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Abstract 

We state results on converse Lyapunov functions for 
differential inclusions where a positive semidefinite 
function of the solutions satisfies a class-ICC estimate in 
terms of time and a second positive semidefinite func- 
tion of the initial condition. The main result is that 
a smooth converse Lyapunov function, i.e., one whose 
derivative along solutions can be used to establish the 
class-ICC estimate, exists if and only if the class-XC es- 
timate is robust, i.e., it holds for a larger, perturbed in- 
clusion. It remains an open question whether all class- 
ICC estimates are robust. One sufficient condition for 
robustness is that the original inclusion is locally Lip- 
schitz. Another is that the two positive semidefinite 
functions agree and a backward completability condi- 
tion holds. These special cases unify and generalize 
many existing results on converse Lyapunov theorems 
for differential equations and inclusions. 

Basic definitions 

Given a set A, 71 stands for the closure of A, EGA 
the closed convex hull of A and dA the boundary of 
A. Also x -+ 8A” indicates a sequence of points x 
belonging to A converging to a point on the boundary 
of A or, if A is unbounded, having the property 1x1 + 
co. Given a closed set A C IP and a point z E llP, 
1x1~ denotes the distance from x to A. A function 
QI : I&e + R>c belongs to class-ii: if it is continuous, 
zero at zero, aid strictly increasing. It belongs to class- 
ic, if, in addition, it is unbounded. A function p : 
I&s xl&, + IQe belongs to class-U if, for each t 3 0, 
p(-, t) isnondecreasing and lAy+ p(s, t) = 0, and, for 

each s 2 0, /3(s, .) is nonincreasing and tlima p(s, t) = 0. 

1 Background 

Where Lyapunov [14] introduced his famous sufficient 
conditions for asymptotic stability of an equilibrium for 

i = f(L t) 1 (1) 
we find the first contribution [14, $20, Theorem II] 
to the converse question: what aspects of asymptotic 
stability and the function f guarantee the existence 
of a (smooth) function satisfying Lyapunov’s sufficient 
conditions for asymptotic stability? The answers have 
proved instrumental, over the years, in establishing ro- 
bustness of various stability notions and have served as 
the starting point for many nonlinear control systems 
design concepts. 
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One of the first important milestones in the pursuit 
of smooth converse Lyapunov functions was Massera’s 
1949 paper [16] that provided a semi-infinite integral 
construction for time-invariant, continuously differen- 
tiable systems with an asymptotically stable equilib- 
rium. Later, in 1954, Malkin observed that Massera’s 
construction worked even for time-varying systems as 
long as the asymptotic stability and the differentiabil- 
ity of f with respect to the state were uniform in time 
[15]. Regarding stability Malkin assumed, in effect, the 
existence of a class-U function p such that the solu- 
tions c(t, t,, &,) of the system (1) satisfy 

I~(~~to,~oo)l 5 P(ltol,t - to) vt 2 to >_ 0 (2) 
at least for initial conditions & sufficiently small. In 

[4], Barbashin and Krasovskii generalized Malkin’s re- 
sult to the case where (2) holds for all initial conditions. 
Both Massera [17] and Kurzweil [lo], independently 
in the mid-1950’s, weakened the assumptions made by 
Malkin, and Barbashin and Krasovskii, about the func- 
tion f(E, t). Kurzweil’s result allows f(c, t) to be only 
continuous and doesn’t assume uniqueness of solutions. 
In his work he made precise a notion of strong stabil- 
ity of the origin on an open neighborhood 6 of the 
origin which amounts to the existence of a function 
p E /X and a locally Lipschitz, positive definite func- 
tion w : G + IF&c, proper on 6, such that, for all 
&, E Q, all solutions of the system (1) satisfy 

w(E(t?to,to)) 5 P(w(to),t - to) t >_ t, >_ 0 . (3) 

