
NONLINEAR RESCALING OF CONTROL LAWS 
WITH APPLICATION TO STABILIZATION IN THE 

PRESENCE OF MAGNITUDE SATURATION 

P. Morin _,I R.M. Murray -. L. Praly _.* 

* INRIA, 06902 Sophia-Antipolis Cedex, FRANCE. E-mail: 
pmorin@sophia. inria.fr. 

** Control and Dynamical System (CDS), California Institute of 
Technology, Pasadena, CA 91125, USA. E-mail: 

murray@indra.caltech.edu. 
*** Centre Automatique et Syste.mes (CAS), Ecole des Mines de 

Paris, 77305 Fontainebleau, FRANCE. E-mail: 
praly@cas.ensmp.fr. 

Abstract: Motivated by some recent results on the stabilization of homogeneous 
systems, we present a gain-scheduling approach for the stabilization of non-linear 
systems. Given a one-parameter family of stabilizing feedbacks and associated 
Lyapunov functions, we show how the parameter can be rescaled as a function of the 
state to give a new controller. We apply this approach to the problem of stabilization 
with magnitude limitations. For this problem, we develop a design method for single
input controllable systems with eigenvalues in the left closed plane. 
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1. INTRODUCTION 

The problem of stabilization with control limita
tions is crucial in many applications while, even 
for otherwise linear systems, it cannot be solved 
with standard linear techniques. For controllable 
linear systems subject to magnitude limitations 
on the inputs, globally asymptotically stabilizing 
feedbacks exist if and only if the open loop system 
has no eigenvalues in the open right plane. Under 
this assumption, several design methods have re
cently been developed (see e.g. (Teel, 1992; Suss
mann et al., 1994; Teel, 1995; Megretski, 1996; 
Lin, 1996) and the references therein). Although 
different in their approach and characteristics, all 
these methods rely on some kind of gain schedul
ing, i.e. the control can be viewed as a linear 

1 This author contributed to this work while he. was with 
the CDS Dept. at Caltech as a Post-doctoral fellow. 
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feedback with gains converging to zero as the 
norm of the states tends to infinity. 

Recently, in (M'Closkey and Murray, 1997), a 
rescaling method has been developed to transform 
a smooth feedback (stabilizing a driftless control 
system of homogeneous vector fields) into a ho
mogeneous feedback yielding exponential stabil
ity (this latter property cannot be obtained with 
smooth feedback when the linearization of the 
system is not controllable). A similar approach 
was also developed independently in (Praly, 1997) 
for more general forms of homogeneity. In this 
paper, we extend this approach to general sys
tems, i.e. not necessarily homogeneous. The main 
application that we consider is to the problem 
of stabilization with magnitude limitations. For 
single-input linear controllable systems, we design 
bounded feedbacks which ensure global stabiliza
tion of the controlled system. In this case, the 
controller is just a one-parameter family of linear 



C::===::O::r5, with the parameter properly scaled 
• . n of the state. This gives a rather 

troller and requires very little on-line 
C::::::;:;:::::.i.C~·ion: only the scaling parameter is not ex
~ri-._ defined as a function of the state. Our ap
...... ....,.."'h can be compared with (Teel, 1995; Megret-

996; Lin, 1996) in the sense that we also 
a monotonic family of Lyapunov functions . 

Because we only require these functions to be non-
easing along the trajectories of the controlled 

system, we can find an explicit family of Lya
puno\' functions and more explicit control laws. 
A.s a counterpart, taking into account the mag
nitude limitations is much harder. Also, in the 
special case of a chain of integrators, our family 
of controllers is basically the same as that used by 
(Lauvdal and Murray, 1997). This suggests a way 
to extend (Lauvdal and Murray, 1997). 

The paper is organized as follows. A motivating 
example is treated in Section 2. We present in 
Section 3 the main result on the rescaling of 
control law. In Section 4 we apply this result 
to the stabilization of single-input linear systems 
with control limitations. An example is treated 
in Section 5. The proofs , and other developments 
of this approach, can be found in (Morin et 
al., 1997). 

