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1. INTRODUCTION 

Given a dynamical system of the form 

:i; = f(x) (1) 

it is often of interest to know if all possible solu­
tions of the system are bounded or if the system 
possesses an unbounded solution. Presented in 
this paper are sufficient conditions for a system 
of the form (1) to possess an unbounded solution. 

When considering whether a system possesses 
an unbounded solution, one is asking how the 
system behaves arbitrarily far away from the 
origin, that is, how it behaves near "infinity". The 
key observation in the paper is that behaviour 
at infinity can be studied using local methods. It 
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to acknowledge the support of Telstra under the TRL 
Postgraduate Fellowship scheme. 

459 

will be shown that the existence of appropriate 
auxiliary functions and variables allows us to 
construct a new system of dimension one greater 
than the original from which local methods can 
be used to infer the existence of an unbounded 
solution of the original system. 

As mentioned above, the result given in the paper 
relies on finding appropriate auxiliary functions 
and variables. In this manner it is similar to 
Lyapunov's stability theorem which requires one 
to find an appropriate auxiliary function, namely 
a Lyapunov function, in order to give a positive 
result about system stability. 

The paper is structured as follows . Sufficient con­
ditions for a system to possess an unbounded 
solution are presented in Section 2. Section 3 
contains some examples that illustrate how the 
results of Section 2 can be used to infer results 
about lack of global stabilizability for nonlinear 
control systems. A partial converse theorem to the 
main result of Section 2 is presented in Section 4 
along with some additional comments. The paper 
ends with some concluding remarks. (Note that a 



technical lemma used in Sections 2 and 4 has been 
placed at the end of the paper in an appendix.) 

2. MAIN RESULT 

In this section sufficient conditions for a system 
to possess an unbounded solution are given. 

Let Z denote the integers, IR the real numbers, 
lR.t. the set {z E IR I z > o} and Cl the 
class of continuously differentiable functions. If 
<p( z, x) is a map from IR x IRn to IRn which is 
differentiable at (z,x) = (a, b), using the notation 
of (Dieudonne, 1960), let DI<P(a, b) denote 

8<p I -(z,x) , 
8z (z,z)=(a,b) 

and D2cp(a, b) denote 

-(z,x) . 8<p I 
8x (z,z)=(a,b) 

Definition 2.1. A stability preserving extension is 
defined to be a Cl function 4J : lR.t. x IRn -+ IRn for 
which there exists a point y E IRn such that 4J has 
properties 

PI. 4J(ZI, 4J(Z2, x)) = 4J(ZIZ2,X) forallz l ,z2 E lR.t. 
and x E IRn, 

P2. 4J(1, x) = x for all x E IRn, 
P3. 'IjJ : IRn -+ IRn, y H D I4J(1,y) is Cl in a 

neighbourhood of y, 
P4. lim(z,II)--t(o+,y) 14J(~,y)1 = 00. 

An example of such a transformation is 4J(z, x) = 
(ZOlXI, ... , ZOnxn ) where 0i E lR, i = 1, ... , n, 
with at least one 0i strictly positive. (This partic­
ular transformation will be considered further in 
Corollary 2.5.) 

Theorem 2.2. Given a function f : IRn -+ IRn and 
an arbitrary continuous function F : !Rn -+ lR.t-, 
define 

f(x) 
g(x) := F(x)' 

If there exists A E lR.t- and a stability preserving 
extension 4J such that 

(1) there exists a function h : IR x !Rn -+ !Rn 
which is Cl in a neighbourhood N of (0, y) 
and which equals 

[D24J(~, y)tlg(4J(~, y)) 
z z 

for all (z, y) E N n (lR.t- x JR1l), 
(2) h(O, y) - ADI 4J(1, y) = 0, and 
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(3) there exists VI ¥ ° E IR and V2 E IRn such 
that 

-AV = Av, 

where 

V=(~~), 

A = (DI~(~'Y) A~2) , 
d 

A22 = D2h(0, y) - A[dy D l h(1, y)]II=Y' 

then the system 

x = f(x) (2) 

" has an unbounded solutipn. 