Kurzweil showed that this strong stability and conti- 
nuity of f(<, t) imply the existence of a smooth con- 
verse Lyapunov function, i.e., a function whose deriva- 
tive along solutions can be used to deduce (3). 
Much of the research in the 1960’s focused on develop- 
ing converse Lyapunov theorems for systems possessing 
asymptotically stable closed, not necessarily compact, 
sets. Taking this approach, the time-varying case can 
be subsumed into the time-invariant case by augment- 
ing the state-space of (1) as: 

h$(;)=( fy))=:F(x),x,=[ !I] . 
(One disadvantage in treating time-varying syste& 

as time-invariant ones is that it usually leads to im- 
posing stronger than necessary conditions on the time- 
dependence of the right-hand side, e.g., continuity 
where only measurability is needed. An example where 
a converse theorem is developed for systems with right- 
hand sides measurable in time, and for Lyapunov and 
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Lagrange stability, is [3].) A closed set A for (4) is uni- 
formly asymptotically stable if there exists of a func- 
tion p E kX such that all solutions of (4) with ]zo]~ 
sufficiently small exist for all forward time and satisfy 

Ib(t,%)id <_ /%old,t) vt>o. (5) 
Some of the early results on converse Lyapunov func- 

tions for set stability are summarized in [33]. Partic- 
ularly noteworthy are the result of Hoppensteadt [9] 
who generated a C’ converse Lyapunov function for 
parameterized differential equations and the result of 
Wilson [32] who provided a smooth converse Lyapunov 
function for uniform asymptotic stability of a set. 
Noting that every solution $(t, x,) of (4) can be written 

4J(t,xo) = [ 
t(t+tc2,LJo) 

t + t, 1 
where t(., t,, fO) is a solution of (lj, it fofiows that (2), 
(3) and (5) are all particular cases of the estimate 

f-44(6 x0)) 5 P(4%), t) vt > 0 (7) 
where w is continuous, positive semi-definite. 

In the 1970’s, Lakshmikantham and coauthors [12] (see 
also [ll, section 3.41) provided a Lipschitz converse 
Lyapunov function for Lipschitz differential equations 
of the form (4) under an assumption essentially the 
same as: given two continuous, positive semidefinite 
functions wi and wz, there exists a function /3 E ICC 
such that, for all x0 with w2(xo) sufficiently small, all 
solutions exist for all forward time and satisfy 

w1(4(t,xo)) 5 Pb-J2(5o),t) vt>o. (8) 
The stability concept described by (8), apparently first 

1 introduced in [22] and often called stability with respect 
to two measures, generalizes (7) and thus includes the 
notions of local uniform asymptotic stability of a point, 
of a prescribed motion and of a closed set. It also covers 
the notion of local uniform partial asymptotic stability 
such as when, for z0 sufficiently small, 

Ih(4(Gxo))l 5 P(l~ol,t) vt 2 0 6-J) 
where y = h(x) is a continuous function of the state. 

A smooth converse Lyapunov theorem for the global 
version of (9) was recently derived in [25]. (See [31] for 
a survey on the partial stability problem.) 
Extensions of the above results to differential inclusions 
started to appear in the late 1970’s with some of the 
most general results appearing only recently. Some mo- 
tivations for the study of differential inclusions are they 
describe 1) the solution set for differential equations 
with arbitrary, measurable bounded disturbances, and 
2) important notions of solutions for control systems 
that use discontinuous feedbacks. (see [7, $8.31.) 
The results in [18] pertain to differential inclusions 

SEF(x):=m{vERn : v = f(x, d) , d E D} (10) 

where 2) is compact, f(x, d) is continuous and contin- 
uously differentiable with respect to x, and asymptotic 
stability in the first approximation is assumed, i.e., for 

v= $(O,d)z, dc’D , (11) 