The following notation will be used. For any 
matrix M, Mi denotes the i-th row of M, and 
M i the upper left minor of order i. For any vector 
(dl , . .. ,dn ) in IRn, Diag(di ) denotes the diagonal 
matrix with di as (i, i)-th entry. Finally, JR+ 
denotes the set of strictly positive real numbers. 

2. MOTIVATING EXAMPLE 

Consider the following system in IR 2 : 

{ 
~l = X2 

X2 == U, 
(1) 

and any linear stabilizing controller u(x) = 
-alXl - a2X2 (aI, a2 > 0) . We want to find a 
bounded globally asymptotically stabilizing feed
back for (1). For any>. > 0, the controller 

is a stabilizing feedback for (1), and the function 

) 
al 2 1 2 

V(A , x = ).4 Xl + ).2 X z (3) 

is non-increasing along the trajectories of the con
trolled system (1)-(2). We note that the rescaling 

. of u and V is nonlinear in ).. Its particular form is 
due to the homogeneity properties of the system. 
Consider the equation V ()., x) == 1. For any x =f:. 0, 
this equation has a unique positive solution 
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Consider now the feedback u(A(x), x) with u(A, x) 
defined by (2) and ).(x) defined by 

..\( ) _ {I ifV(l,x):::; 1, (5) 
x - the solution (4) otherwise . 

We claim that this feedback is bounded and 
ensures global asymptotic stability of (1). The 
boundedness is easily verified from (2) and (4) . 
The asymptotic stability of the closed loop system 

relies on the following fact. Since ~~ < 0 for any 

x -=I 0 and), > 0, and since for V(l,x) > 1, 
V(..\(x),x) = 1, we obtain by differentiating this 
last equality that for V(l ,x) > 1, 

O).j; = _[oVr10V j; < o. (6) 
Ox 0). ox-

This implies that the proper function ..\(.) is non
increasing along the trajectories of the controlled 
system, and this is sufficient to imply asymp
totic stability of the controlled system. Hence, by 
properly "scaling" the family of linear controllers 
(2), we obtain a bounded globally asymptotically 
stabilizing feedback for (1) . Based on homogeneity 
properties, this approach was generalized to any 
chain of integrators in (Praly, 1997). The main 
contribution of this 'paper, is to show that we can 
generalize it to any single-input null-controllable 
system. The following section provides the general 
tool to do it. 

3. RESCALING OF CONTROL LAWS 

Consider a control system 

i; == f(x,u) 

with a one-parameter family of control laws 
u(\.,.) and Lyapunov functions candidates 
V(..\,., .), (A E JR.). 

Assumption: There exists an interval A = 
[).o, +00 ) (or ().o, +00)) in lR such that: 

A. For any). E A, the feedback law u()., x, t) 
makes the origin of the system (7) globally 
asymptotically stable. 

B. For any). E A, the function V()., x, t) is 
non-increasing along the trajectories of (7) 
controlled by u()., x, t) . 

c. u,v E COV. x lRn x IR;lRm ), V(..\,.,.) E 
Cl (IR n x lR; JR) for any). E A, and both u and 
V are T-periodic with respect to t, piecewise 
Cl and everywhere left and right differen
tiable with respect to ). . For any ()., t) E A x 
JR, V("\,., t) is positive definite, proper, and 



vanishes at the origin. For any (A, t) E A x IR, 
u(A, 0, t) = 0. 

With this assumption we shall define a function 
A(x, t) which is equal to AO at x = 0, and is such 
that the feedback u(A(x, t), x, t) is still asymp
totically stable for the system (7). More pre
cisely, we have the following result which extends 
(M'Closkey and Murray, 1997, Th. 4). 

