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Abstract

This paper presents a dynamic state feedback ap-
proach to the semiglobal stabilization of nonlinear
systems with minimum-phase dynamic input uncer-
tainties. The assumption needed to get this new re-
sult is weaker than the assumption of input feedback
passivity or that of nonlinear small gain considered
up to now. Here we show how the result proposed
in [3] can be extended to the general relative degree
case. For ease of presentation, we restrict ourselves
to the single input single output case.

1 Introduction

Although more and more results are made avail-
able on global stabilization of nonlinear systems, it
is known (see [10] for instance) that this property
may be lost in the presence of some dynamic input
uncertainties. Nevertheless, it can be made robust
to input strictly passive dynamic uncertainties (see
[9, 5]) or those satisfying a small gain condition (see
[4, 2]). Such dynamic uncertainties are minimum
phase and with zero relative degree.

In this paper, we prove that the minimum-phase
property only is already sufficient. This fact is
known for linear systems. It has been extended to
the nonlinear case in [3] for the relative degree zero
case. We state it here for a general relative degree.
The price to be paid in this generalization is that
we will only achieve a semiglobal (practical) stabi-
lization and that the dominant part of the “high-
frequency” gain as well as the relative degree are
needed to be known.

Section 2 describes the class of systems to be con-
trolled and states the needed assumptions on the
plant. Section 3 proposes an observer/controller
mixed scheme and formulates the main results. Sec-

tion 4 gives the proof of the main theorem. Con-
cluding remarks are contained in Section 5.

2 Systems and Problem Statement

We consider systems of the form

ẋ = f(x) + g(x)y

ż = q(z, x, u)

y = h(z, x, u)

(1)

where x in R
n denotes the state of the certain part, z

in R
p is the state of the uncertain part (i.e. not avail-

able for feedback design), u in R is the control input,
y in R is the output of the uncertain z-subsystem
and the input of the certain x-subsystem.

The goal of this paper is to address the following
control problems for system (1).

Semiglobal Practical Stabilization Problem.
Find a family of dynamic feedback laws, indexed by
λ ∈ R

�,

σ̇ = νλ(σ, x) , u = μλ(σ, x) (2)

in such a way that, for any given compact neighbor-
hoods Ω1, Ω2 of (x, z) = 0 with the property that
Ω1 ⊂ Ω2, there exist a parameter vector λ and a
compact set Ωσ such that all the solutions of the
closed-loop system (1), (2) starting from Ω2 × Ωσ

reach Ω1 × Ωσ in finite time.

Semiglobal Asymptotic Stabilization Prob-
lem. For any given compact set Ω of (x, z) = 0,
design a dynamic feedback law of the form (2) so
that the origin of the closed-loop system is asymp-
totically stable with basin of attraction containing
Ω × Ωσ for some compact set Ωσ.

The above problems will be solved on the basis of
the following assumptions.



Assumption 1 (Uniform relative degree) There
exist a nonnegative integer m ≥ 0 and a global dif-
feomorphism Ψ such that Ψ(z) = z if m = 0 and
Ψ(z) = (y, y1, . . . , ym−1, ζ) if m > 0 and that the
z-subsystem of (1) is rewritten as

ẏ = y1

...

ẏm−2 = ym−1

ẏm−1 = u − h1(y, y1, . . . , ym−1, ζ, x, u)

ζ̇ = qζ(y, y1, . . . , ym−1, ζ, x, u)

(3)

where h1 and qζ are C2 and there is a real number
ε ∈ (0, 1] so that, for all (y, y1 , . . . , ym−1, ζ, x, u)∣∣∣∣∂h1

∂u
(y, y1, . . . , ym−1, ζ, x, u)

∣∣∣∣ ≤ 1 − ε . (4)

The constraint (4) in this Assumption means that
the dominant part of the “high frequency” gain is
known (and normalized to 1).

The zero relative degree case (i.e. m = 0) was con-
sidered in [3]. In the rest of this paper, we consider
the nonzero relative degree case, i.e. m > 0.

Assumption 2 (Minimum-phase) There exist a
C1 positive definite, radially unbounded function
W , a class-K∞ function α and a class-K function
γ such that, for all (y, y1 , . . . , ym−1, ζ, x, u),

∂W

∂ζ
(ζ)qζ (y, y1, . . . , ym−1, ζ, x, u) (5)

≤ −α(|ζ|) + γ(|(x, y, . . . , ym−1)|) .

