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Abstract 
This paper is devoted to the problem of rejecting oscil- 

latory position-dependent disturbances (eccentricity) with 
unknown frequency and unknown amplitude. Most of the 
previous works on eccentricity cancellation assume a time- 
depending oscillation, we instead assume that the oscilla- 
tory disturbance is position-dependent. This leads us to 
formulate and to globally solve the adaptive cancellation 
problem in the spatial domain coordinates (curvilinear ab- 
scissa associated to  the trajectory of the motion), which 
is the rate-independent (or space) description of the po- 
sition. An apparatus with rolling excentricity has been 
build to test the controller. 

Keywords: Adaptive compensation, Eccentricity si- 
nusoidal disturbance rejection. 

1. Introduction 
We consider systems of the form: 

dx 
dt 

J i r = u + d ( x ) ;  ?I=?=- 

where x is the system angular position, J is the inertia, 
U is the control input and d(x) is the position-dependent 
oscillatory disturbance defined as: 

d(x) = ACOS(WX + @) (2) 
= a1 cos wx + a2 sin wx (3) 

It  is assumed that the amplitude A, the dimensionless fre- 
quency w, and the phase @ (or equivalent, the parame- 
ters ( a l ,  a2, w)), of the disturbance d,  are unknown. The 
problem considered here is thus to cancel the effect of the 
disturbance d in the system (1). 

This type of problem arises as a consequence of ec- 
centricity in many mechanical systems where the center 
of rotation does not correspods with its geometric center. 

This is typically the case on drives with magnetic bear- 
ings. I t  also arrises in systems with friction where the 
cont,act forces change as a function of the position x. 

The dependency on position of d(x) can be visualized 
in the following scenarios. I t  is known that the friction 
forces depends on the normal force acting between two 
surfaces. Inaccuracies in the geometric position of the 
rotating axis of a rolling mill (eccentricity), will produce 
position dependent disturbances. In gear boxes, friction 
will vary as a function of the effective surface in contact of 
the gear’s teeth. The two dimensional rolling and spinning 
friction causes in ball bearings the frictional torque to be 
dependent on both position and velocity. Figure (1) shown 
some of these examples. 

Many of the existing works consider d not as a position 
function, but as a timedependent exogenous signal, of the 
form 

d(t) = Acos(wt + a) (4) 
In the previous mentioned system this hypothesis is 

only valid if we assume that the system is operating and 
regulated, a t  constant velocity ?&SO that x(t)  becomes pro- 
portional t . ud. Disturbances of the form (4) have been 
considered in problems such as active noise and vibration 
control. The noise d(t) is thus assumed to  be generated 
by the rotating machinery and transmitted through the 
sensor path. Examples rate from engine noise in turbo- 
prop aircraft [7] to ventilation noise in HVAC system [SI, 
passing through engine noise in automobiles [12]. 

The proposed solutions resort to “standard” adaptive 
algorithms if the frequency w is assumed to  be known [4]. 
Repetitive control has also been used to compensate ec- 
centricity in rolling [9]. For the general case where both 
amplitude and frequency are unknown, some approaches 
based on the phase-lock loop principle has been proposed 
[3], but without proof of stability. When formulating 
this problem in the time-domain, the main difficulty to 
show global stability properties of the adaptive algorithms 
comes from the fact that the unknown parameters appear 
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it corresponds a non autonomous differential equation in 
the t-domain, i.e. 

DX = 5 = Iv(t)lf(x) . (9) 

The converse may not hold in general with a problem when 

This type of transformation has been used before in 
connection with hysteresis operators (see [lo], [13]), and 
more recently as a mathematical tool to  model dynamic 
friction [2]. In particular, authors in [2] and [l] shown how 
the nonlinear Dahl’s friction model can be transformed 
into a linear spatial invariant system. 

v( t )  = 0. 
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Figure 1: Examples of systems where disturbances d ( z )  are positions- 
dependent. 

nonlinearly in the expression of (4). 
When the system operates under time-varying velocity 

profiles, w in (4) becomes time-dependent generating a 
signal d ( t )  with a large spectral support. The position 
dependent disturbance model (3) is thus better adapted 
for those cases. 

In this paper we present a globally stable adaptive 
algorithm that solves the above mentioned problem. For 
this, we use a formulation in the in the s-domain (curvilin- 
ear abscissa associated to  the trajectory of the relative mo- 
tion), which is the rate-independent (or space) description 
of the position. An internal model and adaptive observer 
are thus designed in the s-domain, and global stability is 
thus demonstrated. 