Theorem 1. Suppose that: 

1. For any (x, t), lim V(A, x, t) = ° as A tends to 
+00, and lim V(A,x,t) exists in [0,+00] as A 
tends to AD, so that we can define a partition 
(Eo, Ed ofIRn x JR by: 

Eo = {( x, t): lim V ( A, x, t) ~ I} , 
'\-'\0 

E1={(x,t): lim V(A,x,t»l}. 
A~AO 

2. AD (j. A ==:::} Eo = {O} x JR. 
3. V(A, x, t) = 1 ==:::} ~: V(A, x, t) < 0 and 

8- . 8+ 8- . 
8'\ V(A, x, t) < 0, with 8'\ and 8'\ the nght 
and left derivatives with respect to A. 

Then, 

i) For any (x, t) E E 1 , the equation 

V(A,X,t) = 1 (8) 

has a unique solution A E A. 
ii) The function A, with A(X, t) defined by 

{ 
AO ( x, t) E Eo , 
the solution of (8) (x, t) EEl, (9) 

is CD, Lipschitz continuous on IRn x IR (resp. 
on (JRn \ {o}) x JR) if AO E A (resp. if AD rf. A), 
and T-periodic with respect to t. 

iii) If Ao E A, the feedback law u(x, t) defined by 

u(x, t) = { u(A(x,~), x, t) ~ ; ~: (10) 

is CO and makes the ongm of the system 
(7) globally asymptotically stable. If Ao (j. 
A, u(x, t) makes the origin of (7) globally 
asymptotically stable provided that all solu
tions are well defined. 

Remarks: 1. The main assumption in this The
orem is Assumption 3 introduced in (M'Closkey 
and Murray, 1997) in a different way as a 
"transversality condition". 

2. If AO E A, the feedback law (10) is continuous 
since both (x, t) t---> A(X, t) and (A, x, t) t---> 

u(A, x, t) are continuous, and since u(A, 0, t) == 0 
(Assumption C). If Ao rf. A, we cannot guarantee 
in general that the feedback law (10) is continu
ous at x = O. However, continuity can often be 
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obtained. For instance, in this framework, Theo
rem 1 has nice applications to the stabilization of 
homogeneous systems. We shall not pursue here 
on this topic, but we refer the interested reader to 
(Morin et al., 1997). 

3. When AD E A, (9) and (10) imply that the 
the" A-constant" feedback u( AO, x, t) is applied in 
a neighborhood of the origin (more precisely, in 
Eo = {(x,t) : V(AO,X,t) ~ I}) whereas the "A
varying" feedback U(A(X, t), x, t) is applied outside 
this set. In this case, a possible application of 
Theorem 1 is to the problem of stabilization with 
control limitations, where one wants to satisfy 
some nominal/optimal behavior close to the equi
librium point, and re-scale the controller when 
saturation problems may occur. This application 
is now discussed. 

4. STABILIZATION WITH CONTROL 
LIMITATIONS 

In this section, we consider the problem of stabi
lization with control limitations of the form lui ~ 
M. We consider a single-input linear controllable 
system: 

j; = Ax + bu. (11) 

We assume throughout this section that A is in 
companion form and b = (0, ... ,0, If. 
The design of the control laws is presented bellow. 
First, we construct a family of controllers 2 u( A, .) 
for the system (11) together with a family of 
functions V(A, .). In particular, these controllers 
and functions satisfy Assumptions A, B, and C 
of Section 3. They are also endowed with many 
degrees of freedom. Then, by fixing some of these 
degrees of freedom, we show how to fulfill the three 
assumptions of Theorem l. Therefore we obtain a 
non-linear stabilizing feedback for (11). Finally, 
we show that this feedback is bounded, and how 
to modify this bound. Note that our family of 
function u(A,.) will be explicitly defined. There
fore, the sole on-line computation shall consist in 
solving the implicit equation (8). This is to be 
compared with the results in (Teel, 1995; Megret
ski, 1996; Lin, 1996) where heavier on-line com
putations have to be performed. 

4.1 The families U(A,.) and V(A,.) 

The design of these families is based on the 
properties of the so-called "Schwartz matrices". 
Some of these properties are recalled here. The 
reader can consult (Morin and Samson, 1997) for 
additional properties and applications. 

