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Abstract 

This paper2 considers feedback design for nonlinear, 
multi-input affine control systems with disturbances. It 
studies the problem of assigning, by choice of feedback, 
a desirable upper bound to a given control Lyapunov 
function (clf) candidate's derivative along closed-loop 
trajectories. Specific choices for the upper bound are 
motivated by C2 and C, disturbance attenuation prob- 
lems. The main result leads to corollaries on "backstep- 
ping" locally Lipschitz disturbance attenuation control 
laws that are perhaps implicitly defined through a lo- 
cally Lipschitz equation. The results emphasize that 
only rough information about the clf is needed to syn- 
thesize a suitable controller. 

1 Introduction 

One of the main analysis tools for verifying stability 
and/or disturbance attenuation properties for closed- 
loop control systems is the Lyapunov function - a 
smooth, positive definite, radially unbounded func- 
tion. If the derivative of the Lyapunov function can 
be bounded appropriately then the resulting differen- 
tial inequality may be integrated to establish desired 
closed-loop properties, e.g., L2 or Cm disturbance at- 
tenuation. The control synthesis problem can then be 
seen as the problem of finding a Lyapunov function that 
can be assigned a desirable derivative by appropriate 
choice of feedback. 
A (global) control Lyapunov function (clf) for a smooth 
control system of the form j. = f(x) + g(x)u has been 
defined in [13] to be a smooth, positive definite, ra- 
dially unbounded function whose derivative along the 
parameterized vector field f(x) + g(x)u can be made 
negative for each x # 0 by an appropriate choice of the 
control parameter U. When a clf for 2 = f(x) + g(x)u 
is given, a smooth function 7 )  : n t n \ { O }  + IR" can 
be constructed from the clf and its derivatives along 
f(x) and g(x) so that the derivative of the clf along 
the vector field f(x) + g(x )$ ( z )  is negative whenever 
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x # 0. Thus, there is an intimate connection between 
the existence of this type of clf for x = f(z) + g(z)u 
and the construction of a feedback law that renders the 
origin GAS. See [l] and [13] for more details. 
Control Lyapunov functions have also been character- 
ized for control systems with disturbances. In [6, sec- 
tion 41, a robust control Lyapunov function (rclf) for 
a system x = f(x, d)  + g(z, d)u was defined to be a 
smooth, positive definite, radially unbounded function 
whose derivative along f(x, d)  + g(s,  d)u can, for each 
x # 0, be made negative uniformly in d belonging to a 
compact set depending on x by an appropriate choice 
of U. A similar notion is used in [15]. In [6, section 
61, it was pointed out how the notion of an rclf encom- 
passes the Cm disturbance attenuation property. The 
rclf's discussed in [6] don't address other disturbance 
attenuation properties directly but the required mod- 
ifications to the definition of the rclf are not difficult. 
Part of the contribution here is in that direction. 
In this paper, we consider feedback design for nonlin- 
ear, multi-input control systems with disturbances of 
the form x = f(x, d) + g(x)u where z E Et", d E Etp 
and U E IR". In section 2 we motivate, via certain 
disturbance attenuation problems, assigning an upper 
bound to the derivative of a clf for such systems. In 
section 3.1 we will develop a general notion of a clf for 
these systems. The definition of a clf will be in terms 
of a desired upper bound, denoted G(z, d) ,  for the clf's 
derivative and also in terms of a preliminary feedback 
~ ( x )  which is more general than, but can be thought of 
as being like, the derivative of the clf along the matrix 
field g(z). In section 3.2 we will characterize a class 
of upper bounds G ( x , d )  that can be assigned to the 
derivative of the clf based on a bound for the deriva- 
tive of the clf when the derivative of the clf along the 
vector field g(s)r(x)  is zero. In section 4 we will apply 
our results to L, and C2 disturbance attenuation prob- 
lems, including such problems when adding perturbed 
integrators. These problems have also been discussed 
in, e.g., [8] and [7, section 9.51. 

