when 0 is set to zero, the origin of the (z, ~) dynamics 
is uniformly globally asymptotically stable. It follows from the discussion 
above that  the choice v = -kO is semiglobally practically stabilizing for 
the origin of (8.8). And, since N(0) = 0, the origin of (8.8) corresponds to 
the origin of (8.2),(8.5). Moreover, with this choice for v we see from (8.6) 
and the ~b equation in (8.7) that  we recover the control law (8.5). A 

R e m a r k  8.1 If a controller of a form more general than (8.4) like 

2~ 
= 

= 

exists (in the case where ~ depends on g we would need an assumption that  
guarantees a solution ~ to the second equation), a controller of the form 
(8.4) can be obtained by dynamic extension as 

= 

~ v + l  = - - f r t ( ~ v + l  - -  Y) 

with m a positive number. Instead of achieving uniform global asymptot ic  
stability for the auxiliary system, this controller would, in general, achieve 
uniform semiglobal practical asymptotic stability in the parameter  rn, at 
least in the case where the functions #(t) are restricted to have uniformly 
bounded derivatives. While this would complicate the above discussion, the 
conclusion of the theorem would still be the same. z~ 

R e m a r k  8.2 As discussed in [51, various local conditions can be imposed 
on the system (8.8) to guarantee uniform semiglobal asymptotic stability, 
as opposed to only uniform semiglobal practical asymptotic  stability. 
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3 .2  T h e  Re la t i v e  Degree  G r e a t e r  t h a n  O n e  Case  

The result of the previous section, on stabilization by dynamic ou tpu t  feed- 
back, can be extended to the case of outputs  with relative degree greater  
than  one. 

Consider a nonlinear system modeled by equations of the form 

~, = f ( z ,  41, . . .  ,~- ,#(t))  

~, = q(z ,41 , . . .  ,4~,#(t)) + b(4)u 

Y = 41 

(8.9) 

in which z E ~ n - r ,  #(.) C A/Ip and b(4) r 0 for all 4- This  normal  
form may result from applying a globally defined, perhaps  # dependent ,  
coordinate t ransformation to a nonlinear system given in some other form. 

The  only measurement  tha t  we will assume is available is the ou tpu t  y. 
W h a t  we will show is that  if a particular reduced system can be stabilized 
with measurements  of 4 and q(z, 41,.. �9 , 4r, #(t))  then the system (8.9) can 
be stabilized with measurement  of y only. 

With  the system (8.9), we associate an auxiliary system 

5:a = f~(xa, u~,#(t)) (8.10) = h (xa, 
in which 

X& ~ 

Xa'l / 

k x~,2 / 

z "~ 

41 

j 

and 

= (. fa'l(Xa' Ua) ) 
f(z, 41, �9 �9 . , 4r--1, Ua, ~ ( t ) )  

42 
~ 

4r- -  1 
?d a 
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and  

hgxa, := q(z,  r-1, ua, 

A b o u t  this sys tem,  we assume  the  following: 

A s s u m p t i o n  8 .3  The controller 

~b = L(~,x~,2)  + M y a  
u~ = N ( ~ , x ~ , 2 ) ,  (8.11) 

with N ( 0 , 0 )  = 0, is such that the origin of the system (8.10),(8.11) is 
uniformly globally asymptotically stable. 

Under  this assumpt ion ,  we can s ta te  the  following result  for the  sy s t em 
(8.9) under  the  act ion of the control ler  

~b = L(~,x~,2)  + Mk[~r - N(~,x~,2)] 

u -- b(~) [L(~,xa,2)  + Mk[i~ - N(~ ,x~ ,2 ) ] ]+  (8.12) 

ON q 

f~,2(x~,2, ~ )  - k [ ~  - g ( ~ ,  Xa,2)]J Ox~,2 
Q 

Note  t ha t  this is a dynamic  feedback of the  o u t p u t  y and  its first r - 1 
derivatives.  

L e m m a  8.1 Under Assumption 8.3, the origin o.f the system (8.9), (8.12) 
is uniformly semiglobaUy practically asymptotically stable in the control pa- 
rameter k. 

