Proceedings of the 38*
Conference on Decision & Control
Phoenix, Arizona USA * December 1999

TuP10 17:20

Uniting Local and Global Controllers

Christophe Prieur

Département de Mathématiques
Ecole Normale Supérieure de Cachan

61 Avenue Wilson
94230 Cachan, France

prieurQdptmaths.ens-cachan.fr

Abstract

We consider control systems for which we know two
stabilizing controllers. The former is “optimal” but lo-
cal, the latter is global. We look for a uniting control
law providing a globally stabilizing locally optimal con-
troller. We study several solutions based on continuous,
discontimuous, hybrid, time varying controllers. One
criterion of selection of a controller is the robustness of
the global asymptotic stability to vanishing measure-
ment noise. This leads us in particular to consider a
kind of generalization of Krasovskii solutions for hybrid
systems.

1 Problem statement and related results

1.1 Introduction

In nonlinear control system theory, we have now nu-
merous tools (backstepping, forwarding, feedback lin-
earization, passivation,...) to design (globally) asymp-
totically stabilizing feedbacks. But, if such feedbacks
give a satisfactory answer to the global asymptotic sta-
bilization problem they are not necessarily intended to
address the performance problem. As opposed to this
case, for instance via linearization, one may design con-
trollers addressing satisfactorily both the asymptotic
stabilization and the performance problems but only
locally. This leads us to the idea of uniting a local (op-
timal) controller with a global (stabilizing) controller,
i.e. given 1) a controller u; able to stabilize locally
while providing better performance and 2) a controller
u, providing global asymptotic stability, we are looking
for a may be time-varying, possibly hybrid, dynamic
controller providing uniform global asymptotic stabil-
ity for the overall system while matching exactly the
local controller u; when the systemn state component
is in a neighborhood of the origin and matching the
global controller u, when this component is outside a
compact set containing the origin.

1.2 Problem statement
Let f:R™ x R™ — R"™ be a locally Lipschitz function
such that f(0,0) = 0. We consider the systemn

& = flz,u) . (1)
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We call uniting problem the following:

Let ©2 be a bounded open connected neighborhood of
the origin (in R™) and two continuous controllers u; :
D — R™ and uy : R® — R™, where D C R” is an
open set containing clos(2), which make the systems
fi :D—=R" z— f(z,w(r)) and f3 : R® — R*, z+>
f(x,uy(x)) to admit the origin as an asymptotically
stable equilibrium, globally on their respective domain
of definition.

We look for

1. a bounded closed set A C R"™ (e.g. an annulus)
which separates R™ in two connected open sets C;
and Cj (e.g. an open ball and the complement of a
closed ball) such that we have

LcC cD.. (2)

2. a control law o(x, 3) depending on a parameter s
which may be the time, an extra continuous state
or a discrete state, satisfying for all s

()0(1:’ S) = ul(x) ) Vr e Cl ’ (3)
= wuy(z), Vzely.

and such that there exists a function 8 of class KL
such that the z-component X(z, s,t) of any trajec-
tory of the closed loop system starting from (z, s)
satisfies for allt > 0 :

X (=, s, 8)| < B(l=ll,t—s). (4)

1.3 Related results

Studies on the uniting problem have already been re-
ported in particular in [10] and [7]. In [10] a dynamic
time-invariant controller ¢(z, s) is proposed but it does
not satisfy our requirement (3). Specifically, along the
trajectories, the proposed control converges with time
to the global one uy. In [7], the solution is given in
the form of a continuous static time-invariant controller
p(z). It assumes the existence of a continuous path
of stabilizing controllers between w; and wu,. Unfortu-
nately we show by means of an example that this as-
sumption can be violated. Actually, for this particular
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example, there is no continuous (and even discontinu-
ous) static time-invariant controller. This shows that
dynamic extension may be necessary, this being via
time variations, discrete or continuous state.

1.4 Class of controllers and notions of trajecto-
ries

The controllers under consideration in this paper admit
the following description (see [9])

u = oz, 84,t)
S¢ = kc(:L‘, Scy 8d, t) (5)
S4 = kd(ﬂ?, Sc, S;v t)

where s, evolves in RP for some p and sy in some finite
set F, the functions u and k. are locally bounded, and
s, is defined as :

s (t) = Li/mtsd(s). (6)

The above controller is
— dynamic with the presence of s, and sy,
— time varying due to the presence of t,
— hybrid due to the presence of the discrete dynam-
ics of s4.