PROOF. Consider the system 

Z = -AZ 
iJ = h(z,y) - ADI 4J(1,y). 

(3) 

By assumption, h(z,y) is Cl in a neighbourhood 
of (O,y). In addition, from property (P3), 'IjJ(y) = 
D I 4J(1, y) is Cl in a neighbourhood of y and it 
follows that the vector field of (3) is Cl in a 
neighbourhood of (0, y). 

The point (z,y) = (O,y) is an equilibrium point of 
system (3). Linearization of (3) at this point gives 

As -A is a negative eigenvalue of A with an 
associated eigenvector V whose z component, 
VI, is non-zero, the Center Manifold Theorem 
(Guckenheimer and Holmes, 1997) implies the ex­
istence of a solution to (3) passing through a point 
(zO,yO), zO > 0, and converging to (O,y). 

Define 

1 
x(t) := 4J( z(t) , y(t)) (4) 

where (z(t), y(t)) denotes the solution of (3) with 
initial point (zO, yO). Note that z(t) > ° for t E 
[0,00). Differentiating (4) with respect to t gives, 

(5) 

Substituting (3) into (5) and then using condition 
(1) of the theorem statement and simplifying 
gives, 

. A 1 1 
x = - D I 4J( -, y) + g( 4J( -, y)) 

z z z 
1 

- AD24J( -, y)Dl 4J(1, y). 
z 



It now follows from equations (A. 1) and (4) that 
x(t) satisfies 

x = g(x) . (6) 

As z(t) ~ 0+ and y(t) ~ Y, property (P4) implies 
that x(t) is an unbounded solution of (6) . 

Define 

t 

! ds 
r(t) = F(x(s)) ' 

o 

As F(x(t)) is continuous and strictly greater than 
zero for all t E [0, 00) , it follows from the F\mda­
mental Theorem of Calculus that 

dr(t) 
dt 

1 
- F(x(t)) ' 

As r is a strictly monotonically increasing func­
tion of t, it follows that t can be considered as a 
function of r and that 

Define 

Then 

d~~) = F(x(t(r))). 

((r) := x(t(r)) . 

d((r) dx dt 
dr = dt dr 

= /(x(t(r))) F(x(t(r))) 
F(x(t(r))) 

= /(((r)). 
Now r converges to some value T E (0, 00] as 
t ~ 00 and, because of the relationship between r 
and t, t as a function of r converges to infinity as 
r ~ T and it follows that (2) has an unbounded 
solution. • 

Remark 2.3. Note that the net result of dividing 
the vector field / by the positive function F is 
just a nonlinear scaling of time. The orientation of 
the vector field and the trajectories of the system 
remain unchanged. 

Remark 2.4. While the matrix A will always have 
- A as an eigenvalue, it is not clear that it will 
have a corresponding eigenvector v with a non­
zero z component, i.e., that VI ::/: 0. Condition 
(3) of Theorem 2.2 ensures this is the case. That 
VI ::/: ° is central to the proof of Theorem 2.2 as it 
ensures that zO can be chosen to be positive and 
hence that z(t) > ° for all t E [0,00). A sufficient 
condition that VI ::/: ° is that Dlh(O, y) = O. 
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Corollary 2.5. Given a function / : Rn ~ Rn and 
an arbitrary continuous function F : Rn ~ ~, 
define 

/(x) 
g(x) := F(x) 

and let gi : Rn ~ IR, i = 1, . . . , n , denote 
the components of g. H there exists A E ~ , 
aI, . . . , an E R and (tII , .. . , Yn) E Rn such that 

(1) for each i=I , .. . ,n, there exists a function 
hi(z,y) from R x Rn into Rn which is Cl 
in a neighbourhood N of (0, YI, . . . , Yn) and 
which equals 

Ct. (YI Yn ) Z gi -, .. . ,-
ZCtl zCt" 

for all (z, YI , .. . , Yn) E N n (~ x Rn) , 
(2) hi(O,YI , .. . ,Yn) - AaiYi = 0, for all 

1, . .. ,n, 
= 

(3) Yj::/: 0, aj > 0, for some j E {I, . . . ,n}, and 
(4) there exists VI ::/: ° E Rand V2 E Rn such 

that 

-AV = Av, 

where 

then the system 

x=/(x) 

has an unbounded solution. 