2 Throughout the rest of this paper, and by contrast 
with the general result of Section 3, all functions will be 
autonomous 



Definition 1. Let S E IR n. The "Schwartz matrix" 
associated with s is defined by 

0 1 0 0 
-Sl 0 1 0 0 

0 -S2 0 1 0 
5(s) = 

0 0 0 
0 0 0 -Sn-2 0 1 
0 0 0 0 -Sn-1 -Sn 

We recall some properties of Schwartz matrices. 

Lemma 1. Let u( x) = K x be any linear stabiliz
ing feedback for (11). Then, there exist a vector 
S E IRn with Si > 0 (i ::::: 1, ... , n), and a linear 
change of coordinates x f----.+ y = ~(s)x which 
transforms the controlled system (11) into 

iJ = 5(s)y. (12) 

Conversely, for any vector S E IRn with Si > 
o (i = 1, ... , n), there exists a linear change of 
coordinates y t---> X = 1/;( s)y which transforms the 
system (12) into the asymptotically stable system 

x = Ax+bK(s)x, 
K(s) = 1/;n(S)5(S)1/;-1(s) - An. 

(13) 

Moreover, 

i) The function xTe(s)D(s)~(s)x, with 

n-1 
D(s) = Diag(I1 Sk), (14) 

k=i 

is non-increasing, and tends to zero, along 
the trajectories of (13). 

ii) 1/;( s) and ~(s) are lower triangular matrices 
such that 1/;i,j (s) ::::: ~i,j (s) ::::: 0 for any 

j ft Ii ~ {j E IN : j :s i and i - j is even} 
and, 

( 

./,. ·(s) = 1 0/1,,1. , 

1/;i,l(S) = -Sl1/Ji-l,2(S) 
(i odd, i > 1) , 

'l/Ji,j(S) = 1/;i-l,j-1(S) - Sj1/;i-1,Hl(S) 
otherwise, 

( 

~i,i(S) = 1, 
~i,l(S) = Si-2~i-2,1(S) 

(iodd,i>I), 
~i,j(S) = ~i-l,j-l(S) + Si-2~i-2,j(S) 

otherwise. 

Remarks: 1. Given a stabilizing controller u(x) = 
K x for (11), there is a systematic way to compute 
the vector S such that the controlled system is 
transformed into (12): the components of s are 
obtained from the first column of the Routh table 
(see e.g. (Chen, 1984, Sec. 8-3,8-5), (Morin and 
Samson, 1997)). 
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2. It is shown in (Sarma et al., 1968) that the. 
exists a change of coordinates which transfo 
the control system (11) into a system in Schwam:; 
form iJ = S(s)y + bu. If A is not Hurwitz, 
vector s is not unique in the sense that t . . 
transformation exists for any S such that t. 

characteristic polynomial of 5(s) is equal to t 

characteristic polynomial of A. 

Lemma 1 provides us with families u().,.) 
V(A, .). Indeed, let A = [1, +00) and consid 
any vector valued function s : A f---t lR:f. 
any function k : A t--t IR+ with s and k beiR' 
Co, piecewise C1 and everywhere left and righ 
differentiable. We define the family u(A,.) by 

L!. 
u(A,x~ = K(A)x ( l ~ ) 
K()") ::::: 1/;n(S()..))S(s()..))~(s()..)) - An, 

and the family V (A, .) by 

V(A,X) ~ k()") xT ~T(s()'))D(s(A))~(S(A))X . 

Then, it immediately follows from Lemma 1 thai 
Assumptions A, B, and C of Section 3 are satisfied 
for the system (11). Therefore, for any choice 
s and k such that the assumptions of Theorem ' 
are satisfied, the controller u()..(x), x) with U(A, x) 
defined by (15), and A(X) defined by 

{
I V(I,x):Sl, 
the solution of V(A, x) = 1 otherwise, (16) 

ensures global asymptotic stability of (11). 