2 Preliminaries 

Motivated by certain disturbance attenuation prob- 
lems discussed below, we will develop sufficient con- 
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ditions for synthesizing a continuous state feedback 
U = k(x) that assigns a given upper bound G(z(t) ,  d ( t ) )  
to the time derivative of a locally Lipschitz clf candi- 
date V(x(t)) along closed-loop trajectories; i.e., we are 
looking for a continuous function k ( z )  SO that 

V(z(t)) 5 G(z( t ) ,d( t ) )  for almost all t (I) 

where z( t )  is an absolutely continuous function s.t. 

k ( t )  = f(x(t), d( t ) )+g(z ( t ) ) k ( z ( t ) )  for almost all t 
(2) 

Throughout the paper when considering solutions of or- 
dinary differential equations, generically denoted X = 
F ( X ,  t ) ,  we assume that the CarathQodory conditions 
are satisfied, i.e., F is continuous in X ,  measurable in t ,  
and for each compact set C of IR.n and each interval [a, b] 
of IR.>o, there exists an integrable function m : [a, b] + 
IR.>o&chthat ( F ( X , t ) l  5 m(t) V(x,t) E Cx[a ,b] .  
This guarantees that, for each initial condition, at least 
one absolutely continuous solution of (2) exists locally 
in time, i.e., on [O,T) for some T > 0. Then, since 
V is locally Lipschitz, V(z(t)) is. absolutely continuous 
[lo, Theorem 2, p. 2451 and V(z(t)) is well-defined 
for almost all t E [O,T) [lo, Corollary, p. 2461. When 
G(x(t), d ( t ) )  is locally C1 , 

V ( t )  := V(x(t)) - V(z(0)) - I" .(z(s),4s))ds (3) 

is absolutely continuous [lo, Theorem 1, p. 2521 with 
derivative defined almost everywhere as 

+( t )  = V(x(t))-G(z(t),d(t)) 5 0 

It follows ([16, Theorem 3.11) that ,  V t  E [O,T), 

for almost all t . 
(4) 

V(z ( t ) )  I V(x(0)) + I ' 6 ( z ( s ) ) ,  4 s ) ) d s  . (5) 

For Cz disturbance attenuation, one function G in (I) 
that we will use is G(z,d)  = y21dI2. If d E C2, i.e., d 
is measurable and lld11; := so" (d(t)I2dt < 00, then we 
have 

If V(z) is positive definite and radially unbounded in 
x then we conclude that each solution is defined on 
[0, 00). In turn, if we also have that (1) is satisfied with 
G(x,d) = -~(x>lh(z)l~ + y21dI2 where ti. is continuous 
and positive, then denoting by V,,, the upper bound 
on V(z(t)) from (6), we have 

V(x(t)) 5 VMO)) + r"ldll; ' (6) 

(7) 
When ~ ( x )  1 this is the standard case of Cz dis- 
turbance attenuation with linear gain y . s (gain y). 
When ti.(.) = l/rl(V(z)) with rl nondecreasing and 
V(z(0)) = 0, we get a nonlinear CZ gain from 

ll&)1122 I ~(-/211d1122~r211dl122 . (8) 

For C, disturbance attenuation, we are interested in 
functions G satisfying 

V(z) 2 max{r(ldI),E) * G(z,d) 5 -.(V(z)) (9) 

where E 2 0, and y and ti. are functions of class-K,, i.e., 
they are continuous, zero at zero, strictly increasing 
and unbounded. If d E C,, i.e., d is measurable and 
lldll, := sup,2o Id(t)l < 00, we then have 

V(X(t)) 2 max {r(l4)14 * V 5 -ti.(V(z(t)) . (10) 