This assumption implies that, whatever the input u
may be, if x and y and its derivative are bounded
so is z and if these signals converge to 0, so does z
(see [7] for a more detailed analysis).

Assumption 3 (Stabilizability) There is a Cm

function ϑ such that the origin is a globally asymp-
totically stable equilibrium point of ẋ = f(x) +
g(x)ϑ(x).

This Assumption says that we know how to stabilize
the system (1) whenever there is no uncertainty, i.e.
the x-subsystem with y = u. Applying Theorem
1 in Sontag [6], while preserving its differentiabil-
ity properties, the control law ϑ can be modified
to ensure the input-to-state stability of the system
ẋ = f(x) + g(x)(ϑ(x) + v) with respect to the in-
put v. In the rest of the paper, we assume that ϑ
possesses this property.

With this stabilizability information in mind, it is
natural to choose the controller as

u = ϑ(x) + v (6)

where v remains to be designed to counteract the
effect of input uncertainty. As demonstrated in our
previous work [3] in the zero-relative-degree case,
the synthesis of the extra control term v can be
based on some observer output that approximates
the uncertain nonlinearity. We show in the sequel
that this idea can be extended to the higher relative
degree case.

As in [3], a rectifiability-like condition is required to
design such an observer. Namely,

Assumption 4 (Rectifiability) We know a C1 map-
ping l : R

n → R such that

∂l

∂x
(x)g(x) = 1 (7)

This Assumption is meaning in effect that y is ob-
servable from x.

3 Control Design and Main Results

3.1 Controller/observer synthesis
Motivated by [3] and the type of control laws (6)
we are looking for, we first introduce a change of
coordinates in the unmodeled dynamics space and
then design a suitable state observer.

Let
χ0 = y − ϑ(x) . (8)

From (3) in Assumption 1, we have

χ̇0 = y1 − ∂ϑ

∂x
(f(x) + g(x)(ϑ(x) + χ0)) (9)

Then, we introduce

χ1 = y1 − ∂ϑ

∂x
(f(x) + g(x)(ϑ(x) + χ0)) (10)

which implies
χ̇0 = χ1 (11)

By induction, we can obtain the following

χi+1 = yi+1 + ϕi(x, χ0, . . . , χi) (12)
χ̇i = χi+1 , ∀ 1 ≤ i ≤ m − 2 (13)

Finally, we have

χ̇m−1 = u + δ(χ0, . . . , χm−1, ζ, x, u) (14)



where

δ(χ0, . . . , χm−1, ζ, x, u) = (15)

ϕm−1(x, χ0, . . . , χm−1) − h1(y, y1, . . . , ym−1, ζ, x, u)

Note that, by Assumption 1, the function δ satisfies,
for all (χ0, . . . , χm−1, ζ, x, u)∣∣∣∣∂δ

∂u
(χ0, . . . , χm−1, ζ, x, u)

∣∣∣∣ ≤ 1 − ε . (16)

Thanks to the rectifiability condition in Assumption
4, it holds

χ0 = l̇ − ∂l

∂x
(f(x) + g(x)ϑ(x)) (17)

This allows us to introduce the following observer:

˙̂χ0=χ̂1 + Lp1

(
l̇ − ∂l

∂x
(f(x) + g(x)ϑ(x)) − χ̂0

)
˙̂χ1=χ̂2 + L2p2

(
l̇ − ∂l

∂x
(f(x) + g(x)ϑ(x)) − χ̂0

)
...

˙̂χm−1=u + δ̂ + Lmpm

(
l̇ − ∂l

∂x
(f(x) + g(x)ϑ(x)) − χ̂0

)
˙̂
δ=Lm+1pm+1

(
l̇ − ∂l

∂x
(f(x) + g(x)ϑ(x)) − χ̂0

)
(18)

where L > 0 and the constants pi’s are design pa-
rameters.

The above observer can be realized with the states:

σi = χ̂i − Li+1pi+1l(x) ∀ 0 ≤ i ≤ m − 1

σm = δ̂ − Lm+1pm+1l(x)
(19)

The control is then chosen as:

u = −sat
(

m−1∑
i=0

ciχ̂i + δ̂

)
(20)

where sat is a function to be made precise later
on, either as the identity function or as a saturation
function and where the ci’s are such that the poly-
nomial sm + cm−1s

m−1 + · · · + c1s + c0 has all its
roots in the open left-half complex plane.