P r o o f .  T h e  p roof  is the  same  as the  p roof  of  T h e o r e m  8.2. W i t h  the  inpu t  
t r an s fo rma t ion  

1 ON ON ( ONM~ v] (8.13) U=b-~[ -~ -~L(p ,x~ ,2 )+~f~ ,a (x~ ,2 ,~ )+  1 - - - ~  ) 

we get the  sy s t em 

~b = L(~ ,xa ,2 )  - Mv 
~r ~--- ha(xa, ~r, #(t))-~ (8.14) 

L(qo, Xa,2) + O--~a,2fa,2(Xa,2, Cr) + 1 - v 

tha t ,  wi th  o u t p u t  0 = ~ - N ( ~ ,  x,,,2), has  relat ive degree one wi th  high- 
f requency gain identical ly equal  to  one, is m i n i m u m  phase  and  can  be  wri t -  
ten, globally, in a form t h a t  ma tches  (8.2). Specifically, in the  coord ina tes  



8. Dynamic UCO Controllers and Stabilization by Output Feedback 343 

(xa, ~, O) where ~ := qo + MO, we have: 

k.. = I~(xo, N(~-MO, x~.,~)+O,.(t)) 
= L(~ - MO, x~,2) + Mh~  (x~,N(~ - MO, x~,2) + 0 ,# ( t ) )  (8.15) 

= h ~ ( x ~ , N ( ~ - M O ,  x ~ , 2 ) + O , # ( t ) ) + v .  

By Assumption 8.3, when 0 is set to zero, the origin of the (x~, ~) dynamics 
is uniformly globally asymptotically stable. It follows, as before, that  the 
choice v = - k O  is semiglobally practically stabilizing for the origin of (8.15). 
And since N(0,0)  -- 0, the origin of (8.15) corresponds to the origin of 
(8.9),(8.12). Moreover, with this choice for v we see from (8.13) and the 
equation in (8.14) that  we recover the control law (8.12). A 

The dynamic controller (8.12) uses the state variables ( 1 , . . - , 4 ~ ,  i.e., 
the derivatives up to order r - 1 of the output  y of system (8.9), as input. 
Thus, in order to find an output  feedback controller, these variables must be 
replaced by appropriate estimates, which can be provided by a dynamical 
system of the form 

il = P~l + Qy (8.16) 

in which the matrices Q and P have the form / 110 0 / 1 / 
-g2c~_2 0 1 . . .  0 -g2c~_2 

P . . . . . . .  , Q = - (8.17) 
- g " - l C l  0 0 . . .  1 - g r - l c l  

--grco 0 0 . . .  0 --grc o 

As shown in [3], it is convenient to saturate the resulting control law, at 
least where the estimates of ~ appear, so as to avoid the occurrence of 
finite escape times for large values of g. For example, we can replace the 
controller (8.12), which for ease of notation we now write as 

= 

(8.18) 
= 

with the controller 

- -  

(8.19) 

where (re(-) is a (by abuse of notation both a scalar and vector) saturation 
function 

(re(v) = v . m i n  1 , ~  T . 
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A controller of this type is able to robustly semiglobally practically 
asymptotically stabilize the plant (8.9). In fact, using the methods of [5] 
for example, it is possible prove the following result. 

T h e o r e m  8.4 (See also [2]) Under Assumption 8.3, the origin of the sys- 
tem (8.9), (8.16), (8.19) [with C(., .) and g( . ,  .) de.fined by the identi.fica- 
tion between (8.12) and (8.18)] is uniformly semiglobally practically stable 
in the control parameters (k, g, e). 

4 On Dynamic UCO Feedback 

The basic observation of [2], summarized in Section 3.2 and on which the 
result of Lemma 8.1 rests, is that  the term q(z, ~ 1 , . . . ,  ~r-1, ~r, #(t)) in 
the system (8.9) can be (and, in a nonminimum phase system, has to be) 
"isolated" from the rest of the system, using measurements only of the 
output  and its first r - 1 derivatives, and treated as a separate source of 
information for feedback. Then, having a dynamic controller driven by the 
output  its first r - 1  derivatives, as in Lemma 8.1, it is straightforward using 
ideas initially developed in [3] to find a dynamic output  feedback controller 
that  induces the desired properties, as in Theorem 8.4. 

From this point of view, the contribution in [2] is the identification of 
a natural (in fact, for linear systems it can be shown to be necessary) 
condition (Assumption 8.3) that  guarantees the existence of a dynamic 
feedback that  is expressible in terms of the output  and its derivatives. Then 
Theorem 8.4 can be viewed as a special case of a more general result that  is 
essentially contained in [5] (see [5, Proposition 3.1 and footnote 5]), namely 
that  semiglobal practical stabilization by dynamic uniformly completely 
observable (UCO) feedback implies semiglobal practical stabilization by 
dynamic output  feedback. We make this result explicit below. 