The differential inequality V 5 -~(V(z(t))) is implicit 
in V but here and in other more general situations we 
can bound V(z(t)) using comparison theorems for dif- 
ferential inequalities satisfying the CarathQodory con- 
ditions (see, e.g., [9, Theorem 1.10.21). Such a result is 
used in [14, Proof of Theorem 13 to conclude that if, in 
addition to (lo), V(z) is radially unbounded and there 
exists aclass-K, function b such that b(lh(z)l) 5 V(z) 
then, for all t p 0, Ih(z(t))l satisfies the estimate 

Ih(z(t))l I max{P(lz"17t),b-1 O T ( l l ~ l l C d J % ) }  
(11) 

where P E K C ,  i.e., continuous, class-K, in its first ar- 
gument and decreasing to zero in its second argument. 

We will use the Clarke generalized directional deriva- 
tive, because of its convenient properties when V(z) 
is locally Lipschitz (see, e.g., [2, Propositions 2.1.1, 
2.2.4, 2.3.3, 2.3.13]), to bound the time derivative of 
V(z(t)) along solutions. Because the Clarke general- 
ized directional derivative agrees with the expression 
g ( z ) v  =: L,V(z) when V(z) is continuously differ- 
entiable, and since the reader may want to first digest 
the results for the C' case, we will use the Lie deriva- 
tive notation throughout the paper in place of the more 
typical V" (2; v) for the Clarke generalized directional 
derivative unless there is some need to be precise. As 
further abuse of notation, when g(z)n(z) is a vector 
field we will denote Vo(z; g(z)x(z ) )  by Lg(LIV(z)n(z). 
Also, whenever we write Lg(,lV(z) alone, we mean the 
row vector with i th  column given by Vo(z; gi(z)). This 
last bit of notation will only be used in rigorous state- 
ments when V(z) is continuously differentiable. 

3 Assignable upper bounds for clfs 

3.1 Main result 
We have motivated our desire to solve the following 
problem: given a locally Lipschitz function V(z) and 
another function G(z, d), find, if possible, k ( z )  s.t. 

Lf(,,d]V(4 + Lg(L)V(x)k(z) I G ( 2 ,  4 . (12) 
In fact, we will consider the more specific problem 
where a function T : IRn + IRm is given such that 
Lg(,c~V(z)n(z) is nonpositive and we must find a lo- 
cally bounded, i.e., bounded on compact sets, function 
T) : lRn + IR>o such that - 

k ( z )  = ..(.>dJ(z> (13) 
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solves our problem. For the case where there are no 
disturbances and V ( x )  is C’ and n(z) = - L , ( , ~ V ( X ) ~ ,  
this mirrors Sontag’s “universal formula” for stabiliza- 
tion [13]. We consider more general functions ~ ( x )  
since we will be considering problems where L,(,)V(z) 
is not known exactly. 

Definition 1 When there exists a locally bounded 
function +(x) so that, with (13), (12) holds for  all (2, d )  
the function G ( x , d )  is said to be an assignable upper 
bound for  the derivative of V using K. 

If +*(x) establishes that G(x, d)  is an assignable upper 
bound using K then, since L g ( , ) V ( x ) ~ ( x )  is assumed to 
be nonpositive, any feedback of the form U = ~ ( x ) q ! ( x )  
where +(x) 2 +*(x) also assigns the upper bound 
G(x,d) .  As a consequence, we can always take +(x) 
to be locally Lipschitz or smooth. 
Two properties will be used to characterize when 
G ( x ,  d)  is an assignable upper bound for the derivative 
of V using K. Both will be expressed in terms of 

U(.) := SUP { Lf( , ,qV(x)  - G(z, d ) }  . (14) 
d 

The first property, a ‘clf’ property, parallels the ‘clf’ 
and ‘rclf’ definitions in [13] and [6, Definition 4.11. 