So our controller is made of (18) (realized with (19))
and (20).

3.2 Main results
Theorem 1 Under Assumptions 1 to 4, for any
compact set Ω in R

n+p, there exist a compact set
Ωσ in R

(m+1), a function sat and design parame-
ters pi (1 ≤ i ≤ m+1) such that, for all sufficiently
large L, the closed-loop system (1), (18) and (20)
admits the origin as a practically stable equilibrium
point with basin of attraction containing Ω × Ωσ.

Under extra stability conditions around the origin
on the system (1), semiglobal asymptotic stabiliza-
tion can be obtained.

Theorem 2 Under the conditions of Theorem 1, if
the matrices

∂f

∂x
(0) + g(0)

∂ϑ

∂x
(0)

∂qζ

∂ζ
(0) +

∂qζ

∂u
(0)

(
1 − ∂h1

∂u
(0)

)−1
∂h1

∂ζ
(0)

(21)

are asymptotically stable, then the system (1) is
semiglobally asymptotically stabilized by the obser-
ver-based controller (20).

Note that the eigen-values of

∂qζ

∂ζ
(0) +

∂qζ

∂u
(0)

(
1 − ∂h1

∂u
(0)

)−1
∂h1

∂ζ
(0)

are the zeros of the z-subsystem in (1) with u as
input and y as output linearized at the origin.

4 Proof of the Main Results

Due to space limitations, we give (without all
the details) only the proof of of Theorem 1. The
complete proofs can be found at
http://cas.ensmp.fr/~praly/Papers/In-Dist-Min-Phi-CDC98.ps.gz

To prove Theorem 1, after writing the closed-loop
system in appropriate coordinates, we follow the
lines proposed by A. Isidori [1] for another proof
of [8]. An important new ingredient here is the re-
cursive design of the observer parameters following
an algorithm which is in some sense a dual of the
backstepping procedure (see Lemma 2).

Step a. – Description of the closed-loop system: For
the time being, let sat be a C2 function satisfying∣∣∣∣dsatds

∣∣∣∣ ≤ 1 . (22)

Let us denote

ei = Lm−i(χ̂i − χi) , em = δ̂ − δ (23)
χ = (χ0, . . . , χm−1) , e = (e0, . . . , em) . (24)

It can be shown that the closed-loop system (1), (18)
and (20) can be rewritten in the (x, χ, ζ, e) coordi-



nates as

ẋ = f(x) + g(x)(ϑ(x) + χ0)

χ̇i = χi+1 , 0 ≤ i ≤ m − 2

χ̇m−1 = Φsat(L, x, χ, ζ, e) + δ

ζ̇ = q1(ζ, χ, x, Φsat(L, x, χ, ζ, e))

ėi = L(ei+1 − pi+1e0) , 0 ≤ i ≤ m − 2

ėm−1 = L(em − pme0)

ėm = −Lpm+1

(
1 − ∂h1

∂u

dsat

ds

)
e0

−Πsat(L, x, χ, ζ, e)

−∂h1

∂u

dsat

ds

m−1∑
i=0

ci
ei+1 − pi+1e0

Lm−i−1

(25)
where Φsat and Πsat are C1 functions which are :
• bounded in L when L ≥ 1.
• bounded in e if sat is a bounded function.

These functions are denoted ΦId and ΠId when sat
is simply the identity function. In fact, we have :

u = Φsat(L, x, χ, ζ, e) . (26)

Also, we want to study the solutions of the closed-
loop system (1), (18) and (20) with initial condi-
tion (x(0), z(0), σ(0)) in a given compact set Ω×Ωσ.
From Assumption 1, (12), (15), (19), (23) and since
u is bounded in e when sat is a bounded function,
there exist a positive real number b, independent of
L, such that, for L ≥ 1,

|(x(0), χ(0), ζ(0))| ≤ b , |e(0)| ≤ bL(m+1) .
(27)

Step b. – The (x, χ, ζ)-subsystem and definition of
sat: When there is no estimation error (i.e. χ̂i = χi

and δ̂ = δ) and when sat = Id, the closed-loop
system is

ẋ = f(x) + g(x)(ϑ(x) + χ0)

χ̇0 = χ1

...