It gives rise to a non classical ordinary differential equa-
tion describing the dynamics of the closed loop system.
In particular this system is infinite dimensional since
to evaluate s; (t) at time ¢, we need to know the past
values of s4(t). As a consequence we have to make pre-
cise what we mean by trajectory. The most natural
definition of trajectory is

Definition 1.1 Given (z, s, sq,t0) in R" xR x F xR,
a function (X (t), S.(t), Sa(t)) defined on [to,to+T) is
said to be a classical trajectory of

T = f(-T, (p(.’lf, Sc,sdat))
S, = kc(-’l:» Scy Sdy t) (7)
sqg = ka(x,se87,1)

if

1. X and S, are absolutely continuous on [to,to + T)
and, for each t in [to,to+T), there exists € > 0 such
that Sy is constant on [t,t +¢€).

2. For almost allt in [ty,to + T), we have

FX(2), p(X (1), Se(t), Su(t), 1)) 8)
kc(X(t)a S{: (t)y Sd(t)1 t)

@3¢
==
o

and, for allt in (tg,to + T), we have® :
Sd(t) = kd(X(t), S{:(t)a S(; (t),t) . (9)
3. We have :

(X (o), Sc(to), Sulto)) = (8, 84) - (10)

INote that we do not. ask for (9) to hold at ¢t = t,.

To make the dependence on the initial condition more
explicit, we denote

(X(m’ Sc,sd,tﬂ, t)a SC(E, Sc, sd)tO,t)’ Sd(z, 8ey 3d,t0,t)).

Actually, we are interested in a notion of trajectories
which is robust with respect to measurement noise. For
this reason, we introduce a notion of generalized tra-
jectory (see also [4, 3, 2]).

Definition 1.2 Given (z, s, sq,t0) in R® xRPx F xR,
a function (X (t), Sc(t), S4(t)) defined on [to,to + T) is
said to be a weak generalized trajectory (resp. a strong
generalized trajectory) of (7) if (X(t), Sc(t)) : [to,to +
T) — R" xRP? is continuous, and with Sy : [to, to+T) —
F, we have

(X(to0), Se(to), Sa(to)) = (z,8c,84) ,  (11)

and, for each J = [ro,T1], compact subinterval of
[to,to+T), and each n in N, we can find a function e,
in L{S ([to, to+T)), a point (&y,, Scn, Sdn) iR xXRP X F,
and a classical trajectory
(Xn(-’l:u, Seny Sdny T0» t), Scn(mna Seny Sdn,y 70, t),

Sdn(-'lfna Seny 8dn, 70, t))

of
T = f(z"p(w"*'en(t))sm det'))
¢ = ko(x+ en(t), se, 54,t) (12)
sa = ka(z+en(t), s, s5,t)

defined on a right open interval containing J and sat-
isfying

(13)

St

sup(X — X,) + sup(S; — Sen) +sup(en) <
J J J

(resp. SUp(X — X») + SUp(Ss — Son) + esssup(en) < =)
J J J n

and such that, for allt in J, there ezists N, satisfying

Sun(t) = Salt) ¥n>N. (14)

We denote by sup; the bound of the function on J and
by esssup ; the essential bound. In the above definition
€n, plays the role of a measurement noise on = which
disturbs the control computation and a generalized tra-
jectory is a limit, when the noise vanishes, of disturbed
classical trajectories. (For other motivations for con-
sidering generalized trajectories, see [4, p.164-165].)

Of course a classical trajectory is a weak generalized
trajectory and a weak generalized trajectory is a strong
generalized trajectory.

In this paper, we make the distinction in solving the
uniting problem considering only the classical trajec-
tories or taking also into account the strong or weak
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generalized trajectories. Usually this distinction is not
made since we have the following result? :

Theorem 1.3 In the case without discrete dynamics
(i.e. without sq) and when k. and @ are continuous,
each strong gemeralized trajectory is a classical trajec-
tory.

The notion of global asymptotic stability for the gener-
alized trajectories is the same as for the classical ones,
see (4).