Definition 2 The locally Lipschitz function V ( x )  is 
a control Lyapunov function (clf) for the pair (n,G) 
if L g ( z ) V ( x ) ~ ( x )  is nonpositive, U(.) in (14) is well- 
defined, max (0 ,  w ( x ) }  is locally bounded and for x # 0 

limsup L,(,)V(Z)K(Z) = O limsup U(.) < O . 
2422 2+2 

(15) 

The next property is related to the ‘small control prop- 
erty’ found in [13] in the setting of stabilization without 
disturbances, and in [6] for stabilization with distur- 
bances constrained to a state dependent set. Further 
connections will be made in theorem 3 below. 

Definition 3 The locally Lipschitz function V ( x )  sat- 
isfies the bounded control property (bcp) for the pair 
( K , G )  if there exist x > 0 and V 2 0 s.t., VIZ( 5 x, 

w(2)  + 1/Lg(z)v(x)7r(z) I 0 (16) 

(where w ( x )  was defined in ( l d ) . )  

Theorem 1 If V ( x )  is a control Lyapunow function 
and satisfies the bounded control property for the pair 
(K, 6) then &(xl d )  is an assignable upper bound for  the 
derivative of V using K. 

Proof. Define the function +* : IR.” -+ IR.20 by 

We first establish that +*(x) is locally bounded. The 
bounded control property implies that +*(x) 5 8 for all 
1x1 5 x. For 1x1 2 x, since max(O,w(z)) is assumed to 
be locally bounded and since L,(,)V(x)n(z) is nonpos- 
itive, we just need that limsup,,, L g ( L ) V ( ~ ) ~ ( ~ )  = 0 
implies lim sup,+, U(.) < 0. This follows from (15) in 
the clf property. Next, we need to establish, Vx E IR”, 

4.) + ~g(.C)V(Z)4z)+*(x)  IO (18) 

L f ( S , d ) V ( 4  + L g ( L ) v ( x ) w ! b * ( 4  I G(x, d)  (19) 

for all (z ,d)  E IR” x I R p .  If L g ( , c l V ( x ) ~ ( x )  # 0 then 

~(~)+L,(~)V(z)n(x)+*(x) = w(z)-max (0, U(.)} I 0 .  
(20) 

When L,(,)V(S)K(Z) = 0 we must show that U(.) I 0. 
From the bounded control property, when 1x1 <_ x and 
L g ( . C I V ( x ) ~ ( x )  = 0 we have w ( x )  5 0. For 1x1 2 x, 

which, from the definition of U($) ,  is equivalent to 

Lg( , )V(x)x(x)  = 0 lim sup L,(,)V(Z)T(Z) = 0 
,+.I! 

(21) 
so from (15) in the clf property we also have that 
L g ( , ) V ( x ) ~ ( x )  = 0 and 1x1 2 x imply w(x)  5 0. A 

The function +*(x) is the minimum norm value for w, 
as a function of x, that satisfies 

4.) + vLg(,)V(x)+) I 0 . (22) 

It is the same choice as in [6, equation (23)]. When U(.) 

and L,(,)V(x).~r(x) are locally Lipschitz on lRn\ (0) 
then it is not difficult to verify that +*(x) defined in 
(17) is locally Lipschitz on IRn\ (0). If n(x) and +*(x) 
are locally Lipschitz on IRn\(0) and ~ ( x )  is every- 
where continuous and zero at zero then the feedback 
we are proposing, U = n(z)+(x) ,  is locally Lipschitz 
on IR”\ (0) and everywhere continuous. This observa- 
tion is useful for guaranteeing existence of solutions to 
the closed-loop differential equation. Recall that even 
when $*(x) is not locally Lipschitz we can always upper 
bound it by a locally Lipschitz (on IR“) function and 
assign the same bound G ( x , d ) .  This emphasizes that 
only rough information about the system and V ( x )  is 
needed to synthesize our controller. For example, as- 
suming that V(z) is a clf and satisfies bcp for (T,  G ) ,  we 
only need to find an upper bound for the function +*(x) 
defined in (17) to assign the bound G. Moreover, in 
the case where V is a clf for the pair ( - L , ( , ~ v ( x ) ~ ,  G), 
we do not need the exact magnitude or direction of 
L,(,)V(x) to find a smooth function ~ ( x )  such that V 
is a clf for the pair ( K , G ) .  This observation is related 
to gain and phase margin properties of L,V controllers 
made precise in [12]. 
If V ( x )  and L,(,lV(z) are known and V ( z )  is a clf and 
satisfies bcp for the pair ( - L , ( , ) V ( Z ) ~ ,  G(x)):  there 
exist x > 0 and 1/ 2 0 such that for all 1x1 I x, 