an estimate of the form Ix(t)1 < k]z(O)]exp(-Xt), 
L > 0, X > 0 is assumed for all solutions starting 
from sufficiently small initial conditions. [18, Theorem 
21 states that this implies the existence of a smooth 
Lyapunov function for local exponential stability and 
asymptotic stability on the basin of attraction of the 
origin for the inclusion (10). Related results for inclu- 
sions of the type (11) are in [19, 20, 211. 
In [13], Lin, Sontag and Wang considered the inclu- 
sion (10) with f continuous and locally Lipschitz in z 
uniformly in d and assumed the estimate (5) globally. 
They showed, when A is compact or all solutions exist 
for all backward time, that (5) for the inclusion (10) 
implies the existence of a smooth Lyapunov function. 
In [l], the ideas of [13] were combined with the idea 
of Kurzweil [lo] to establish the existence of a smooth 
Lyapunov function for the inclusion (10) when there 
exists a compact set A, a neighborhood G of A and 
function w : G + $0 that is locally Lipschitz, positive 
definite with respect to A and proper with respect to 
6 and a function p E X,!Y such that, for all x0 E G, the 
solutions of (10) satisfy (7). 
The first results on smooth converse theorems for dif- 
ferential inclusions that are only upper semicontinu- 
ous (see Definition 1 below) appeared in [5]. In that 
work, Clarke, Ledyaev and Stern considered inclusions 
2 E F(x) under the assumption that F(x) is nonempty, 
compact and convex for each x E Iw” and F(x) is upper 
semicontinuous. They assumed the estimate (8) with 
WI(X) = wz(x) = 1 I z , and showed that this implies the 
existence of a smooth Lyapunov function. Other re- 
sults on the existence of converse Lyapunov functions 
can be found in [2, Chapter 61, [6] and [28, 29, 301. 

2 Contributions 

In this paper, we consider differential inclusions 
i E F(x) (12) 

like in [5]: F( x is a set-valued map from an an open ) 
set 6 to subsets of R” that is upper semicontinuous on 
G (see Definition 1) and F(s) is nonempty, compact 
and convex for each x E 6. The stability property we 
will assume for (12) we will refer to as “Xl-stability 
with respect to (WI, wz) on 6”. Namely, given two con- 
tinuous functions wi : G + Il& and w2 : G + ll&, we 
assume the existence of a clas&C function ,# such that 
all solutions of the inclusion (12) starting in B remain 
in Q for all forward time and satisfy (8). (See Defini- 
tion 6). This is like the stability property assumed in 
[12]. Our main result is (see Theorem 1): 
A smooth conuerse Lyapunow function for ICC-stability 
with respect to (WI, WZ) (see Definition 8) exists if and 
only if the U-stability e’s robust, i.e., it holds for a 
larger, perturbed inclusion (see Definition 9). 
This type of equivalence between robust stability and 
the existence of a Lyapunov function, reminiscent of the 
classical “total stability” results for differential equa- 
tions [8, Theorem 56.41, is already present in the proofs 
of Kurzweil [lo] and Clarke, et al., [5]. 
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It remains an open question whether KC-stability with 
respect to (WI, ws) is robust, in general. However, we 
can state (see Theorem 2): 
If the inclusion (12) is locally Lipschitz on G (see Def. 
3) then K&stability w.r.t. (WI, wz) on 6 is robust. 
This is the case for the problems consider by Laksh- 
mikantham, et al. [ll], Lin, et. al. [13], and Sontag 
and Wang [25]. We will also establish (see Theorem 3): 
If the inclusion (1.2) is backward completable by w- 
normalization (see Definition 10) then KC-stability 
with respect to (w,w) on G is robust. 
This condition holds for the problems considered by 
Kurzweil [lo] and Clarke, et al. [5] and, more generally, 
for compact, stable attractors. 
Our converse Lyapunov function is built as follows : 
1. We imbed the original differential equation or inclu- 
sion into a larger, locally Lipschitz inclusion that still 
exhibits KC-stability w.r.t. (WI, wg). This idea is due to 
Kurzweil [lo] for the case of differential equations with 
continuous right-hand side under strong stability of the 
origin. It is due to Clarke and co-authors [5] for the case 
of nonempty, compact, convex, upper semicontinuous 
differential inclusions and global asymptotic stability 
of the origin. In general, it is possible if and only if the 
KC-stability with respect to (WI, ~2) is robust. 