The problem of global asymptotic stabilization for
weak generalized trajectories has been condidered per
se in [5, 6]. There are strong connections with the prob-
lem of uniting local and global controllers we are con-
sidering here both in the technicalities and the results.
In particular, as we shall see, we have also in our con-
text the need for using an hybrid controller.

1.5 Organization of this paper

We first come back, in section 2.1, on the static time-
invariant continuous controller proposed in [7] but we
show, in section 2.2, a systemn to which it cannot be ap-
plied. In fact this system motivates us for looking at ob-
structions for solving the problem via (dis)continuous
static time-invariant controllers (see section 2.3). A
first way to round this obstruction is via dynamic hy-
brid control. This is done in section 3. We show that
indeed the uniting problem can be solved in terms of
weak generalized trajectories but unfortunately not in
terms of strong generalized trajectories. So finally, in
section 4, we propose a periodic static continuous con-
troller solving the problem in its whole generality.

Due to space limitations, we cannot give the proofs.
In particular, since discrete dynamics are present, the
proof of Theorem 3.1 requires a whole machinery to
handle generalized trajectories. These proofs can be
found in the extended version of this paper [8].

2 Static time-invariant controllers

2.1 A solution to the uniting problem
Following the arguments and ideas of [7], we get :

Theorem 2.1 Let Q be a bounded open connected
neighborhood of the origin in R™ and wy and uy be two
continuous functions on R*. We assume the exvistence

of
e ¢: [0,1] x R® — R™, a continuous path connecting
uy to uy, t.e., for all z in R™, we have :

'¢|(0,{l‘) = ul(a") s

2From (3], we have also:
In the case without discrete dynamics (i.e. without sy) and when
ke and o are locally bounded, each weak generalized trajectory is
a a Krasovskii trajectory.

P(l,x2) = wy(x), (15)
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e V: [0,1] xR" — Rxo, a C! function which, for all
s € |0, 1], is positive definite and radially unbounded
® c a positive real number such that

QC {z:V(0,5)<c} (16)

satisfying
1. For each s in [0,1] and each z in R™\ {0}, we have

Zloa)fl@¥(sa) <0, (1)

2. For each (s, ) satisfying V(s,x) = ¢, we have
—(s,z) < 0. (18)

Under these conditions, we can find a locally Lipschitz
function v and a bounded closed set A such that with

p(z) = ¢Y(v(z), ) (19)

we have a solution to the uniting problem in terms of
strong generalized trajectories.

Remark 2.2
¢ In the above statement, the function v is obtained
as follows:

- for z in C}, we let v(z) =0,
- for « in Gy, we let v(x) =1,
— for z in A, we choose v(z) as the solution of

V(iv,z) = ¢, (20)
where
A = {z:c<V(0,z), V(1,z) <} . (21)
C = {z:V(,z) <¢} (22)
Cy = {z:c<V(l,z)} (23)

e With (17) holding for s = 1, we impose that D is
actually R™. In fact this restriction is too strong.
We need only that Q be sufficiently small inside D.
This “sufficiently” is linked to the stability proper-
ties provided by u,. Not to make our statement too
complicated, we have preferred to impose D = R™.

2.2 A topological obstruction

Theorem 2.1 provides a solution to the uniting prob-
lem via a static time-invariant continuous controller.
We show in this section that we must not restrict our
attention to only such kind of feedbacks.

Let the system be :

y

-2z
u
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The data of the uniting problem we cousider are

w = -y+, (25)
U, = —-yYy-—T, (26)
Q = {{zy) 2+ <3} . (27)

The fact that «; and u, are global asymptotic stabiliz-
ers can be checked with LaSalle’s invariance Theorem
and the Lyapunov function 22 + y*.

Let A be any closed set which separates R? into two
connected open sets C; and C, with C; containing 2.
There exists 0 < ¢; < ¢y such that

AG{@y):d<a?+2<E} . (28

Assume the existence of a static time-invariant con-
tinuous controller ¢(x,y) solving the uniting problem.
Then we have

plz,y) = —y+= ifa?+y? < (20)
= ~—y-—= ifcg < u? 4y
and in particular
e(c,0) = ¢ pleg,0) = —¢, . (30)

Since ¢ and ¢, are positive, the continuity of « im-
plies the existence of ¢, strictly positive, such that
¢(c,0) = 0. Tt follows that (c,0) is an equilibrinm
of the closed loop system contradicting the fact that
u(x,y) is globally asymptotically stabilizing the origin.

