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Abstract

We consider control systems for which we know two
stabilizing controllers. The former is ‘(optimal” but lo-
cal, the latter is global. We look for a uniting control
law providing a globally stabilizing locally optimal con-
troller. We study several solutions based [m contirmms,
discontinuous, hybrid, time varying controllers. One
criterion of selecticm of a controller is the robmtm!ss of
the global asymptotic stability to vimishing measure-
ment noise. This leads us in particular to consider a
kincl of generalization of Krasovskii solutions for hybrid
systems.

1 Problem statement

1.1 Introduction
In nonlinear control system
merous tools (backstepping,

and related results

theory, we have now nu-
forwarding, feedback lin-

earization, pa.wivation, ...) to design (gl~bidly) wymp
totically stabilizing feedbacks. But, if such feedbacks
give a satisfactory answer to the global asymptotic st a-
bilization problem they are not necessarily intended tm
address the performance problem. As opposed to this
case, for instance via linearization, one may design con-
trollers addressing satisfactorily both the asymptotic
stabilization and the performance problems but only

locally. This leads us to the idea of uniting a local (op-
timal) controller with a gl~bid (stabilizing) controller,
i.e. given 1) a controller w able to stabilize locally
while providing better performance and 2) m controller
u~ providing global ~~ympt,otic stability, we are h ]oking
for a may be timr+varying, Ixmsibly hybrid, dynamic
controller providing uniform global asymptotic stabil-
ity for the overall system while mi~tchil]g exactly the
local controller U1 when the system state component
is in a neighborhood of the cn-igin and matching the
global controller Ug when this component is outside ii

compact set cent aining the origin.

1.2 Problem statement
Let j : II?n x R’”’ ~ R“ be a locally Lipschitz function
SIICIIthat f((), ()) = (). We consider the system

i = f(x, ‘/L) (1)
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We call uniting problem the following:
Let fl be a bounded open connected neighborhood of
the origin (in R“ ) and two continuous controllers w :
D - R’” and Vg : R“ - Rm, where D C R“ is an
open set containing C1OS(Q ), which make the systems
~1 : D ~ R“, XI+ j(x, ul(x)) and jg : R“ 4 R“, x=
~(x, U, (x)) to admit the origin as an asymptotically
stable equilibrium, globally on their respective domain
of definition.

We look for

1.

2.

a bounded closed set A c R“ (e.g. an annulus)
which separates R“ in two connected open sets C~
and G’g (e.g. an open ball and the complement of a
closed ball) such that we have

f-lcclc D. (2)

a control law p(z, s) depending on a parameter s
which may be the time, an extra continuous state
or a discrete state, satisfying for all s

~(x, s) = Ul(x) , Vxc c1 ,
(3)

= Ug(z) , Vx E Cg .

and such that there exists a function ~ of class Kc
such that the z-component X(x,s, t) of any trajec-
tory of the closed loop system starting from (z,s)
satisfies for all t ~ O :

Ilx(% s>~)ll s ml,~ -$) ~ (4)

1.3 Related results
Studies on the uniting problem have already been r~
ported in particular in [10] and [7], In [10] a dynamic
time-invariantcontroller p(z, s) is proposed but it does
not satisfy our requirement (3). Specifically, along the
trajectories, the proposed control converges with time
to the global one U9. In [7], the solution is given in
the form of a continuousstatic tim~invariantcontroller
~(x). It assumes the existence of a continuous path
of stabilizing controllers betwsen w and Ug. Unfortu-
rli~tdy we show by meams of an example that this w
sumptiou can be violated. Actually, for this particular
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example, there is no continuous (and even discontinu-
ous) static time invariantcontroller. This shows that
dynamic extension may be necessary, this being via
time variations,discrete or continuous state.

1.4 Class of controllers and notions of trajecto-
ries
The controllersunder considerationin thispaper admit
the following description (see [9])

‘a= $9(Z,Sc,St, t)
Sc = kC(Z,Sc, Sd,t) (5)
sd = ~d(% .%,s; , ~)

where SCevolves in llt~ for some p and s~ in some finite
set F, the functions u and k. are locally boundecl, and
s; is defined as :

s;(t) = gytsd(s) (6)

The above controller is
– dynamic with the prfisence of s,, and sd,
— time varying due to the presence oft,
– hybrid due to the presence of the cliscrete dynam-

ics of .Sd.