2. Spatial transformation 
In this section we introduce the the s-domain operator 

V, we formulate the internal model for the disturbance d 
in this coordinates, and we present some useful properties 
required to establish our stability results in the following 
sect ion. 

Definition of the V-operator  Introduce first the 
spatial variable s, as being the curvilinear abscissa asso- 
ciated to the trajectory of the relative motion: 

s(t) is a monotonous growing signal. 
Let V be defined as: 

n d  1 
ds I4 

V = - = - D  

A where D = $ stands for the time-differential operator. 
Since V is a derivation, similar rules that apply for D can 
be used for V. In particular if x and y are two functions, 
we have 

Also to any differential equation in the s-domain 
V(XY) = Q(Z)Y + XV(Y) . (7 )  

Vx = f(z) (8) 

Internal V-model for d. Let 

(10) 
A 

y = J6  - U = d(x) 

with d(x) given in (3). Computation of Vy and V2y, gives: 

coswz sinwx ) ( :; ) (11) ( v,yiw ) = ( -sinwx coswx 

Q2y = -w2y (12) 

where the equation (12) describes the internal model for 
y. Let zl = y, and z2 = Vy, a s-domain state space 
realization for (12) is: 

v z  = ( :0 ; ) z  (13) 

Y = ( 1 , O ) Z  (14) 

with 0 = b2,  and z = [ z l ,  z2IT. 

3. Control design 
In this section the control law, the adaptive observer, 

and the adaptation law will be presented. Stability is 
studied at  the end of the section. The control design 
philosophy consists in first designing an adaptive internal 
model predictor for d ,  directly in the s-domain, and then 
to study the stability properties of the coupled s-domain 
and t-domain equations. 

We consider the problem of tracking the desired ve- 
locity wd(t) supposed to be bounded and continuous (for 
simplicity) as well as its derivative. To this aim we define 
the adaptive eccentricity control (AEC) control as: 

U = J6d - k,(v - ~ d )  - 21, (15) 

where 21 is an output of the following dynamic system 
(observer): 

Vi1  = 22 + k l ( z1 -  21) (16) 

(18) 

ve = -72  l ( Z 1  - 21) (19) 

V22 = -821 + k2(~1 - 21) - XZiVB (17) 
1 vz1 = -pl - 2 1 )  
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with 

y = 21 = Jir - U = a1 cos(wz) + a2 sin(wz) (20) 

and positive nonzero constants k,, kl, k2, A, p, and y. As 
we shall see this representation of the controller is appro- 
priate for analysis. But it cannot be implemented directly 

be measurable. Alternatively, we can first transform the 
system (16)-(19) to the time-domain, and then show that 
measurement of ir is not needed. For the former, we have 

in this way unless the system acceleration, is assumed to Figure 2: Block scheme of the coupled s-domain / t-domain error 
system' 

After doing some simple manipulations, the coupled 
re ad i 1 y 

For the latter, noting that 

d 
- { 1211 vi} = (i + 1) I . u I v Z - ~  ir Vi = 1 , 2 , 3 , .  . . 
dt 

and introducing 

We have 

YJ [ 2x B = 1211 yz1(u + i l )  - -~vlv(puz1 - 2 4  (33) 

This gives us a well defined t-domain state space re- 
alization depending only on the measurable velocity v . 
Note that with the assumption that u d  and U d  are bounded 
and continuous, with this controller, we get a closed loop 
system whose dynamics are described by an ordinary dif- 
ferential equation whose right hand side is continuous. 

To analyze this closed-loop system, we introduce the 
error variables: 

e = v - U d ,  z = z - i ,  6 = 8 - 8 .  

s-domain / t-domain error equations are given by: 

with the map G(V) defined as: 

(37) 

Figure 2 shows the inter-block connection among these 
systems. Note that the closed-loop block interconnection, 
at the left of the figure -Equations (38-36)- involves sig- 
nals that are parameterized in the t-domain, whereas the 
block at the right -Equation (34)- involves a LTI map 
having as input a signal parameterized in s. This results 
in a coupled s-domain / t-domain system. 