χ̇m−1 = −
m−1∑
i=0

ciχi

ζ̇ = q1(ζ, χ, x, ΦId(L, x, χ, ζ, 0))

(28)

From Assumption 2 and (12), we have, for all
(ζ, χ, x, u),

∂W

∂ζ
(ζ)q1(ζ, χ, x, u) ≤ −α(|ζ|) + γ̃(|(χ, x)|) (29)

for some class-K function γ̃. This implies that the
ζ-subsystem in (28) is ISS when (x, χ) is considered

as the input. On the other hand, by construction
and Assumption 1, for the (x, χ)-subsystem in (28),
the origin is globally asymptotically stable. Con-
sequently, for the overall system (28), the origin
is globally asymptotically stable. From Lyapunov
Converse Theorem (see, e.g., [4, Prop. 13]), we
deduce the existence of a C1 positive definite and
radially unbounded function V such that its time
derivative along the solutions of (28) satisfies:

V̇(28)(x, χ, ζ) ≤ −V (x, χ, ζ) (30)

This function V will be the main tool of our analysis.

Let c be a positive real number such that

(x, z, σ) ∈ Ω × Ωσ ( =⇒ |(x, χ, ζ)| ≤ b) (31)

=⇒ V (x, χ, ζ) ≤ c .

We define the set

Δ := {(x, χ, ζ, e) : |e| ≤ 1 , V (x, χ, ζ) ≤ c+2} (32)

Associated with this set is defined the following pos-
itive real number:

Smax = (33)

sup
(x,χ,ζ,e)∈Δ,L≥1

{
m−1∑
i=0

ci

(
χi +

ei

Lm−i

)
+ δ + em

}
where the argument u of δ as defined in (15) is taken
as ΦId(L, x, χ, ζ, e).

We define the function sat such that it is C2,
bounded and satisfies the following properties:

sat(s) = s if |s| ≤ Smax∣∣∣∣dsatds
(s)

∣∣∣∣ ≤ 1 ∀ s ∈ R

(34)

Note that

{(x, χ, ζ, e) ∈ Δ , L ≥ 1} (35)

=⇒ Φsat(L, x, χ, ζ, e) = ΦId(L, x, χ, ζ, e) .

Now the system (28) is obtained from the closed-
loop system (25) by letting e = 0 and sat := Id
on Δ. So, from (30), (14), (20) and (26), there ex-
ists a constant η1, independent of L, such that, for
(x, χ, ζ, e) in Δ and L ≥ 1,

V̇(25) ≤ −V + η1|e| . (36)

Also, since Φsat is a bounded function of e, the
derivative functions ẋ, χ̇ and ζ̇ are bounded on
V ≤ c + 2. Thus,

V (x, χ, ζ) ≤ c + 2 ⇒ V̇(25) ≤ η2 (37)



with η2 a constant independent of L.

Step c. – The e-subsystem and the observer parame-
ters pi: Our first step, in studying the e-subsystem,
is to look at its dominant part when L is large.
Namely we consider the system

ė0 = Le1 − Lp1 e0

...
ėm−1 = Lem − Lpm e0

ėm = −Lpm+1

(
1 − ∂h1

∂u

dsat

ds

)
e0 ,

(38)

We observe that, from the properties of sat and (4)
in Assumption 1:∣∣∣∣∂h1

∂u

dsat

ds

∣∣∣∣ ≤ 1 − ε . (39)

So, for any solution of the closed-loop system evolv-
ing in the set{

(x, χ, ζ, e) : e ∈ R
(m+1) , V (x, χ, ζ) < c + 2

}
,

we have
0 < ε ≤ B(t) ≤ 2 − ε (40)

where

B(t) = 1− ∂h1

∂u

dsat

ds

∣∣∣∣
(x(t),χ(t),ζ(t),e(t))

(41)

We have

Lemma 1 For the system

ė0 = Le1 − Lp1 e0

...
ėm−1 = Lem − Lpm e0

ėm = −Lpm+1 B(t)e0 ,

(42)

there exist real numbers pi’s and positive definite
symmetric matrices P and Q such that, for any con-
tinuous function B, satisfying (40), we have

˙︷ ︷
e�P e ≤ −Le�Q e (43)

This Lemma can be proved by induction from the
following technical result given without proof :

Lemma 2 Assume that for the system

Ė = (A − K(t)C) E (44)

with A, K and C, matrices of appropriate dimen-
sions, satisfying

|K(t)| ≤ k (45)

we have positive definite symmetric matrices P and
Q such that

˙︷ ︷
E�P E ≤ −E�Q E (46)

then there exists a positive real number p such that
for the system

ė = CE − pe

Ė = AE − pK(t)e
(47)

we have positive definite symmetric matrices P̄ and
Q̄ such that

˙︷ ︷
(E� e)P̄

(
E
e

)
≤ −(E� e)Q̄

(
E
e

)
(48)