We find class-K functions 61 and Gz such 
that &(p(.s, t)) 5 62(Y)e-2t where /I quantifies KC- 
stability with respect (WI, ~21 for the locally Lipschitz 
inclusion constructed in step 1. A recent result by Son- 
tag [24, Proposition 71 shows that this can be done. 
3. We define a trial Lyapunov function VI(X) as the 
supremum, over time and solutions $J(., x) of the lo- 
cally Lipschitz inclusion constructed in step 1, of the 
quantity 61 (WI (4(t, x))) et where 61 was constructed in 
step 2. This is a classical construction once the esti- 
mate in step 2 is available, at least for locally Lipschitz 
differential equations (See, e.g., [33, $191.) We show, 
using many of the tools used in [5] and [13], that this 
Lyapunov function has all of the desired properties ex- 
cept smoothness. It is locally Lipschitz. It would only 
be upper semicontinuous, in general, if the supremum 
were taken over solutions of the original inclusion. 
4. We smooth the trial Lyapunov function using ideas 
from Kurzweil [lo] that have been clarified, generalized 
and used over the years by, for example, Wilson [32], 
Lin, et al., [13] and Clarke, et al. [5]. 
To describe our results, in Section 3 we present def- 
initions related to set-valued maps and properties of 
solutions to differential inclusions. In Section 4 we de- 
fine K&stability w.r.t. (WI, wz) and provide alternative 
characterizations. Our main results are stated in Sec- 
tion 5 with relations to previous results summarized in 
Section 6. 

3 Preliminaries 

Throughout this paper F(x) will be a set-valued map 
from G to subsets of llF where 6 is an open subset of 

RF. Also f? denotes the open unit ball in llV’ and 
F(x) + ~23 := {z E lRn : dist(z, F(x ) < E} . 

We use the following definitions (see 1 7, 
(13) 

$5.3, $7.21): 
Definition 1 The set-valued map F is upper semicon- 
tinuous on G if, given x E G, for each E > 0 there exists 
6 > 0 such that, for all < E G satisfying ]x - [] < 6 we 
have F(t) g F(x) + &3. 

Definition 2 The set-valued map F satisfies the basic 
conditions on Q if it is upper semicontinuous on B and, 
for each x E cj, F(x) is nonempty, compact and convex. 

Lemma 1 If the set-valued map F satisfies the basic 
conditions on G and p : G -+ IR>o is a continuous func- 
tion such that for all x E G, wehave {x}+p(x)E C G , 
then the set-v/alued map 

\ 

w U F(t) + ~(4~ 7 
EE{sl+d+P 

which we denote by ?%F(x + p(x)??) + p(x)E , satisfies 
the basic conditions on 6. 
Definition 3 Let 0 be an open subset of B. The set- 
valued map F is said to be locally Lipschitz on 0 if, 
for each x E 6, there exists a neighborhood l.4 C 0 of 
x and a positive real number L such that 

x1,x2 E Z-4 * F(xl) C F(x2) + L[XI -x2/B . (14) 

Given a set-valued map F(x), we can define a solution 
of the differential inclusion 

j: E F(x) . (15) 

Definition 4 A function x : [O,T] + 6 (T > 0) is a 
solution of the differential inclusion (15) if it is abso- 
lutely continuous and satisfies, for almost all t E [0, T], 

w E F(x(t)) . (16) 
A function x : [O,T) + 6 (0 < T 5 00) is a maximal 
solution of the inclusion (15) if it does not have un 
extension which is a solution belonging to 8, i.e., either 
T = 00 or there does not exist a solution y : [O,T+] -+ G 
with T+ > T such that y(t) = x(t) for all t E [O,T). 

The following basic fact about the existence of maximal 
solutions is a combination of [7, $7, Theorem l] and [23, 
Propositions 1 and 21. 
Lemma 2 If F(x) satisfies the basic conditions on B 
then for each x0 E G there exist solutions of (15) for 

suficiently small T > 0 satisfying x(0) = x0. In ad- 
dition, every solution can be extended into a maximal 
solution. Also, if a maximal solution x(s) is defined on 
a bounded interval [0, T) then x(t) + dQ” as t + T. 

Henceforth, we will use 4(-,x) to denote a solution of 
(15) starting at x and we will denote by S(x) the set 
of maximal solutions starting at 2. 