4.1 General Results  

Consider multi-input, multi-output nonlinear control systems 

ic = f (x ,u ,  tt(t)) (8.20) 
y = h(x,u, it(t)) 

with #(.) E Ad~,. The definition of uniformly completely observable (UCO) 
dynamic feedback, given next, at times implicitly constrains #(t) to be 
sufficiently smooth, where sufficiently smooth has to do with the number 
of times the output  needs to be differentiated to reconstruct the UCO 
function. 
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D e f i n i t i o n  8.1 A .function ~(x~ u, ~) is said to be uniformly completely 
observable (UCO) with respect to the system (8.20) i f  it can be expressed 
as a funct ion  of a .finite number o.f derivatives of the output  y and the input  
u, i.e., i f  there exist two integers ny and nu and a func t ion  q2 such that, 
.for each solution o.f 

= f ( x , u , # ( t ) )  
U ( n u + l )  ~ V 

y = h ( x , u , # ( t ) )  
(8.21) 

we have, .for all t where the solution makes sense, 

~ ( x ( t ) , u ( t ) , # ( t ) )  = r ( y ( t ) , . . .  , y ( ' ~ , ) ( t ) , u ( t ) , . . .  ,u('~"')(t))) (8.22) 

where y(i) denotes the i th  t ime derivative o.f y at t ime t (and similarly .for 
u(~)). 

R e m a r k  8.3 As in [5, Footnote 6], note the strong requirement that  �9 is 
independent of #(t). On the other hand, note that  the functions 

~i , q(~l , . . .  , ( r ,# )  

for the system (8.9) are UCO since we can write 

~ = y ( ~ - l ) ,  q ( ~ l , . . . ,  ~T, ~ ( t ) )  = y(r) _ b(y)u 

A 

Our next definitions, on uniform semiglobal practical asymptotic stabi- 
lizability by dynamic UCO or output  feedback, are closely related to our 
definition of uniform semiglobal practical asymptotic stability. However, as 
was the case in [5], we don't  insist that  the states of the dynamic com- 
pensator eventually become small in the closed-loop. We formulate the 
definition in Lyapunov function terms but, again, the definition could be 
formulated in terms of trajectories. 

De f in i t i on  8.2 The origin of (8.20) is said to be uniformly semiglobally 
practically asymptotically stabilizable by dynamic UCO feedback i f  .for 
each pair o.f strictly positive real numbers 0 < r < R < o~ there exist: 

�9 a UCO .function ~(x, u, #) 

�9 .functions 0 and n, 

�9 compact sets Cn~ and Cnz , with Cn~ a subset of the interior of Cvl, 

�9 an open set (9 D B n ( R )  x Cnl , 

�9 a .function V : (9 -~ ~ > o  that is proper on (9, and 
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�9 strictly positive real numbers 0 < q < Q < c~ 

such that 

i.) ( ~ ( R )  • c, ,)  c {~ �9 o :  v(r _< Q}, 

ii.) (-B~(r) • c ,s)  ~ {~ �9 o :  v (r  < q}, 

iii.) and 

OV 
o x  F ( x ,  ~) < o 

where X and F(X,  #) are defined by 

V # E 7  ) ,  V X E  { ~ E O : q < V ( ~ )  < Q } ( 8 . 2 3 )  

=: F(X ,  p(t)) (8.24) 

with 

u = ~ (~, a (x ,u ,  ~( t ) ) )  (8.25) 

(and where, .for simplicity, we assume the right-hand side of (8.25) 
is independent of u). 

D e f i n i t i o n  8.3 The origin of (8.20) is said to be uniformly semiglobally 
practically asymptotically stabilizable by dynamic output  feedback if, in 
the previous definition, we can always take a(x, u, p) = h(x, u, #). 

R e m a r k  8.4 In these definitions, we could allow the right-hand side of 
(8.25) to depend on u if we impose an extra  condition that  guarantees a 
solution to (8.25). /~ 

It will follow from the proof of [5, Proposition 3.11 (much like what  is 
suggested by [5, Footnote 5]) that we have: 

T h e o r e m  8.5 Let p(.) E M p  be sufficiently smooth with a uniform bound 
on an appropriate number of derivatives. If  the origin of the system (8.20) 
is uniformly semiglobaUy practically asymptotically stabilizable by dynamic 
UCO feedback then it is uniformly semiglobally practically asymptotically 
stabilizable by dynamic output feedback. 