4.2 The stability conditions 

In this section we provide a specific vector-valued 
function s and a function k in order to fulfill the 
assumptions of Theorem 1. 

First, (see Remark 2 in Section 4.1) the system 
(11) can be rewritten, after some possible change 
of coordinates x f----.+ i: into the Schwartz repre
sentation: 

x:::::5(co)x+bu, (17) 

with cr::::: 
(0, ... ,0, wi, 0, ... , w;, 0, CO,m+2p+1,"" CO,n ) 

----- '-v-" ' " ' 
m 2p q 

m is the number of 0 eigenvalues, 2p is the number 
of pure imaginary eigenvalues, and q ::::: n - m - 2p 
is the number of eigenvalues with strictly negative 
real part. Each ±jwi is an imaginary eigenvalue 0: 
A, and the Co,k > O(k ::::: m + 2p + 1, ... ,n) are 
associated with the stable part of A. 



The functions k and Sj are defined by: 

k(.\) 
{ 1}A -2/3 .\ E [1, Ad 

(18) = 1)A~(l-!1) A-2 A> A1, 

{ Cl; .\ E [1, All A )..27"1,. 
Si( ) = ~(~)2'T2" A> Al ' 

(19) 

A27"2.. A2 

The various parameters in (18) and (19) are to be 
chosen as follows: 

1} > 0 is used to modify the bound satisfied by the 
control law. 

Al > 1. 

C1,i > 0 (i = 1, ... , n). These coefficients define 
the (linear) controller applied in a neighborhood 
of the origin. 

The parameters 71,i are defined in order to ensure 
the continuity of the functions Si at A = AI. More 
precisely, we define 

1 
71 i = --(In Cl i-In C2 i + 272 i In >'2) . , 2ln >'1 ' , , 

The parameters 72,i are chosen to guarantee the 
boundedness of the controller, and also to ensure 
in part that Assumption 3 of Theorem 1 is satis
fied, 

o 
1 

2 
n-1 

CO,i '# 0 

CO,i = 0, i = n 

72,i = '""" 1 + L.. 72,k Co,i = 0, 
k=i+1 

m-1~i~n-1 

CO,i = 0, i ::; m - 2. 

(20) 

The parameters C2,i are also chosen in order to 
guarantee Assumption 3 (for A 2 Ad. One can 
show that this assumption is equivalent to 

D(>.)[-R + A ;~ (>.)1/;(>.)] < 0, (21) 

with R = Diag(ri), ri 

(21), we choose: 

,1. ,t if CO,i '# 0 

n-1 

1 + L 72,i· To get 
k=; 

{

C2'=CQ' 

C2,i > 0 if CO,i = 0 and m - 1 < i, (22) 

and for i = 1, ... , m -1, C2,i is recursively defined 
as any solution of the following LM! in c~ .• : 

C;+l Gi+l = (C~Gi ~) + 

C~'i (Ci'i~i+l'l .
0

. Ci'iG~+l'i+l ) 
(23) 

<0 
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with 

i-I 

C = Diag(II _1 ), 
k=l C2,k 

G - -R + [8~(s(;)) W'(-(;))] _ (24) - 8; s 1>-:1' 
_ - C2 I C2 n 
SeA) = (---' , ... , ---' ). 

A27"2.1 >.21'2.n 

All parameters have been specified but {3 and 
A2. These must be chosen in accordance with the 
following proposition. 

Proposition 1. For any choice of the above pa
rameters, Assumptions 1 and 2 of Theorem 1 are 
satisfied and, 

i) There exists ).2 such that for >'2 > ).2, 
Assumption 3 of Theorem 1 is satisfied for 
>. E [A1, +(0). In particular, if all eigenvalues 
of A are zero (i.e., for a chain of integrators), 
Assumption 3 is satisfied for any A2 > O. 

ii) For any A2, there exists {3(A2) such that for 
{3 > {3(>'2), Assumption 3 of Theorem 1 is 
satisfied for A E [l,>'d. 