Definition 5 The diflerential inclusion (15) is for- 
ward complete on G if, for all x E G, all solutions 
4 E S(x) are defined (and remain in S) for all t 2 0. 
The differential inclusion (15) is backward complete 
on B if 2 E -F(x) is forward complete on Q. 
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4 Definition/Characterization of KL stability 

Our main stability definition is the following: 

Definition 6 Let wi : 6 --+ $0, i = 1,2, be continu- 
ous. The inclusion 2 E F(x) is KC-stable with respect 
to (~1, wz) on G if it is forward complete on $7 and there 
exists p E KL such that, for each x E g, all solutions 

4 E S(x) satisfy wl(cb(t,x)) 2 P(b~2(z>, t), Vt L 0. 

As mentioned earlier, this stability concept was intro- 
duced in [22] and considered in [12] and [ll]. It is often 
referred to as stability with respect to two measures. 
In the case where A is a closed set, wi (x) = wz(z) = 
]x]A, and (3 = I%“, it has been shown in [13, Proposition 
2.51 that KC-stability is equivalent to uniform (local) 
stability plus uniform (global) boundedness plus uni- 
form (global) attractivity. The same proof technique 
establishes this result for general KC-stability: 

Proposition 1 Let wi : G + lR>o, i = 1,2, be contin- 
uous. The following are equivalent: 
1. The differential inclusion x E F(x) is KL-stable 
with respect to (WI, ~2) on 17. 
2. All of the following hold: 
a) The inclusion k E F(x) is forward complete on 6. 
b) (Uniform stability and global boundedness): There 
exists a class-Km function y such that, for each x E G, 
all solutions r# E S(x) satisfy wl(f#~(t,x)) 5 $wz(x)) 
for all t 2 0. 
c) (Uniform global attractivity): For each r > 0 and 
e > 0, there exists T(r, E) > 0 such that, for each z E G, 
all so&ions 4 E S(x) satisfy 

Q(X) I r , t>T & w1(4(t, x)) I E * 
It can also be shown that when w is a type of indicator 
for a compact set A, KC-stability with respect to (w, w) 
follows from local stability of the set plus attractivity 
to the set from a neighborhood of the set. Uniform 
boundedness and uniform attractivity are guaranteed 
by the fact that the attractor is compact. Before stat- 
ing this result, we make the following definition : 

Definition 7 Given a compact subset A of an open set 
I;, a function w : G + P>,-, is a proper indicator for A 
on B if w is continuous, w(x) = 0 if and only if x E A, 
and Jam- w(x) = 00. 

Remark 4.1 For each open set E and each compact 
set A c (?, there exists a proper indicator function. 
When 6 = IV we can take W(X) = 1x1~. Otherwise, we 
can take, for example, 

Kurzweil used this type of function, with A = {0}, to 
define his notion of strong stability. n 

The next result, which is similar to [lo, Theorem 121, 
shows that, for differential inclusions satisfying the ba- 
sic conditions, the basin of attraction G for a stable, 

compact attractor A is open and, for each function w 
that is a proper indicator for A on G, the differential 
inclusion is KC-stable w.r.t. (w, w) on 6. 

Proposition 2 Let F(x) satisfy the basic conditions 
on an open set 0 and let A c 0 be compact. If the 
set A is stable and the set of points B from which A is 
strongly attractive contains a neighborhood of A, i.e., 

1. Stability: for each E > 0 there exists S > 0 such 
that, for each x E 0 n (d + 6q, each solution 
# E S(x) is defined and belongs to 0 for all t 2 0 
and satisfies ]4(t,x)]d < & for all t 1 0, 

2. Attractivity: the set S of points x E 0 such that 
each solution 4 E S(x) is defined and belongs to 
0 for all t 2 0 and satisfies limt,, ]@(t, [)]A = 0 
contains a neighborhood of A, 

then the set B is open and, for each function w that is a 
proper indicator for A on &7, the diflerential inclusion 
f E F(x) is KL-stable with respect to (w,w) on G’. 