It gives rise to a non classical ordinary differential eqlm-
tion describing the dynamics of the C1OWX1loop system.
In particular this system is infinite dimensioned since
to evaluate s;(t) at time t, we need to know the past
values of S(l(t). As a consequence we have to make pre-
cise what we mean by trajectory. The most natural
clefinition of trajectcmy is

Definition 1.1 (liven (x, sC,s,i, to) tinR“ XRP x YxR,
(b fW?Z!ih?TL (.x(t), SC(t), S,J(t)) d@7Lf3d ML [to, tO + ~) ~S

saa~ to be u classical trajectory of

if

1.

2.

.9.

x = j(X, ~(~, SC,Sd, t))
Sc = kc(x, Sc, s~, t) (7)
Sd = kd(~, Sc, S;, t)

X and S. are absolutely continuous On [to, to + T)
and, for each t i7k[to, to + T), there ezists c >0 such

that Sd iS constant OfL[t, t + C).

For aknost (Lllt in [to,to + T), um }Lave

x(t) = f(x(t), ~(x(t), s.(t), s{i(t), t)) (8)

$Jt) = kc(X(t), S,,(t), S(t(t)l t)

and, for all t in (t., to + T), we havel :

Sal(t) = k,i(X(t), s,,(t), S(i(t), t) . (!))

We have :

To make the dependence on the initial condition more
ezplicit, we denote

(x(X, Sc, Sd, tO, t), Sc(Z,5c, sd, tO, t), Sd(X, sc, sd, tO, t)).

Actually, we are interested in a notion of trajectories
which is robust with respect to measurement noise. For
this resson, we introduce a notion of generalized tra-
jectory (see also [4, 3, 2]).

Definition 1.2 Given (z, SC,sd,to) in ~n X~p XfXR,

a jknction (X(t), S.(t), Sal(t)) defined on [to, to + T) is
said to be a weak generalized trajectory (resp. a strong ,
generalized trajectory) of (7) if (X(t), Se(t)) : [to,to +
T) A R“ xRP is continuous, and with Sd : [to, to+T) ~

3, we have

(x(to), Sc(to), %(to)) = (% s., sd) , (11)

aILd, for each J = [TO,T1], cOmpaCt subinterval of
[to, to +T), and each n irL~, we am find a function en
~lL ~~C([to, to+~)), a f~OZd (Xrt, S.n, sdn) ~7L~n x~p xf,

and a chLssicat trajectory

(-%(x,,, Scn, Sdn, ~o,t), scn(%, %rt, Sdn, ~o,t),
sdn(~n, Sm, Sdn,To, t))

of
x = .f(Z, W(Z+ efi(t), .%,Sd, t))

Sc = kc(z + e,,(t), SC,sd, t) (12)
s~ = kd(~ + en(t), s.! s;!’)

defined i17~a r@t open interval containing J and sat-
isfying

Stlp(x – X~) + SUP(S. – s.. ) + sup(e~) < ~ (13)
J J J

(resp. s:p(X – X.) + s:p(% – S=.) + =Jup(e.) S ~)

and SUC}L that, for all t in J, there exists N, satisf@g

S,ln(t) = Sal(t) ‘v’n a N . (14)

We demke by SUPJ the bound of the function on J and
by fi%%upJ the essential bound. In the above definition
e,,, plays the rcde of a measurement noise on x which
disturbs the control computation and a generalized tra-
jectory is a limit, when the noise vanishes, of disturbed
classical trajectories. (For other motivations for con-
sidering generalized trajectories, see [4, p. 164- 165].)

Of course a classical trajectory is a weak generalized
trajectory and a weak generalized trajectory is a strong
generalized trajectory.

In this paper, we make the distinction in solving the
unitiwg problem considering only the classical trajec-
tories or taking also into account the strong or weak
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generalized trajectories. Usually this distinction is not
made since we have the ft)llowingresldtz :

Theorem 1.3 ITt the case without discrete dynamics

(i.e. withof~t sd)udwt~e~t k,ur~[L pcLrecor~ti~~~~o~~s,
each strong generalized trajectory is a classical trajec-
tory.

The notion of global asymptotic stability for the gener-
alized trajectories is the same as for the classsiudones,
see (4).

The problem of global asymptotic stabilization for
weak generalized trajectories has been conclicleredper
se in [5, 6]. There arestrong connections with the prob-
lem of uniting local and global controllerswe are con-
sideringhere both in the technicalitiesand the results.
In particular, as we shall see, we have also in our con-
text the need for using an hybrid controller.