SUP { L f ( r , d ) V ( 4  - G W ) }  F W,(,)V(4I2 > (23) 
d 

2499 
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then the control can be taken as 

with $,, continuous s.t. $,v(V(x) )  2 $*(x). So, maybe 
after reassigning the values of the level sets of V to 
obtain a new clf V, we can assign the upper bound 
$v(V(x))Cr(x, d) to the derivative of V using an 'LgV'  
controller (cf. [12, section 3.4.31 and [4]). 

3.2 Sufficient conditions for clf 
The next two results provide sufficient conditions for 
V to be a clf for the pair (n,Cr). The advantage of 
these results is that they can be used to guarantee that 
(15) holds without actually having to compute U(.). 

The sufficient conditions are given in terms of a rela- 
tionship between Cr(x,d) and a bound on Lf( .C,d)V(x)  
when L,(,)V(x)n(z) = 0 (the quantity L,(,)V(z)n(x) 
is assumed to be continuous in these results.) 

Theorem 2 Let V : IR" + IR20 be locally Lipschitz 
and let T : IR" + I R m  be such that L g ( . C ) V ( x ) ~ ( x )  is 
continuous and nonpositive. Let a (x ,d )  be a function 
such that L g ( z ) V ( x ) ~ ( x )  = 0 implies Lf( , ,d)V(x) 5 
a ( x , d ) .  Then V ( x )  *is a clf f o r  the pair (n,&) for any 
Cr satisfying all of the following: 

supd {L f ( .C ,d~V(s )  - G(x, d ) }  is well-defined and 
locally bounded, 

Cr(x,d) as lower semi-continuous on the set 
L,(,)V(z)n(x) = 0 ,  i.e., 

3 pl(x) (continuous and nonnegative) and p2(x) 
(continuous and positive definite) s.t. 

PI 2 P l b )  * L f ( , , d ) V ( Z )  - G(x,d)  5 -P2 (Z ) ,  

&(s, d)-a(x ,  d )  2 p(x)  for  some continuous, pos- 
itive definite function p. 

Corollary 1 Let V : IR" + IR>o be locally Lip- 
schitz and let 7r : IR" -+ km be such that 
L g ( e ) V ( x ) ~ ( x )  is continuous and nonpositive. Let 
a(%, d )  be a function such that L,(,)V(z)n(x) = 0 im- 
plies Lf( , ,d)V(x) 5 a(x ,d)  and such that the quantity 
supd { Lf( .C,d)V(x)  - a($, d ) }  is well-defined and locally 
bounded. Then V ( x )  is a clf for  the pair ( T ,  6) for any 
Cr satisfying 

1.  6 is lower semi-continuous on the set 
L g ( r ) V ( Z ) T ( 4  = 0, 

2. 3 pl(x) (cont., pos. def.) and p 2 ( d )  (cont., pos. 
def., radially unbounded) s.t. 