Stability analysis 
state space representation of the form: 

Note that the map G(V) admits a 

V[ = AJ - BZlB (38) 
z1 = CJ (39) 

where: 

A =  ( - ( k z  0 + 0) -k1 1 ) , B = (  Y ) , C T = (  ;) 
(40) 

and [ = Ti?, for some invertible linear transformation T .  
Since A in (40) is strictly Hurwitz for any positive value 
of kz  (note that 8 > 0), and kl,  it follows that we can find 
P symmetric positive definite matrix such that: 

A ~ P  + P A  = - I .  (41) 

Then let X and p in C in (40) be defined as: 

(42) C = P B .  

Theorem 1 Consider the system (1)-(3). Consider the 
dynamic feedback defined by the equation set (15- 19). Let 
the control gains k l  > 0, kz > 0, and A, p be defined 
by (42). Then all the internal signal of the system are 
bounded and in addition, the velocity tracking error e tends 

2273 

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on December 2, 2009 at 05:23 from IEEE Xplore.  Restrictions apply. 



to zero, if the desirea' velocity time-profile is  rich enough 
to meet 

liminf - 1 IUd(T) ldT = +w 
l t  

t++m t 
else, U - Ud tends to some finite value. 

Proof From what we have observed on the closed 
loop system, to  any initial condition corresponds a unique 
solution. Let [O,T) be its right maximal in terval of def- 
inition in the t-domain. I t  corresponds functions in the 
s-domain defined on an interval [0, S,,,) where: 

S,,, = lim Iu( -r ) ld~  ( 5  +CO) (43) 
t - T l  

Let us show that T must be infinite. To do this we consider 
the non negative function V: 

v = ETPt + 7-182 

with P given in (41). With the help of (38)-(39), (36), 
(41) and (42), we obtain in the s-domain: 

vv = -ET< - 2(<TPB)Zl8 + r - l (oe )e  (44) 

- y e  - 2ZlE18 - r - l ( v e ) e  - - 

where Equation (46) results from the adaptation law that 
cancels the terms in the square brackets in (45) (this is 
how its is designed). Since V V  is non positive, V it is 
bounded on [0, S,,,) and therefore on [0, T )  it follows 
that E ,  51 and 6 are bounded on [0, T ) .  But from (34), the 
same holds for e. Since the external signals wd, 'ud and z1 
(see (20)) are bounded, we conclude that all the functions 
are bounded. So T must be infinity. 

From (47), we have also 

t (T)Tt (T)dT I v(0)  v s  E [o, s,,,) (48) 

Since from (38), V< is bounded on [0, S,,,) and E is uni- 
formly continuous. From Barbalat's Lemma, this implies 
that, if S,,, = 00, i.e. ( U \  is not summable in the time 
domain, then and therefore 21 converge to 0 as t goes to 
infinity. From (34), the same holds for e. So when IuI is 
not summable in the time domain, we have: 

lim {v( t )  - ud(t)} = 0 . 
t++m (49) 

When S,,, is finite, i.e. Iu( is summable on [0,00), 
from (21) and the boundedness of the functions, we have 
that k l  is summable on [0, +CO). This implies the exis- 
tence of 21, such that 

Q) Fmntvkw 

Figure 3: Schematic (a) front view of the experimental setup to study 
eccentricity, (b) lateral view. 

So again from (34), we get the existence of e,  such that 

lim { u ( t )  - ud( t )}  = em 
t-+m 

Note that this implies by contradiction that if 
that: 

is such 

(52) 

( ' U (  cannot be summable and therefore (49) holds. U 

4. Experimental results 
This section describes the experimental evaluation of 

AEC-controller. More detailed description of the real-time 
system used for these experiments, as well as additional 
experiments, can be found in [ 111. 

The schematic view of the aparatus build to study 
eccentricity is shown in Fig 3. The load cylinder of inertia 
51 is driven by the motor of inertia J,. On the top of it,  
we have placed a rotating wheel (with neglected inertia), 
constrained by the force F N .  The rotation wheel's center 
is set to be different to its geometric center. The contact 
pressure at the point where the wheel radius is equal to R, 
is larger than the contact pleasure at the point of radius r ,  
since R > r .  This produces an eccentricity effect changing 
the normal force acting on the wheel-to-cylinder contact 
surface. 