1.5 Organization of this paper
We first come back, in sectitnl2.1, on the static time-
invariantccmtinuouscontroller pr()p[wtidin [7] but we
show, in section 2.2, a system to which it caun(k be ap-
plied. In fact thissystemmotivatesus for looking at ob-
structions for solving the problem via (flis)colltinl~(~lls
static tim~invariant controllers (see section 2.3). A
first way to round this chtruction is Viii dynamic hy-

brid control. This is done in section 3. We show tl~i~t

indeed the uniting problem can be solved in terms of

weak generalized trajectories but llIlfortlUliltely not in

terms of strong generalized trajectories So finally, in

section 4, we propose a periodic static continu( ms ccm-

troller solving the problem in its wh(de geIleridity.

Due to space limitations, we cannot give the proofs.

In particular, since discrete dynamics i~re present, the

proof of Theorem 3.1 requires a whole miwhinery to

handle generalized trajectories. These proofs ~i~ll be

found in the extended versiml of this paper [8].

2 Static time-invariant controllers

2.1 A solution to the uniting problem
Following the arguments ancl ideas of [7], we get :

Theorem 2.1 Let Q be a bounded ope7L covmected
7Leighborhood of t/Le origin alL ~r~ a~Ld ‘u! a7u~ Wg be iwo

continuous functions 07t Rn. We ussume the exist e7u:e

of

c @ : [0,1] x R“ 4 R’” , 0, CO TdilLUOUS @]L CO ILlleCt;lbg

‘U1 to U{,, ~. e., fOr (LIL!~ il~R?’, We hallc :

$L@,z) = 7L1(X) , +(1, x) = u,,(x) , (15)

Zmo,n [s], we have also:

In the case without dwm-ete dynamics (i.e. ujithout S,l) and whm
kc and ~ are 10CXIJ1Y .bmnded, emit weak gerwmlizeri tmjectmy w
a a KnM ovskii tmjectwy.

● V : [0, 1] x Rn 4 iR20, a Cl function which, for all
s ~ [0, 1], is positive de~nite and radially unbounded

satisfying

1. For each s

, G,** ,* U, JO”G, *uL,. M.wu

Q c {z: V(o, z) <c} (16)

in [0, I] and each x in W’ \ {O}, we have

g(s, x)f(x, @(s, z)) <0, (17)

2?. For each (s, x) satisfying V(s, z) = c, we have

(18)

Under these conditions, we can find a iocally Lipschitz
ful~ctiorL -y and a bounded closed set A such that with

(p(z) = ?)(’y(z), z) (19)

we have (L sohdiorL to the ~Lniting problem in terms of
stro~Lggeneralized trajectories.

Remark 2.2
● In the above statement, the function -y is obtained

as follc)ws:
- for x in C’J,we let -f(x) = O,
– for x in C$, we let -y(x) = 1,
– for z in A, we choose ~(z) as the solution of

V(-y,z) = c , (20)

where

A = {x : CS V(O, X), V(l, Z) ~ C} . (21)

C( = {z : V(o, z) < c} (22)

Cg = {x: c < V(l, z-)} (23)

● With (17) holding for s = 1, we impose that D is
actually Ii?m. In fact this restriction is too strong.
We need only that fl be sufficiently small inside D.
This “sufficiently” is linked to the stability proper-
ties provided by Wg. Not to make our statement too
rxnnplicated, we have preferred to impose D = IW.

2.2 A topological obstruction
Theorem 2.1 provides a solution to the uniting prob-
lem via a static time-invariant continuous controller.
We show in this section that we must not restrict our
attention to only such kind of feedbacks.

Let the system be :

{

i= –yzx

Y=u
(24)
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The data of the uniting problem we consider are

‘u/ = –g +x, (25)

Ug = —y-x, (Xi)

$2 = {(x, y):z2+y2 <+} . (27)

The fact that w and Ug are global asymptotic stabiliz-
ers can be checked with LaSalle’s invariance Theorem
and the Lyapunov function 2X2 + y4.

Let A be any closed set which separates R2 into two
connected open sets Cl and Cg with Cl containing fl.
There exists O < c1 < Cgsuch that

Ag {(Z, y): Cf~X2+92 <C;} . (28)

Assume the existence of a static time-invariant con-
tinuous controller P(X, II) solving the Iulitillg problem.
Then we have

p(x, y) = –y+* ifx2+!iJ~c~
(29)

. -y—x ifc~<x~+~z

and in particular

p(cl, 0) = C[ , p(cf,, o) = –Cf, . (:30)

Since cl and C9 are pmsitiw, the continuity of u inl-
plies the existence of c, strictly positive, such thfit
P(C, 0) = O. It follows that (c, O) is an equilibrilun
of the closed loop system contradicting the fii~t that
u(:r, y) is globally ~symptotical]y stabilizing the origin.