(.y(x, 4 - L max { P l  (x), P 2 ( 4 )  . (25) 

3.3 Sufficient conditions for bcp 
Throughout this section we assume that V is contin- 
uously differentiable and we address the relationship 
between the bounded control property (definition 3) 
and the more familiar small control property used in 
[13] and [6]. We will show that the bounded control 
property holds if a small control property holds (see 
definition 5 )  and the function n(x) is strong enough. 
The latter is made precise by the following definition: 

Definition 4 Given a C' function V ( x )  and a func- 
tion X : R.>o + R.>o, the junction T is said to locally 
dominate X-af thereesis tx  > 0 and p > 0 s.t., Vlxl 5 x ,  

Definition 5 The C' function V satisfies the small 
control property (scp) for (Y if there exists a continuous, 
positive definite junction p(x) satisfying: for each E > 
0 ,  there exists U > 0 such that 1x1 5 U implies the 
existence of U such that [ U [  5 E and 

SUP { Lf( . ,d)V(4 - & ( x , d ) }  + L,( , )V(Z)U + P b )  I 0 . 
d 

Theorem 3 I f  the C1 function V satisfies the small 
control property for  6 then there exists : m.20 + 
R.20 smooth on (0, oo), continuous everywhere and zero 
at zero, such that i f  T locally dominates X then V ( x )  
satisfies the bounded control property f o r  (n,  6). 

There are simple examples illustrating a tradeoff be- 
tween smoothness of the control at  the origin and the 
inherent gain and phase margin robustness of L,V-type 
controllers. However, it is possible to get smoothness 
near the origin while still retaining L,V-type controller 
properties away from the origin (see the full-length ver- 
sion for more details). 

4 Disturbance attenuation clf's 

This section includes a study of assigning 132 or C, 
input-output gain when adding integrators. In partic- 
ular, we will study the system 

(26) 
where the output function h(z)  is continuous, and we 
will discuss what can be said about gain assignment for 
the full system based on what can be said for the 21 
subsystem with 22 thought of as control. For other re- 
sults on "backstepping" locally Lipschitz control laws, 
see [5, Section 5.41 and [3]. 
Recall that we say d E IC, if d is essentially bounded, 
i.e., lldll, := ess. sup Id(t)l < 00. We say that d E Cz 

if d is square integrable, i.e., lldllz := lo" Id(t)12dt < 00. 

t>o 

2500 

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on December 2, 2009 at 05:22 from IEEE Xplore.  Restrictions apply. 



4.1 ISS clf's 
For the C, (ISS/IOS) case, we have motivated in sec- 
tion 2 that we want to assign to the derivative of V a 
bound G ( 2 ,  d)  that satisfies 

V(S> 2 max {r(ldl), €1 - 6(2, 4 5 -K(V(X)) 
(27) 

for some E 2 0 and functions y and K of class-K, 
(continuous, zero at  zero, strictly increasing and un- 
bounded). The following assumption on V and n will 
make V a clf for the pair (n, 6) with 6 satisfying (27). 

Assumption 1 The locally Lipschitz, positive defi- 
nite, radially unbounded function V ( x ) ,  the function 
~ ( x ) ,  the class-IC, functions 6 ,  y and K satisfy 

1. 6(lh(.>l) I V b ) ,  

3. (Lg(,)V(4X(4 = 0 1 V(X) 2 r(ldl)} 

2. Lg( , )  V(z)n(x) is continuous and nonpositive, - 
Lf(Z>d)V(4 I -.(V(Z)) . 

Remark 4.1 From [6, Definition 4.11, when V is C1 
and if L,(,)V(z)n(z) = 0 only when L,(,lV(z) = 0 

A 

Corollary 2 If assumption 1 holds then 3G(z,d) s.t. 

then assumption 1 makes V a rclf. 

V(Z) 2 Wl) - 6(z,d)  I -0.54V(Z)) 
(28) 

such that V(z) is a clf for the pair (n, 6). Moreover, 
V(x) satisfies bcp f o r  (n ,6)  if there exist x > 0 and 
fi 2 0 such that 

The next corollary says that if an C, gain with an 
arbitrarily small offset at the origin is allowed, i.e., E > 
0 in (27), then bcp will hold as long as f(0,O) = 0. 