The model for the motor drive under this setup is 
given as: 

Jir = U  - F - RCOS(UZ + a) (53) 

with: 
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equations: 

Friction Motor & cy1inder 

Fc = 0.38 [Nm] J,, = o,oo196 [Kglmzl Ro = [cml 
Fs = 0.42 [Nm] R = 2.1 [cm] 
vo = 0.01 [radlsec] T = l.9[cm] 

UI = 0.6 [Nmlrad] 

parameters parameters characteristics 

J~ = 0.0125 [.v9/m2] 
J = 0.0022 [Kg/m2] 

n = 15.5 
uo  = 260.0 [Nmsec/rad] K t  = 0.352 [NmlAmp] 

Figure 4: Control block scheme of the adaptive eccentricity compen- 
sator (AEC), with feedforward friction compensation. 

The experiments in Figures 5-8, show the tracking er- 
Tor, the prediction E l @ ) ,  the estimate 8,  and the control 
signal. The experiments are realized at  Vd = 30 Rad/sec. 
The eccentricity compensation is applied at t = l0sec. It 
can be observed that the oscillatory disturbance affect- 

2RO - i;j 
w =  

n n(r+R)  (56) 

(57) 
R - r  FN R - r  FN -. -vss = - . -po . sign(v) (58) 

2 n  2 n  
x 

where F N ~  is the average normal force on the ball bear- 
ings, the parameters ai are the friction parameters asso- 
ciated to the LuGre friction model (see [5]). FC is the 
Coulomb friction. The Stribeck effect has been negleted. 
They capture the distributed friction characteristics on 
the motor. w is the dimensionless frequency at  the mo- 
tor side (note that the eccentricity frequency effect a t  the 
motor shaft is demultiplied by the gear ratio n).  

The model (53), differs from model (1) by the presence 
of friction, and by the dependence of A on the normal- 
ized velocity dependent friction U( .) = F (.)/ Fma, . Hence 
to apply to  our previous adaptive eccentricity compen- 
sator, we need to  cancel the friction, and to assume that 
u(q,q,v)  , can be approximate by its steady state value 
vss = posign(v), as shown in (58). 

Friction can be cancelled via feedforward or feedback. 
The approximation on v(.) may hold for most operation 
conditions (except for the time periods when the velocity 
crosses zero) since the friction dynamics of (55), is much 
more faster that the motor velocity dynamic (of the order 
of magnitude of 0 0 ) .  The only conceptual problem lies 
thus on the velocity zero crossings that occurs a t  isolated 
time periods. 

System parameters including friction coefficients has 
been estimated using a similar procedure as described in 
[6]. They are reported in the table below. 

A 

Figure 4, shown the block diagram of the AEC control 
scheme with feedforward friction compensation. Locally, 
F F, thus the closed-loop equation with this additional 
friction compensation term is similar to the frictionless 
system studied in the previous section. 

The control parameters used for these experiments 
were: kv = 40, k l  = 1, k2 = 0.25, y = 2, X = 2 ,  p = 1. 

Ern"@ [""rcl 
,SOD, , , , , , , , , , ,, 

2 . 8 I 10 32 I' 1s ,I 20 
- I x a  

c.c 

Figure 5: Velocity tracking error (v,i - v) 

0 5 t  1 

Figure 6: control input time profile 
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Figure 7: predicted disturbance, 21 

Figure 8: Time-evolution of b ( t )  

of the wheel contact surface (the wheel in contact is com- 
posed of a inner undeformable steel wheel, covered by a 
rubber 5mm O-ring). The estimated parameter 0 is ob- 
served to converge (in average sense) to a value close to 
0.055, which according to (3) implies that w = = 
0.23. The theoretical value of w is given by the expression 
56 as w = nzR) = 3/15 = 0.2, which seems to corre- 
spond to the experimental found value (note also that the 
period of i l ( t )  gives for a velocity of 30Rad/sec, an ex- 
perimental value of w = (27r)/(wT) M 0.2, for a T = 1 . 6 ~ ) .  

5 .  Conclusions 
We presented a method for compensating eccentricity 

in mechanical system. As a main difference with previous 
works, we have formulated the disturbance as a position- 
dependent periodic function. This formulation seems to 
be justified in most of the mechanical applications where 
eccentricity occurs. 

As a results of this formulation, we have used a spa- 
tial description of the system (often used in system with 
hysteresis) which is more natural than the use of a time 
formulation. This did allows us to  design of an adap- 
tive predictor of the disturbance directly in the spatial 
domain. Experiments shown that  the AEC controller im- 
proves over simpler linear controller without eccentricity 

compensation. 
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