Finally, we characterize KC-stability w.r.t. (wi,wz) in 
Lyapunov function terms: 

Definition 8 Let wi : G -+ II&,, i = 1,2, be contin- 
uous. A function V : G + R>o is a smooth converse 
Lyapunov function for Kl-stlbility w.r.t. (~1, ws) on 

GforF(s) if V( ) . x as smooth on B and there exist class- 
K, functions ~1, ~2 such that, for all x E 8, 

Ql(W (x>> I V(x) 5 Q12(w2(z)) (17) 

(18) 

The motivation for this definition is that (18) guaran- 
tees that the derivative of V(x) along solutions, de- 
noted p(c$(t, x)), satisfies Q(c#(t,x)) < -V(f$(t,x)) for 
almost all t in the interval where $(t, x) exists and be- 
longs to G. It follows that V(d(t,x)) 5 V(x)emt on 
this interval and then, using (17) and assuming forward 
completeness on G, we can deduce KC-stability with re- 
spect to (wi,wz) on 6. (By relying on a result like [13, 
Lemma 4.41, it is possible to deduce KC-stability w.r.t. 
(~1, ~2) on G when V(x) on the right-hand side of (18) 
is replaced by any class-K, function of V(x).) 

5 Main Results 

We are interested in whether KC-stability with re- 
spect to (wi,wz) implies the existence of a smooth con- 
verse Lyapunov function for KC-stability with respect 
to (WI, ~2). This is still an open question, in general. 
What we will indicate here is that a smooth converse 
Lyapunov function exists if and only if the KC-stability 
with respect to (wi, ~2) is robust; that is KC-stability 
with respect to (WI, ws) still holds for a set of differ- 
ential inclusions given by supersets of F. This con- 
cept, which is present in the work of Kurzweil [lo] and 
Clarke, et al. [5], is defined more precisely as follows: 
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Definition 9 Let wi : 6 -+ E+o, i = 1,2, be contin- 
uous. The inclusion ? E F(x) is robustly ICC-stable 
with respect to (wi, ~2) on g if there exists a continu- 
ous function 6 : G 4 B>o such that 
1. {x} + S(x)?? c G; - 
2. the inclusion 

k E F6(2,(x) := WF(x + &x)B) + S(x)i7 

is XL-stable with respect to (WI, wa) on G; 
3. d(x) > 0 for all x E G\ds where 

(19) 

da:= ‘$69: 
1 

sup w(dJ(t, 5)) = 0 7 
eO,cbE&(‘z) 1 

Ss(.) denoting the set of maximal solutions to (19). 

The main feature of the inclusion (19) is that its so- 
lution set includes the solution set of the inclusion 
k E F(z) since F(x) 2 F~c,,(x). Note that even for 
differential equations, robust stability will be expressed 
in terms of stability for a differential inclusion. 
The following theorem emphasizes that robust XL- 
stability with respect to (WI, ~2) is the key property 
for getting a smooth converse Lyapunov function. 

Theorem 1 Let wi : g + E&a, i = 1,2, be continuous 
and let F(x) satisfy the ba& conditions on G. The 
following statements are equivalent: 

1. The inclusion P E F(x) is forward complete on 
g and there exists a smooth converse Lyapunov 
function for XL-stability with respect to (WI, wa) 
on G for F(x). 

2. The inclusion x E F(x) is robustly ICC-stable with 
respect to (WI, ~2) on 6. 

We now specify cases where robust ICC-stability is guar- 
anteed. The first case is when the inclusion is locally 
Lipschitz, perhaps on a certain subset of G: 

Theorem 2 Let wi : 8 + E&a, i = 1,2, be contin- 
uous and let F(x) satisfy the basic conditions on G. 
If the inclusion x E F(x) is ICC-stable with respect to 
(WI, ~2) on 6 and F(x) is locally Lipschitz on an open 
set containing G\d where 

A:= JEW: 
{ 

SUP w1(4(4 0) = 0 . (20) 
ewes 1 

then the inclusion x E F(x) is robustly KC-stable with 
respect to (w~,wz) on G. 