PROOF. The result follows in a straightforward 
manner from Theorem 2.2 by choosing the sta­
bility preserving extension 4J(z,x) = (ZCtl XI ,···, 
zCt"xn ). • 

Remark 2.6. The next section contains some ex­
amples that utilize Corollary 2.5. In these exam­
ples, when verifying the conditions of Corollary 
2.5, no formal distinction will be made between 

Ct. (YI Yn ) 
Z gi -, .. . , -

ZCtl zCt" 

and hi . It will follow from the context what is 
meant. 



3. EXAMPLES 

In this section the results of Section 2 are illus­
trated with some examples. In particular, it will 
be shown how the results of Section 2 can be used 
to infer results about lack of global stabilizability 
for nonlinear control systems. 

The following result in Example 3.1 was originally 
proved in (Sepulchre et al., 1997) using quite 
different methods. 

Example 3.1. Consider the system 

Xl = -Xl + X2 X 3 
• 2 

X2 = -X2 + X 1 X 2 (7) 
X3 = U 

where (Xl,X2 , X3) E IR3 denotes the state and u 
the input. It is now shown that there exists no 
Cl partial-state feedback u = k(X3) that globally 
stabilizes (7). 

Rather than giving a concise proof of this result, 
a more lengthy proof is presented in order to try 
to demonstrate the approach one might take in 
trying to prove such a result. 

First, the proof is attempted using F(x) == 1. As 
will be seen, this choice of F does not work out . 
However, in general, when searching for an ap­
propriate function F, F (x) == 1 is a good starting 
point. Even though it may not lead directly to 
the desired result, trying to prove a result using 
F(x) == 1 usually gives good insight into what 
properties the correct F should have. 

Let F(x) == 1. Condition (1) of Corollary 2.5 then 
requires that the functions 

hl = ZQl (_.l!2.... + Y2Y3 ) 
ZQl Z Q 2+Q 3 

= - Yl + ZQ1-Q2-QSY2Y3, 
2 

h2 = ZQ2 ( _ ~ + Yl Y2 ) (8) 
ZQ2 Z2Q l+Q2 

= - Y2 + Z-2Q1Y~Y2' 
h3 = zQ3k(~) 

Z Q 3 

be Cl in a neighbourhood of some point (0, ill, ih, 
ih) (which is still to be determined). As k(X3) is 
allowed to be any Cl function, a necessary and 
sufficient condition that this be true for h3 is 
that 03 = O. The equations for hl and h2 then 
imply that 01 - 02 ~ 0 and -201 ~ 0, that is, 
02 ~ 01 ~ O. This however violates condition (3) 
of Corollary 2.5 that requires at least one of the 
exponents 01, 02 or 03 to be positive. 

The only possible way to overcome this problem 
is to try a different function F . Leaving 03 = 0, 
let 01 be positive. F is now chosen so that h2 is 
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locally Cl . A suitable choice is F = 1 + xi, which 
upon substitution of Xl = Yl / ZQl gives 

The hi equations in (8) now become 

Conditions (1) and (3) of Corollary 2.5 are now 
satisfied if 01 > 0 ~ Z, 301 - 02 ~ 0 E Z and 
ih =J. O. " . 