We have established that the conclllsion of Theorem
2.1 does not hold. Its assumptions are violated. Ac-
tuall y the same arglnnent il.!!above shows that there
is no continuous function *(s, (x, y)) cxmuecting w to
Ug and providing a globally asymptotically stilbilizing
controller for each s in [0, 1].

The obstruction observed with the system (24) leacls to
the following necessary condition for the solvability of
the Imiting problem via static time-invariimt continu-
ous feedback

Theorem 2.3 Let (ul, u!,, 0) be the data of a 7L7Ld~lLg

problem. If there ezists a static tirrle-il~~~(~rilLvtt com%h-

uoms control as a solution for thi,s pm lhlb the~b them

e.zi.sts O < c1 < Cg .9qLch that the fu7bctio7bs?781a7d iii,
below are homotopic

Gj I~n–14E := {(X, IL), f(x, ?’) # o} c R“ x R’”
f M (~~, U~(Ci~))

(31)

for i c {1, g}.

The necesary condition given in this theorem, written
in terms of homotopy, can also be expressed in terms
of homology as in [1].

For the system (24), the set 2 is R3 without the z and
y axis. The image of S1 by iil in R3 is an ellipsis in the
pliine given by u + y - x = Owhereas the one by ii~ is an
ellipsis in the plane given by u + y + z = O. We can see
that there is no continuous deformation allowing us to
go frc)m one ellipsis to the other one without crossing
the x or y-axis. So the necessary condition is not met.

We conclude that the class of static tim~invariant
continuous controllers is not rich enough to address
the uniting problem. Before investigating a richer
class, we show that, in some cases, the class of static
time-invariant discontinuous controllers is also not rich
enough.

2.3 Obstruction for a solution with a discontin-
uous static time-invariant controller
For the case where ~ is affine in u, i.e.

where a ancl b are locally Lipschitz, we have

Theorem 2.4 Let (W, ‘UO,fl) be the data of a uniting
prm!dem fm f ofine in u. If the uniting problem is
solvable, in terms of weak generalized trajectories, with
a hxdy bounded static tame-invariant controller, then,

for a7Ly bounded open connected set 6, neighborhood of
tike Ori@t Sdb t)L(ht

Clos(fl) c Q , (33)

the uq~itin~ problem, with data (ul, Ug, fi), is also solv-

able in terms of strong generalized trajectories by a
static time- i7wariant continuous controller.

This Theorenl implies that, when .f is afine in u, if
the uniting problem cannot be solved with a continu-
O1lSstatic time-invariant controller, it cannot be solved
either with a discontinuous static timeinvariant con-
trcdler.

3 Dynamic time-invariant controller with
Hysteresis

3.1 A solution to the uniting problem
A very natural way to overcome the difficultiesencoun-
tered with static time-invariantcontinuous or discon-
tinu[]llscontrollers is to introduce hysteresistaking ad-
Viintiige of the existence of a region where both con-
trollers U1and Ug are appropriate.

Theorem 3.1 Let (u1, u~, Q) be the data of a uniting
pro fdcm. There exists an appropriate bounded closed
set A SILC]L t]Lat t]Le cvntroiler below solves the uniting
problem in terms of weak generalized trajectories

(34)
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where 5,1 is in {O, 1 } tLm~ the functimns y7 a71dL(l satisfy

and

kd(~, W) = O if x E Clos(cl) ,

= Sd if z G int(A) , (36)

=1 if z c clos(Cfl) .

3.2 A problem with strong generalized trajec-
tories
With the fact that, with strong generalized trajectories,
noise with very large amplitude is allowed, Theorem 3.1
is not true. Precisely, for i in {1, ()}, let Xi demke the
solution of :

axi,$’t)=f(X~(Z, t), U~(Xt(~,~))) , Xi($, ‘)) = x

(37)
We have :

Theorem 3.2 Let A be the compact set and (p, k(i) be

the controller given by l%eorenL ?1.1 as a sohdion to
the unitiq problenL. If there ezist a strictly positive

real number E and two compact sets El and E{,, subsets
of A, sthch that, for ail x in El (resp. E!,), there el:istS
T= ~ E SUdLth(Lt

then (A, (~, kd)) does not solve the ul~iti.ngproblen~ i7L

terms of ,stroqLg generalized tTujtx:tovies.