S k e t c h  o f  P r o o f .  Fix 0 < r < R < c~. From the assumption of uniform 
semiglobal practical asymptotic stabilizability by dynamic UCO feedback, 
this fixes a UCO function a(x,  u, #), a corresponding function �9 that  is used 
to reconstruct a from derivatives of y and u, functions 0 and ~, compact  
sets C~s and C,~l, an open set O, a function V and strictly positive real 
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numbers 0 < q < Q < oc. Now we apply the proof of [5, Proposit ion 3.1] 
to the control system 

Y2 

where the UCO feedback 

= ( f ( x , u l , # ( t ) )  
o(n, u2) ) 

( u l ) _ _  ( n(~,~(x, ul,#(t))) 
u2 ~(X,Ul,#(t)) ) 

induces the properties for the function V that  are assumed in the proof of 
[5, Proposit ion 3.1] if we define the objects 1Cz~, ~zl, pl, c~ and cl used in 
the proof of [5, Proposition 3.1] as 

and 

u l : = q ,  c~:--Q, c z : = Q + l .  

From here we follow the proof of [5, Proposition 3.1], but  noting that  dy- 
namic extension is only needed on the input Ul and no estimates of the 
derivatives of Y2 -- ~ are needed. /~ 

~{.2 Application to Nonmin imum Phase Systems 

We now apply this general result to the problem considered in Section 3.2. 
We start  with an assumption that  is a combination of Assumption 8.3 and 
Remark 8.1. 

A s s u m p t i o n  8.6 The controller 

= i @ , ~ a , 2 , y ~ )  
(8.26) 

u~ = N(~,x~,2,y~) , 

is such that 

1. N(0, 0, 0) = 0 and, for simplicity, N(~, Xa,2, ha(xa, ua, #)) indepen- 
dent o.f ua, 

2. the origin of the system (8.10), (8.26) is uniformly globally asymptot- 
ically stable; 

3. the .functions #(.) are restricted so that 

I ON Oh~ .. .I 
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is bounded in t > 0, uniformly in #(.), on each compact subset of the 
state-space. 

Under this assumption, we can state the following result for the system 
(8.9) under the action of the controller 

. ; L 
\ /  ( 8 . 2 7 )  

u = -ksgn(b( )) - xa, , 

Note that  this is a dynamic UCO feedback for the system (8.9) since, as 
noted in Remark 8.3, x~,2, ~ and h~(x~, ~r, #(t)) are UCO with respect to 
the system (8.9). 

L e m m a  8.2 Under Assumption 8.6, the origin of the system (8.9), (8.27) 
is semiglobally practically asymptotically stable in the parameter k. 

Proof .  Follows from the discussion in Section 3.1. (See also [5, Lemma 2.2 
(Semiglobal backstepping I)].) A 

The final result then follows from Theorem 8.5 and Lemma 8.2. 

C o r o l l a r y  8.1 Under Assumption 8.6, the origin of the system (8.9) is 
semiglobaUy practically stabilizable by dynamic output feedback. 

The controller given by Corollary 8.1, which is constructed following 
the proof of Theorem 8.5, is different from the one given by Theorem 8.4 
together with Remark 8.1. In particular, the controller of Corollary 8.1 has 
the form of an observer 

= P~ + Qy , (8.28) 

like in (8.16) but with 7 /E/R ~+1, where z/~+l is an estimate of ~r, plus an 
estimated and saturated dynamic UCO feedback 

it = cre(k2(v- u)) (8.29) 

V : -k l sgn(b(~) ) (~r -  N(~,3~a,2,~r- b(~)u)) , 

like in (8.19). Compared to the controller (8.28),(8.29), the controller (8.16), 
(8.19) together with remark 8.1 has one less state and can be interpreted as 
using a reduced-order observer structure to accomplish the goal of robust 
semiglobal practical asymptotic stabilization. 

In [5, Section 6.2], a particular nonminimum phase nonlinear system, 
whose auxiliary system (using the terminology of the present chapter) is 
semiglobally asymptotically stabilizable by (static) UCO feedback, was con- 
sidered as an illustration of the result that  semiglobal practical asymptotic 
stabilization by (static) UCO feedback implies semiglobal practical asymp- 
totic stabilization by dynamic output  feedback. The controller used in tha t  
section is the type of controller suggested by Corollary 8.1. 
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5 Conclusions 

349 

This chapter presented a simple design method by which it is possible 
to robustly stabilize, using output feedback, a significant class of uncer- 
tain nonlinear systems whose zero dynamics are unstable. The assumption 
made for such systems was shown to imply the existence of a stabilizing 
dynamic feedback that is driven by functions that are uniformly completely 
observable (UCO). In this light, the result for nonminimum phase nonlin- 
ear systems was shown to be a special case of the more general result that 
semiglobal practical asymptotic stabilization by dynamic UCO feedback 
implies semiglobal practical asymptotic stabilization by dynamic output 
feedback. The controllers developed in this chapter specifically for non- 
minimum phase nonlinear systems were compared and contrasted to the 
controllers that prove the general stabilization result. 
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