We have established that the conclusion of Theorein
2.1 does not hold. Its assumptions are violated. Ac-
tually the same argument as above shows that there
is no continuous function ¥(s, (x,y)) connecting u; to
u, and providing a globally asymptotically stabilizing
controller for each s in [0, 1].

The obstruction observed with the system (24) leads to
the following necessary condition for the solvability of
the uniting problem via static time-invariant continu-
ous feedback

Theorem 2.3 Let (uy, ugy, 1) be the data of a uniting
problem. If there exists a static time-invariant contin-
uous control as a solution for this problem then there
emists 0 < ¢ < ¢y such that the functions 4y und @,
below are homotopic

i :S" 1 =X = {(z,u), flz,u)#0}C R* x R™
€ > (i ui(cl))
(31)
forie {l,g}.

The necessary condition given in this theorem, written
in terms of homotopy, can also be expressed in terms
of homology as in [1].
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For the system (24), the set ¥ is R® without the z and
y axis. The image of 8! by 4, in R3 is an ellipsis in the
plane given by u+y—x = 0 whereas the one by %, is an
ellipsis in the plane given by v +y+x = 0. We can see
that there is no continuous deformation allowing us to
go from one ellipsis to the other one without crossing
the ¢ or y-axis. So the necessary condition is not met.

We conclude that the class of static time-invariant
continuous controllers is not rich enough to address
the uniting problem. Before investigating a richer
class, we show that, in some cases, the class of static
time-invariant discontinuous controllers is also not rich
enough.

2.3 Obstruction for a solution with a discontin-
uous static time-invariant controller
For the case where f is affine in w, i.e.

fla,w) = a(@)+ 3 b (32)
=1

where a and b are locally Lipschitz, we have

Theorem 2.4 Let (w,uy, Q) be the data of a uniting
problem for f affine in u. If the uniting problem is
solvable, in terms of weak generalized trajectories, with
a locally bounded static time-invariant controller, then,
for any bounded open connected set S, neighborhood of
the origin such that

clos() Cc Q, (33)

the unsting problem, with data (u;, ug, 1), is also solv-
able in terms of strong generalized trajectories by a
static time-tnvariant continuous controller.

This Theorem implies that, when f is affine in w, if
the uniting problem cannot be solved with a continu-
ous static time-invariant controller, it cannot be solved
either with a discontinuous static time-invariant con-
troller.

3 Dynamic time-invariant controller with
Hysteresis

3.1 A solution to the uniting problem

A very natural way to overcome the difficulties encoun-
tered with static time-invariant continuous or discon-
tinous controllers is to introduce hysteresis taking ad-
vantage of the existence of a region where both con-
trollers v; and u, are appropriate.

Theorem 3.1 Let (u, uy, ) be the data of a uniting
problem. There exists an appropriate bounded closed
set A such that the controller below solves the uniting
problem in terms of weak generalized trajectories

u = (r,sq) (34)

sa = ka(z,87)



where sq4 is in {0, 1} and the functions ¢ and ky satisfy

p(r,0) = w(z) ifzée€ clso(Cl),
plx,1) = ug(x) fxeR™.

(35)

and

kg(x,sq) = 0 ifxeclos(C),
= sq ifx€int(A), (36)
= 1 fze€clos(Cy).

3.2 A problem with strong generalized trajec-
tories

With the fact that, with strong generalized trajectories,
noise with very large amplitude is allowed, Theorem 3.1
is not true. Precisely, for ¢ in {I, g}, let X; denote the
solution of :

aXia(:;’t) = f(Xi(z,t), ui(Xi(x, 1)) , Xie,0) = .
(37)
We have :

Theorem 3.2 Let A be the compact set and (@, ky) be
the controller given by Theorem 3.1 as o solution to
the uniting problem. If there exist a strictly positive
real number £ and two compact sets Ey and Ey, subsets
of A, such that, for all x in E; (resp. E,), there exists
Tz > € such that

Xi(x,75) € By (resp. Xy (x,72) € Ey) ,  (38)
Xi(x,t) (resp.Xy(x,t)) € int(A) Vt € [0,7,](39)

then (A, (¢, ka)) does not solve the uniting problen. in
terms of strong generalized trajectories.