Let us illustrate Theorem 3.2 by considering the f(d-
Iowing system in R2 :

(i, j)= U(Z, y) (40)

The feedback w (x, y) = –(x, y) makes the closed loop
system globally assymptoticall y stable. M(me[wer the
following trajectory defined on [(1,+co) is a triljectory
of the dOSed 1001)systeI1l (40) with ‘/L = U1 :

vt~o, (x:(t), y(t))= (kfy)(-t), o) (41)

Let F be the closed set

F = {(z, o) : x G [1,2]} . (42)

Let s be a Cm function on R2 such tlliit

S(Z, y) = 1 if (:c, u)EF, (43)

= () if d((x, y), F) z ~ . (44)

Let 0 be the function defined, for all (x, y) e IR2,by :

6(X,y) = S(x, y) ?r (45)

Let
~,(% Y) = R((% Y),~(% Y)) w(% Y) (46)

where, for all (z, y) in Itz and for all 8 in [0,27r],
7?((z, y), 0) denotes the rotation with center (z, y) and
angle (3.One can check that Ugmakesthe origin of (40)
globally asymptotically stable.

Let us prove now that the hypothesis of Theorem 3.2
are verified by taking :

El = {(2,0)}, Eg = {(1,0)} . (47)

We note that, for all x in [1,2], we have simply

~g(~, 0) = R((z, o), O(z, o)) Ui(z, o) (48)
—— –Ul(z, o) = (z, o) . (49)

This implies that, with u~ (resp. w), the trajectory
through (1, O) (rmp. (2, O)) is :

Vt ~ [0,hg(2)] , (m(t),~(t))= (exp(t), O) (50)

(resp. = (2exp(–t), O)) .

So (38) and (39) hold. Hence, the controller given by
(34) does not solve the uniting problem in terms of
strong generalizedtrajectoriw for all closed set A c iR2
which separates R2 in two connected open sets Cl and
CU ancl such that we have :

FcA. (51)

4 Static periodic continuous controller

Insteii(l of enriching the class of controllers with non
smooth components, we state here that it is sufficient
to introduce time-dependence.

Theorem 4.1 Let (ut, Ug,Q) be the data of the uniting
problem. Suppose the existence of two bounded open

CO TL7LeCted SetS ~1 iL7Ld ~~ SUCh that :

.~lcrlcr{,c~

. Clos(rl) c r~
● rl (Tesp. r~) rnsstable and attractive for the mm

troller ul (resp. ug)

Under these conditions, u~e can jind an appropriate

bounded closed set A and a continuous time-periodic
flL7LCtil)7L ~ S’14C}L t}L(bt t}Le CO?LtrOtleT U = ~(X, t) SOh)eS

the ~clbitiTLgproblem in terms of strong generalized tra-

jectories.

Remark 4.2 The controller mentioned is the state
ment above can be obtained as follows :
Let

cl = rl, (52)

Co = int(IRn \ rg) , (53)

A = lRn\(CIUCg). (54)
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Let u– and u+ be
to R“ such that :

‘CL– (z) =

—.

‘u+(z) =

——

any continuous functions fnnn R“

~f,(~) if z E R“ \ rti ,
(55)

u1(z) ifx e !Zg .

-ug(z) ifz ER’’\Et ,
(56)

Uj(x) ifx6Cl .

Let r~ be the real numbers defined as

(57)

where X~ (resp. Xl) is a trajectory of i = j(x, u<)(x))
(resp. & = ~(x, w (z))). Let $ be the compiwt
set obtained by collecting the pairs (x, u), with x E
clos (29 \ Xf ) and u in the closed segment with end
points w(x) and Uq(x). We define 7{, as follows :

M= sup 1[$($, ?L)]l , (W))
(x,7L)e&

dist(clos(Zl), R7’ \ Z{,)
-rc =

2A4
(G())

With these notations, we choose -r as i~[ly real nluutwr
satisfying

T > (TQ+2TC+TL) (61)

Let ~ be a -r-periodic CW flmct.ion with vallle 1 [m [(), ~!,]

and On [79 + 2TC+ T~ , T’], and (1 On [T{, + T,,, T!, + T,, + Ti]

We define the controller as

(p(z, t) = -/(t)u+(27) + (1– ‘y(t) )lL(x) . (62)
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