It must now only be ensured that conditions (2) 
and (4) of Corollary 2.5 are satisfied, Noting that 
h3 = 0 when z = 0 and that 03 0, the 
only additional requirements needed to satisfy 
condition (2) of Corollary 2.5 are that 

ih - )..02ih =0 

when z = 0, and that ).. > 0, In order that 
ill =J. 0 it is required that 301 = 02, rh =J. 0, 
ih =J. 0 and ).. = 1/02. Hence conditions (1) , 
(2) and (3) of Corollary 2.5 are satisfied if for 
example 01 = 1, 02 = 3, 03 = 0, ).. = 1/3 and 
C'ih,i/2,ih) = (3,3,3). It is easily verified that for 
this choice of ai 'S, ).. and y, that Dlh(O,y) = O. 
Remark 2.4 now implies condition (4) of Corollary 
2.5 is also satisfied. This proves the desired result. 

o 

One possibility that freedom to choose F allows is 
the ability to introduce a multiplicative factor z'Y, 
'Y > 0, into the vector field components it, . .. , f n· 

This technique was demonstrated in Example 3.1 
where, by appropriate choice of F, a factor of Z2Ql 

was introduced to make h2 locally continuously 
differentiable. Note that 'Y > 0 cannot be chosen 
too large as this would result in the functions 
h l , ... , hn all being zero when z = 0 and lead to 
an inability to simultaneously satisfy conditions 
(2) and (3) of Corollary 2.5. 

Example 3.2. It is now shown that system (7) 
cannot be globally stabilized via linear full state 
feedback. That is, it will be shown that there does 
not exist a feedback of the form 

u = blXl + b2X2 + b3X3, 

(b l , b2 , b3 ) E IR3, which globally stabilizes (7) . 



Let F = I+xi. Then it is straightforward to verify 
that 

Three sub-cases are considered. 

Case 1: b2 i- O. Let 01 = 2, 02 = 5, 03 = 1, 
A = 1/5 and (ill, ih, 173) = «25~/2)!, 1, 2yU5). It 
is left to the reader to verify that all the conditions 
of Corollary 2.5 are satisfied. (Condition (4) can 
be seen to hold by verifying that Dlh(O,y) = 0.) 
Note that b2 i- 0 ensures Yl i- 0 which is required 
in order to satisfy condition (1) of Corollary 2.5. 

Case 2: bl i- 0, b2 = O. Let 01 = 1, 02 = 
4, 03 = -1, A = 1/4 and (Yl,Y2,Y3) = 
(2Ibl l;,-bdlbl l,-4bdYd. Again it is left to the 
reader to verify that all the conditions of Corollary 
2.5 are satisfied. 

Case 3: bl = 0, b2 = o. In this case u = b3X3 and 
the result follows from Example 3.1. 

This proves the desired result. o 

4. TOWARDS A CONVERSE THEOREM 

In this section a partial converse theorem to The­
orem 2.2 is presented. Some additional comments 
are also made. 

Theorem 4.1. Suppose f : lRn ~ lRn is Cl and 
that the system 

x = f(x) (9) 

has an unbounded solution. Then there exists a Cl 
function 4> : Il4 x an ~ !Rn and a point Y E lRn 

such that 4> satisfies properties (PI), (P2), (P3), 
and 

P4' . lim sup 14>( ~, y) 1 = 00 . 
Z~O+ Z 

Furthermore, there exists a continuous function 
F : !Rn ~ Il4 and a scalar A E Il4 that 
together with 4> satisfy conditions (1), (2) and (3) 
of Theorem 2.2. 

PROOF. Define 

F(x) := 1 + If(xW 

and 
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f(x) 
g(x) := F(x)" 

Let {(t,x) denote the solution of 

tU = g(w), w(O) = x. (10) 

As 9 is Cl and Ig(w)1 < 1 for all w E lRn, 
it follows that {( t, x) is uniquely defined for all 
(t,x) E lR x lRn and furthermore that {(t,x) is Cl 
(Hale, 1980). Define 

4>(z, x) := {(log(z), x) . (11) 

Note that 4>( z, x) is a Cl function on Il4 x 
lRn. General properties of ordinary differential 
equations imply that 4> satisfies property (PI). 
That 4> satisfies property (P2) follows from the 
fact that {(t,x) satisfies (10). 

Differentiating (11) with respect to z gives 

1 
D l 4>(z,x) = -Dl{(log(z),x) . (12) 

z 

Substituting z = 1 into (12) gives 

Dl 4>(I,x) = Dl{(O,x) 
= g({(O,x)) 
= g(x), 

(13) 

where the last two equalities follow from the 
fact that {(t,x) satisfies (10). Property (P3) now 
follows as 9 is a Cl function. 