Let us illustrate Theorem 3.2 by considering the fol-
lowing system in R? :

(#,9) = u(z,y) (40)

The feedback wi(x,y) = —(x, y) makes the closed loop
system globally asymptotically stable. Moreover the
following trajectory defined on [0), +00) is a trajectory
of the closed loop system (40) with u = «; :

vt >0, (x(t),y(t)) = (2exp(—t),0) (41)

Let F be the closed set
F = {(=,0): z€[1,2}} . (42)
Let s be a C* function on R? such that
s(e,y) = 1 if (r,y)€eF, (43)
= 0 if d((z,y), F) 2 (44)

N

Let ¢ be the function defined, for all (x,y) € R?, by :
0(x,y) = s(z,y) ™ (45)
Let
uy(z,y) = R{(x,y), 0(z, y)) wi(z,y) (46)
where, for all (z,y) in R? and for all @ in [0,27],
R((x,y),8) denotes the rotation with center (x,y) and

angle 8. One can check that u, makes the origin of (40)
globally asymptotically stable.

Let us prove now that the hypothesis of Theorem 3.2
are verified by taking :

E ={(2,0)}, E;={(1,0)}. (47)

We note that, for all z in [1, 2], we have simply
Uy(.’l‘-,O) = R((l, 0)?0(1:’ 0))“!(1"» O) (48)
= —u(r,0) = (z,0). (49)

This implies that, with u, (resp. wu;), the trajectory
through (1,0) (resp. (2,0)) is :

vt € [0,1og(2)], (=(t),y(t)) = (exp(t), 0) (50)
(resp. = (2exp(—t),0)) .

So (38) and (39) hold. Hence, the controller given by
(34) does not solve the uniting problem in terms of
strong generalized trajectories for all closed set A C R?
which separates R? in two connected open sets C; and
C, and such that we have :

FCA. (51)

4 Static periodic continuous controller

Instead of enriching the class of controllers with non
smooth components, we state here that it is sufficient
to introduce time-dependence.

Theorem 4.1 Let (u, ug, ) be the data of the uniting
problem. Suppose the existence of two bounded open
connected sets I'y and T'y such that :

e QCIyCcllyCcD

e clos(I')) C Ty,

o I'y (resp. T'y) is stable and attractive for the con-
troller u; (resp. uy)

Under these conditions, we can find an appropriate
bounded closed set A and a continuous time-periodic
function ¢ such that the controller w = (x,t) solves
the uniting problem in terms of strong generalized tra-
gJectories.

Remark 4.2 The controller mentioned is the state-
ment above can be obtained as follows :

Let
Cc = Ty, (52)
C, = int(R"\Ty), (53)
A = R"\(GuC(Cy). (54)



Let u_ and uy be any continuous functions from R™
to R™ such that :

u_(z) = uy(r) ifzeR"\T,, (55)
= wlz) ifrel
up(x) = uy(xr) ifzeR™\I;, (56)
= w(x) ifzeC.
Let 7; be the real numbers defined as
Tg = {s} (567)

max
{z€l,\Ti} {s:X (a: t)GE;,Vt>s}

T o= max min {s} (58)

{zeL ,\Ci} {s: X (z,t)EC,VE>s}

where X, (resp. X)) is a trajectory of & = f(x, uy(x))
(resp. z = f(z,w(x))). Let £ be the compact
set obtained by collecting the pairs (x,u), with = €
clos (I, \ X;) and w in the closed segment with end
points w;(x) and ug(:x). We define 7., as follows :

M = sup ”f(‘r»“)” s (59)
(z,u)EE
dist(clos(L;),R*\ X,) )
Te Wi (60)

With these notations, we choose 7 as any real number
satisfying
T > (1y+27.+7) . (61)

Let v be a 7-periodic C*™ function with value 1 on [0, 7,]
and on [y + 27, + 7, 7], and 0 on 7, + 7, 7y + 7. + 7).
We define the controller as

Pl t) = A(bus(e) + (1—vOhu-(x) . (62)
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