Remarks: 1. When the control parameters are 
chosen as indicated in Proposition 1, Theorem 1 
applies to yield the stabilizing controller (15). This 
controller has the following characteristics. On the 
set Eo = {x: V(l,x) ::; I}, the function .\(.) is 
identically equal to 1. Therefore, the controller 
(15) is linear on this set. Moreover, in view of 
(19), si(l) = Cl,i' In view of Lemma 1, it fol
lows that any linear controller can be applied 
by choosing the corresponding CI,i' On the set 
{x : V(Al,X) 2 I} = {x : >,(x) 2 Ad, the 
funCtion x is unbounded. Therefore, on this set 
the control limitations will become predominant. 
In particular, note that in view of (19), (20), and 
(22), each function Si(>') tends to the coefficient 
co,; of the open-loop system (17) as >. tends to 
+00. 

2. If one is only interested in semi-global stability 
instead of global stability, one can basically neglect 
the definition of the function S on the interval 
[Al,+oo), and most of the design complexity is 
then avoided. 

4.3 Boundedness of the controller 

We now assume that the functions Si defined by 
(19) have been chosen as indicated in the previ
ous section. We consider the nonlinear globally 
asymptotically stabilizing feedback (15) with A = 
>.(x) defined by (16). We have: 

Proposition 2. The stabilizing feedback u(>.(x), x) 
defined by (15)-(16) is bounded, and the bound is 
proportional to 1}-! (with 1) defined in (18)). 

.. 



5. AN ILLUSTRATIVE EXAMPLE COf<1T'C<\.<W 

We illustrate our design method on the system 

{

Xl = X2 
X2 = X3 
X3 = X4 
X4 = -X3 + u, 

(25) 

for which we assume a magnitude limitation lui ::; 
1. From (15), 

U(A,X) = -Sl S3(A)X1 - (S1 + S2)S4(A)X2 (26) 
-(Sl + S2 + S3)(A)X3 - S4(A)X4 + X3, 

and A(X) is defined by (16) via 

V(A, x) = k(A)[(SIS2S3)(A)xi + (S2S3)(A)X~ 
+S3(A)(X3 + S1 (A)XI)2 + (X4 + (S1 + SZ)(A)X2)2] 

The various parameters which define the functions 
k and Si (i = 1, ... ,4) have been chosen in accor
dance with Section 4.2: 

1/ = 20. This value has been obtained by simula
tion in order to satisfy the constraint lui::::; 1. 

.AI = 2. 

Cl = (1/5, 4/5,5, 4)T. This choice has been made 
to set all the eigenvalues equal to -1 in the domain 
where u is linear (i.e. , in {x: V(l,x)::; I}). 

The vectors 71 and 72 are defined, in view of 
the definition of the other parameters, by 72 = 
(2,1,0, 1/2)T, and 71 = (0,0, (In 5)/(21n 2), 1/2)T. 

C2 = (1/5 ,4/5,1, 2)T. Since m = 2, C2,1 has to 
be chosen to ensure (23) . A simple computation 
shows that (23) is satisfied for any C2,1 > 0 
(because, for i = 1, Ci+lGi+l is diagonal). 

Finally, {3 = .A2 = 1. 

The following simulation result, with initial con
ditions x(O) = (10,2,4, _4)T, illustrates the be
havior of the controlled system (25)-(26). The 
implicit equation V(.A,x) = 1 has been solved 
online by bisection. 

SOLI!>- )(1 

DOTTEO:)u 
D.\SJ«>Onto:Xl 
OASl4EO: X<t 

o \·,/?\\'X.:'-;~"--~=···--===~----j 
J\. /. :/ 

_10:-, ~-~-7;-----:"~~,.;---:,:»,----::->s-"~~,,,,--!,,,. -

.. IA fI 

' .1 

·'2 

-0.' 
V 

V 

., . " " ,. 
" " .. .s ,. ,.., 
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