As (9) has an unbounded solution, it follows from 
Remark 2.3 that the system tU = g(w) has an 
unbounded solution. Hence there exists x E lRn 

such that limsuPHoo 1{(t,x)1 = 00. This implies 

limsupl4>(~,Y)1 = 00 
Z~O+ Z 

where Y = x and hence 4> satisfies property (P4'). 

Substituting x = 4>(1/ z, y) into (13) gives 

1 1 
g(4)(-,y)) = Dl4>(I,4>(-,y)). (14) 

z z 

Combining (14) and (A.I) now gives 

1 1 
g(4)(-,y)) = D24>(-,y)Dl4>(I,y). (15) 

z z 

Lemma A.I shows that [D24>(I/ z, y)tl exists. 
Hence equation (15) gives 

h(z,y) = [D24>(~,Y)1-lg(4>(~,Y)) 
z z (16) 

= Dl 4>(I,y) 

and it follows that h(z, y) is a Cl function. Hence 
condition (1) of Theorem 2.2 is satisfied and so 



is condition (2) by letting A = 1. Equation (16) 
implies Dlh(O, fi) = O. Remark 2.4 now implies 
that condition (3) of Theorem 2.2 is also satisfied. 

• 
Note that the construction of </J in the proof of 
Theorem 4.1 presumes knowledge of the solutions 
of (10). Let A be a real n x n matrix with 
eigenvalue X, Re(X) > 0, and consider the linear 
system 

x= Ax. (17) 

Presuming knowledge of the solutions of (17), 
one can easily find appropriate </J , F and A to 
satisfy Theorem 2.2. What can be said in this case 
without using knowledge of the solutions? Taking 
Qi = 1, i = 1, . . . , n, and F = 1, it is easily verified 
that all the conditions of Corollary 2.5 are satisfied 
if there exists y =I 0 E ]Rn and A E 114 such that 

Ay = Ay. 

Hence, if X is real and positive, Corollary 2.5 
implies (17) has an unbounded solution. If X is 
complex, the choice of Qi'S and F used above fails 
to conclude that the system has an unbounded 
solution. 

This and the gap that exists between properties 
(P4) and (P4') suggests that there may be value 
in using multidimensional extensions. This is a 
path the authors are actively pursuing. 

5. CONCLUDING REMARKS 

In this paper a start was made at exploring the 
use of local methods to analyze behaviour at 
infinity. Presented were sufficient conditions for 
a dynamical system to possess an unbounded 
solution and it was shown that these results can 
be used to infer results about lack of global 
stabilizability for nonlinear control systems. 
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Appendix A. 

The following lemma contains results used in the 
proofs of Theorem 2.2 and Theorem 4.1. 

Lemma A .1. If </J : 114 x]Rn -t ]Rn is a Cl function 
that satisfies properties (PI) and (P2) then 

1 1 1 
D2</J( -, y)DI</J(I, y) = -DI</J( -, y) 

Z Z Z (A.l) 
1 = DI </J(I ,</J(- ,y)) 
Z 

and 

1 1 
[D2</J(-,y)t l = D2</J(Z, </J(-, y)) (A.2) 

Z . \ Z 

for all Z E 114 and y EI'lRn . 

PROOF. Differentiating the identity given in (PI) 
with respect to Z2 gives 

D2</J(ZI, </J(Z2, x) )DI </J(Z2, x) = zlDI </J(ZI Z2, x) . 

The first equality of (A.l) now follows by choosing 
Zl = l/z , Z2 = 1, x = y and applying (P2) . 

Differentiating the identity given in (PI) with 
respect to Zl gives 

Setting Zl = 1, Z2 = 1/ Z and x = y gives the 
second equality of (A.l) . 

From properties (PI) and (P2) , 

1 
</J(z,</J(-,y)) = y. 

Z 

Differentiating with respect to y gives 

This proves (A.2). • 