Corollary 3 If assumption 1 holds and f (0 ,O)  = 0 
and V(0) = 0 then, for  each E > 0 ,  3Gi,(z,d) s.t. 

V(Z) 2 max {r(ldl), E) ==+ k ( x , d )  L -0.5K(V(Z)) 
(30) 

s.t. V(x) is o clf and satisfies bcp for the pair (n,6). 
The next corollary says that if V satisfies bcp for some 
continuous, negative definite function a(x)  when d E 0 
then the Cm gain y can be modified locally so that bcp 
holds for (n, &) where 6(x,  d)  satisfies (27) with E = 0. 
Corollary 4 If assumption 1 holds and, for the system 
j. = f(z,  0) + g(z)u, V(z) satisfies the bounded control 
property for the pair (n, -k(V(z))) then, for  each U > 0 
there exist class-Km functions 7" and IC" and a function 
&(2, d) satisfying 

s 2 U ==+ rv(s) = y(s) 1 ICY(.) = 4 s )  

v ( ~ : )  2 rv(idi) =+ ~ " ( 2 , d )  5 - 0 . 5 ~ . , ( ~ ( 4 )  
(31) 

s.t. V(z)  is a clf and satisfies bcp for  the pair (n,&). 

The next result, which applies to the system (26) where 
a perturbed integrator is added, is similar to what is 
reported in [8] and [ll]. 

Proposition 1 For the system (26), af there exist a 
locally Lipschitz function 81 (21) , a locally Lipschitz 
function n(x), a positive definite, radially unbounded, 
locally Lipschitz function VI (XI) and three class-Km 
functions 6 ,  y and K satisfying: 

1. S(lNz>l> 5 Vl(21) 

2. Vl(21) 2 r(ldl) , 2 2  = Ol(Zl) * 
Lg(z,d)Vl(21) 5 - W l ( ~ 1 ) ) ,  

3. ( 2 2  - er(zl))Tn(z) is nonpositive and zero only 
when 2 2  = 81 ( 2 1 )  

then, for each p > 0 ,  the functions 

V(X) = v1(2d + 4 x 2  - e1(21)12 (32) 

n(x) and 6 ,  y and K satisfy assumption 1.  

Combining the proposition with corollary 2, we have 
conditions under which V(z) defined in (32) is a clf for 
the pair (n, 6) with 6 satisfying (28). If V(z) also satis- 
fies (29) then combining corollary 2 with theorem 1, we 
have a new locally Lipschitz feedback & ( x )  = n ( x ) $ J ( z )  
and a new positive definite radially unbounded locally 
Lipschitz function V2(2) = V(z) that can be used for 
another application of the proposition if another per- 
turbed integrator is added. In the process, y, which 
characterizes the IOS gain, remains unchanged, and K 

becomes 0 . 5 ~ .  By iterating this process for a chain 
of n perturbed integrators (which is possible if, at 
each step, a bounded control property holds), we get 
a control law of the form U = $n-l(~)nn-l(z) where 
ni-l(z) = -(2i - ni-2(z)$i-2(x)) and $Ji(z) comes 
from the i th application of corollary 2 with theorem 
1. The form of this control law is very similar to what 
is used in [17] for semi-global stabilization with partial 
state feedback. The only difference is that, there, the 
functions $i(s) are (sufficiently large) constants. 

4.2 C2 clf's 
For C2 disturbance attenuation problems, we have mo- 
tivated in section 2 that we want to assign to the deriva- 
tive of V a bound G(2,  d) of the form 

6(2, d) = -.(2)1h(2)12 + y21d12 (33) 

where K. is a continuous, positive-valued function. We 
will see that the following assumption on V and n will 
make V a clf for the pair (n, 6) with 6 of the form given 
in (33). 