Consider now the actual e-subsystem in the closed-
loop system (25). It is obtained from (38) by
adding C1 functions of (x, χ, ζ, e) which are linearly
bounded in e and bounded in L for L ≥ 1. So, from
Lemma 1, there exist three positive real numbers η3,
η4, η5 (independent of L) such that

{V (x, χ, ζ) ≤ c + 2 , L ≥ 1} (49)

=⇒
˙︷ ︷

e�P e ≤ −(η3L − η4)e�Pe + η5 .

Step d. – Practical stability: Consider any solution
of (25) defined on the open set{

(x, χ, ζ, e) : e ∈ R
(m+1) , V (x, χ, ζ) < c + 2

}
with the initial condition satisfying (see (27) and
(31))

V (x(0), χ(0), ζ(0)) ≤ c and |e(0)| ≤ bL(m+1) .
(50)

where b and c are independent of L.

Such a solution is well defined on a right maximal
interval [0, Tc). We show in the sequel that Tc =
+∞.

If Tc were finite, (49) would imply that |e(t)| cannot
escape to infinity and so we would have

lim
t→Tc

V (x(t), χ(t), ζ(t)) = c + 2 . (51)

Let us show that this is impossible when L is large
enough. Denote T1 = 1/η2 with η2 taken from (37).
From (37) and (50), we know that

V (x(t), χ(t), ζ(t)) ≤ c + 1 ∀t ∈ [0, T1] (52)



It follows that Tc > T1. Using (49) and (50), we
have, for t in [0, Tc),

e(t)T Pe(t) ≤ e−(η3L−η4)t|P |b2L2(m+1)+
η5

(η3L − η4)
.

(53)
So, there exists a positive real number L∗

1 such that,
for L ≥ L∗

1 and t in [T1, Tc), we have :

|e(t)| ≤ min
{

1 ,
c + 1
η1

}
(54)

with η1 involved in (36). For such values of L, the
solution is in Δ for t in [T1, Tc). So it follows from
(36), (52) and (54) that

V (t) ≤ c + 1 ∀t ∈ [T1, Tc) (55)

This contradicts (51). So we have established that
Tc = +∞ and that the closed-loop solution is
bounded and remains in the open set {(e, x, χ, ζ) :
e ∈ R

(m+1) , V (x, χ, ζ) < c + 2}.

In fact, for any ε > 0, there exist T2 > 0 and L∗
2 > 0

such that, for L ≥ L∗
2 and t in [T2, +∞), we have

max{V (x(t), χ(t), ζ(t)) , |e(t)|} ≤ ε . (56)

Indeed, let

ε∗ = min
{

ε ,
ε

2η1

}
(57)

L∗
2 = max

{
L∗

1 ,
η4 + (2η5|P−1|)/ε∗ 2

η3

}
(58)

From (53), it is seen that, for all L ≥ L∗
2 , there exists

T3 > 0 such that

|e(t)| ≤ ε∗ ∀ t ≥ T3 (59)

Hence, in view of (36) and (52), we deduce the ex-
istence of some time instant T2 ≥ T3 such that

V (x(t), χ(t), ζ(t)) ≤ ε ∀ t ≥ T2 (60)

The proof of Theorem 1 is completed.

5 Concluding Remarks

We addressed the robust stabilization problem for
nonlinear systems in the presence of minimum-phase
dynamic input uncertainties. The zero relative de-
gree case studied in our previous work [3] has been
extended to the case of dynamic input uncertainty
with arbitrary relative degree, provided that the a
priori knowledge of this relative degree as well as of
the “high-frequency gain” is available. We proposed
a dynamic feedback semiglobal method to achieve

semiglobal practical stabilization and, under addi-
tional conditions, semiglobal asymptotic stabiliza-
tion. The present framework can be seen as an ex-
tension of recent work on the basis of passivity and
nonlinear small-gain arguments.

In this paper the z-dynamics are treated as uncer-
tain. However our results hold even if these dy-
namics are known. From a practical viewpoint, the
measurement of z may be corrupted or the dynam-
ics may be too complicated to be taken into account
explicitly in the control law.
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