Our next result will be that ICC-stability w.r.t. (wi, WZ) 
implies robust ICC-stability w.r.t. (wi, ~2) in the case 
where wi (x) = ws(x) =: w(x) and the differential inclu- 
sion is backward completable by w-normalization. The 
latter is defined as: 

Definition 10 Let w : 6 -+ lR>s be continuous. The 
differential inclusion i E FG) is backward com- 
pletable by w-normalization if there exists a continu- 
ous function K : G -+ [l, oo), a class-IC function y and 
a positive real number c 2 1 such that 

4x) 5 -&4x)) + c 
and the inclusion 

kE -&F(T) =: F&) 

is backward complete on 6. 

(21) 

(22) 

In this definition, the existence of K(X) making (22) 
backward complete on G is always guaranteed. Indeed, 
from [7, $5, Lemma 151, ~up,e~(~) 10) can be upper 
bounded by a function n,(x) that is continuous on G. 
So, for instance, in the case where G = Iwn, by picking 
K(X) = G,(X) we get s~p,e~,(~) ]v] 5 1 which implies 
that the inclusion (22) is backward complete on Rn. 
The difficulty comes from requiring that &E(z) simul- 
taneously satisfies (21). However, when W(X) is proper 
on 6 this difficulty disappears. More generally we have, 
when D is the Cartesian product B := f& x RnZ with 
&?i an open subset of lRn’ and by writing 

p= 21 [ 1 k2 
E F(x) : (23) 

Proposition 3 If 1) F satisfies the basic conditions 

on G; 2) 12yG inf ~(21, x2) = 00; 3) there exist 
1” X2EW”Z 

positive real numbers C and b such that 

v= [ 1 ;; E F(x) ----*- Iv21 5 4x21 + b 

then the inclusion (23) is backward completable by w- 
normalization. 

With backward completability, KC-stability w.r.t. 
(w, w) implies robust ICC-stability w.r.t. (w,w): 

Theorem 3 Let w : G + E&O be continuous and let 
F(x) satisfy the basic conditions on 4. If the inclusion 
S E F(x) is backward completable by w-normalization 
and KL-stable with respect to (w, w) on G then it is 
robustly KC-stable with respect to (w,w) on E. 

6 Corollaries 

We briefly make connections to previous results on con- 
verse Lyapunov theorems. With the combination of 
Theorems 1 and 2 we recover the converse Lyapunov 
function results of [13] and [25, Theorem 21. We also 
obtain a smooth, global version of [ll, Theorem 3.4.11. 
With the combination of Theorems 1 and 3 together 
with Propositions 1 and 3 we recover Kurzweil’s main 
result [lo, Theorem 71. By replacing Proposition 1 in 
this list with Proposition 2 we recover the main result 
of Clarke, et. al. [5, Theorem 1.21 as well the result 
of Kurzweil for time-invariant, continuous differential 
equations (cf. [lo, Theorem 121). 
Finally, we mention a corollary that is relevant for prob- 
lems of semiglobal practical asymptotic stabilization of 
nonlinear control systems (see, e.g., [26]). We suppose: 

Assumption 1 There exist two compact sets Cl, Ca, 
two strictly positive real numbers p, T and an open set 
0 such that 1) Cl +$ c C:! c (3, 2) F(x) satisfies the 
basic conditions on 0 and is Lipschitz on Cl + pE, 3) 
for all x E Cp, all solutions 4 E S(x) are defined and 
belong to c3 for all t > 0 and belong to Cl for t 2 T. 
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Proposition 4 Under assumption 1 the set 

d := {t E Cl : +(t,<) E cl , v$ E s(s) , vt 2 o} 
is a nonempty, compact stable attractor with basin of 
attraction containing C2. 

As a consequence, Proposition 2 applies for this set A. 
Also, for each function w that is a proper indicator for 
A on its strong domain of attraction, Proposition 3 
allows us to apply Theorem 3 and then Theorem 1. So 
we can state the following converse Lyapunov function 
theorem for finite-time convergence to a compact set 
from a larger compact set : 

Corollary 1 Under Assumption 1, there exist a com- 
pact set A C Cl and an open set 6 > CZ such that, for 
each function w : &? + Iw>o that is a proper indicator 
for A on E, there exists a smooth converse Lyapunov 
function for KC-stability w.r.t. (w, w) on G for F(x). 
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