Assumption 2 The locally Lipschitz, positive defi- 
nite, radially unbounded function V, a continuous, pos- 
itive definite function a! : IR." -+ I R . ~ o ,  a strictly pos- 
itive real number y, a continuous function K : IR." 4 

IR.>o and a function A satisfy: 
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1 .  L,(,)V(x)n(x) is continuous and nonpositive, 

2. Lg(,)V(2)7r(2) = 0 - Lf(2,d)VW 5 
-a($) - K(z)lh(z)l2 + y2(dI2 , 

3. there exists p1 (x) (continuous, nonnegative) and 
p2 (x) (continuous, positive definite) such that 

Id1 2 P l b )  - 
Lf(,,d)V(z) + 0 . 5 a ( ~ )  + .(x)lh(x)I’ - y21dI2 I -~2(x) . 

Corollary 5 If assumption 2 i s  satisfied then V(x) is 
a control Lyapunov function for the pair (n, 6) where 

(34) 

If f (2, d)  is affine in d,  i.e., f (2, d)  = fo(x) + f i  (x)d, 
then the third condition of assumption 2 is automati- 
cally satisfied. For this ’affine case and when V is C1 
and L,(,)V(x)n(x) = 0 only when L,(,)V(x) = 0 and 
K ( Z )  1, this type of result has already been estab- 
lished in [7, Lemma 9.5.2, Lemma 9.5.31. Those re- 
sults produce an everywhere smooth controller but the 
controllers are not of the L,V-type - the controllers 
U = k ( z )  are not such that L,(,)V(z)k(x) is nonpos- 
itive. (The use of L,V-type controllers for achieving 
the result we have presented is discussed at  the end of 
[7, section 9.51.) Thus, for the affine case, if the V(x) 
does not satisfy bcp for the pair (n,6), where 6 is de- 
fined in (34) with ~ ( x )  = l ,  the results of [7] and the 
discussion at  the end of section 3 may be used to get 
a controller that is smooth at the origin but with the 
L,(,lV(x) structure away from the origin. 
We again consider the system (26) with the added as- 
sumption that d enters in an affine manner. The result 
here is essentially the same as those in [7, Theorem 
9.5.4, Corollary 9.5.61. 

Proposition 2 For the system (26) under the assump- 
tion that d enters in an affine manner, af there exist 
a locally Lipschitz function 81 (xl), a locally Lipschitz 
function n (x ) ,  a positive definite, radially unbounded, 
locally Lipschitz function VI ( 2 1 )  , a continuous, posi- 
tive definite function a1, a continuous, positive-valued 
function ~l(x1) and a strictly positive real number y 
such that 

6 ( x ,  d) = -0.5a(x) - ~(x)1h(x)1’ + y21dI2 . 

I .  x2 = el(xl) - L,(,,d)V1(21) I 
-w(x1) - K1(x1)/h(x)I2 + -Y21dI2 , 

2. (22 - c91(x1))Tn(z) is nonpositive and zero only 
when 22 = 81(x1) 

then, f o r  each p > 0 and each continuous, positive def-  
inite function a (x )  satisfying 

x2 =e l (x l )  - a ( x )  ~ a ~ ( x ~ )  , (35) 

the functions 

V(Z) = v1(d  + P I Z ~  -81(~1)12 (36) 
~ ( x ) ,  a(x ) ,  &(x) = KI(ZI) and y satisfy assumption 2. 

Combining the proposition with corollary 5,  we have 
conditions under which V(x) defined in (36) is a clf for 
the pair (n, 6) with 6 satisfying (34). If V(x) also sat- 
isfies bcp for this pair then, with theorem 1, we have 
a new locally Lipschitz feedback &(x) = n(x)$(x)  and 
a new pos. def., radially unbounded locally Lipschitz 
function V~(Z)  = V(x) that can be used for another ap- 
plication of the proposition if another perturbed inte- 
grator is added. In the process, y and K ,  which charac- 
terize the C2 gain, remain unchanged. This procedure 
can be repeated for a chain of perturbed integrators of 
length n as long as at each step bcp is satisfied. 
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